MTH 309

Additional Problems for Sec 2.3

1. Let $\mathcal{A} = \{0, 1\}$ and let \mathcal{A}^* be the set of bit strings.

$$f:\mathcal{A}^*\to\mathbb{N}$$

f(w) =the number of 1's in w

Find f(110100).

2. $f: \mathcal{P}(\{0, 1, \dots, n\}) \to \mathcal{P}(\{1, 2, \dots, n+1\})$

$$f(S) = \{x \in \{1, 2, \dots, n+1\} \mid x - 1 \in S\}$$

Find

- (a) $f({2,5,9})$
- (b) $f(\emptyset)$
- (c) $f(\{0, 1, \dots, n\})$
- 3. $f: \mathcal{P}(\{1, 2, \dots, 20\}) \to \mathcal{P}(\{1, 2, \dots, 21\})$

$$f(S) = S \cup \{21\}.$$

Find

- (a) $f({2,5,9})$
- (b) $f(\emptyset)$
- (c) $f(\{1,\ldots,20\})$
- 4. Let $f: \mathcal{P}(\{1, 2, \dots, n\}) \to \{0, 1\}_n$

$$f(T) = w_1 w_2 \cdots w_n$$
 where $w_i = \chi(i \in T)$ for all $i \in \{1, 2, \dots, n\}$.

For n = 7, find

- (a) $f(\{2,4,5\})$
- (b) $f(\emptyset)$
- (c) $f(\{1, 2, 3, 4, 5, 6, 7\})$

- 5. Decide which of the following are functions. For those that are functions, determine whether the function is onto and determine whether the function is one to one.
 - (a) $f: \{1, 2, 3\} \to \{2, 3, 4\}$ $f(1) = 3, \quad f(2) = 4, \quad f(3) = 4$
 - (b) $f: \mathbb{N} \to \mathbb{N}$ f(n) = n + 3
 - (c) $f: \mathbb{Z} \to \mathbb{Z}$ f(n) = n+3
 - (d) $f: \mathbb{N} \to \mathbb{N}$ f(n) = n - 3
 - (e) Let $\mathcal{A} = \{0, 1\}$ and let \mathcal{A}^* be the set of bit strings. $f: \mathcal{A}^* \to \mathbb{N}$ f(w) = the number of 1's in w
 - (f) $f: \mathbb{Q} \to \mathbb{Q}$ f(p/q) = p
 - (g) $f: \mathcal{P}(\{0, 1, \dots, n\}) \to \mathcal{P}(\{1, 2, \dots, n+1\})$ $f(S) = \{x \in \{1, 2, \dots, n+1\} \mid x-1 \in S\}$
 - (h) $f: \mathcal{P}(\{1, 2, \dots, n\}) \to \mathcal{P}(\{1, 2, \dots, n+1\})$ $f(S) = S \cup \{n+1\}$
 - (i) $f: \mathbb{Z}_{>0} \to \mathbb{Q}$ f(n) = 1/n