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In this paper, the spatial, temporal and spatiotemporal dynamics of a reaction–diffusion predator–prey
system with mutual interference described by the Crowley–Martin-type functional response, under homo-
geneous Neumann boundary conditions, are studied. Preliminary analysis on the local asymptotic stabil-
ity and Hopf bifurcation of the spatially homogeneous model based on ordinary differential equations is
presented. For the reaction–diffusion model, firstly the invariance, uniform persistence and global asymp-
totic stability of the coexistence equilibrium are discussed. Then it is shown that Turing (diffusion-driven)
instability occurs, which induces spatial inhomogeneous patterns. Next it is proved that the model exhibits
Hopf bifurcation which produces temporal inhomogeneous patterns. Furthermore, at the points where the
Turing instability curve and Hopf bifurcation curve intersect, it is demonstrated that the model undergoes
Turing–Hopf bifurcation and exhibits spatiotemporal patterns. Finally, the existence and non-existence
of positive non-constant steady states of the reaction–diffusion model are established. Numerical simula-
tions are presented to verify and illustrate the theoretical results.

Keywords: diffusive predator–prey model; mutual interference; Turing instability; Hopf bifurcation;
Turing–Hopf bifurcation; positive non-constant steady states.

1. Introduction

A functional response of predators to their prey density refers to the change in the density of the
prey attached per unit time per predator as the prey density changes. The most widely used functional
response function, proposed by Holling (1965) and called Holling type II or Michaelis–Menten type,
describes the average feeding rate of a predator when the predator spends some time searching for prey
and some time processing the captured prey (that is, handling time, Cosner et al., 1999) and takes the
form

p(u)= mu

1 + au
, (1.1)

where u represents the density of the prey population, and the positive constants m (units: 1/times) and
a (units: 1/prey) describe the effects of capture rate and handling time, respectively, on the feeding rate.
Note that the Holling type II function is prey-dependent and is not affected by the abundance of the
predator population (Jost, 2000).

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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SPATIOTEMPORAL PATTERNS OF DIFFUSIVE PREDATOR–PREY MODELS 1535

The derivation of the Holling type II function (1.1) was based on the assumption that predators do not
interference with one another’s activities (Holling, 1965; Cosner et al., 1999), so the only competition
among predators occurs in the depletion of prey. To describe mutual interference among predators,
Beddington (1975) and DeAngelis et al. (1975) proposed that individuals from a population of more
than two predators not only allocate time in searching for and processing their prey but also take time
in encountering with other predators. This results in the so-called Beddington–DeAngelis functional
response (Cantrell & Cosner, 2001; Zhang et al., 2012)

p(u, v)= mu

1 + au + bv
, (1.2)

where v denotes the density of the predators and the parameter b (units: 1/predator) describes the mag-
nitude of interference among predators. Note that when b = 0, the Beddington–DeAngelis functional
response reduces to the Holling type II function (1.1).

In the Beddington–DeAngelis functional response, interference and handling are assumed to be
exclusive. Subsequently, Crowley & Martin (1989) assumed that interference among predators occurs
no matter if a particular predator is searching for prey or handling prey and proposed a functional
response of the form

p(u, v)= mu

1 + au + bv + abuv
= mu

(1 + au)(1 + bv)
, (1.3)

which is called the Crowley–Martin-type functional response in the literature (Skalski & Gilliam, 2001).
It is assumed that the predator feeding rate decreases by higher predator density even when prey density
is high, and therefore the effects of predator interference in the feeding rate remain important all the
time whether an individual predator is handling or searching for a prey at a given time. Note that if
b = 0, then Crowley–Martin-type functional response (1.3) also reduces to Holling type II functional
response (1.2).

Though the Crowley–Martin functional response is similar to the Beddington–DeAngelis functional
response but it has an extra term abuv in the denominator which may induce different dynamical prop-
erties. Moreover, in fitting different types of predator–prey data sets Skalski & Gilliam (2001) observed
that the Beddington–DeAngelis functional response fits better for some data sets, while the Crowley–
Martin functional response fits better for some others. Based on these observations, they suggested use
of the Beddington–DeAngelis functional response when the predator feeding rate becomes indepen-
dent of the predator density at high prey density and the Crowley–Martin functional response when the
predator feeding rate is decreased by higher predator density even when the prey density is high.

In the monograph of May (1973), the following model was proposed (see also Tanner, 1975):⎧⎪⎪⎨⎪⎪⎩
du

dt
= ru
(

1 − u

K

)
− muv

1 + au
,

dv

dt
= sv
(

1 − v

hu

)
,

(1.4)

where u and v represent prey and predator densities and r and s denote their intrinsic growth rates,
respectively; K is the carrying capacity of the prey’s environment, while the carrying capacity of the
predator’s environment, u/h, is a function on the prey population size (h is a measure of the food quality
of the prey for conversion into predator growth depending on the density of the prey population). The
saturating predator functional response is of Holling type II. The form of the predator equation in system
(1.4) was first introduced by Leslie (1948). The term (v/γ u) (γ = h/s)is called the Leslie–Gower term
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1536 H.-B. SHI AND S. RUAN

(Leslie & Gower, 1960). The Leslie–Gower-type predator–prey model with Holling type II functional
response is also called the Holling–Tanner model (May, 1973; Murray, 1989). Caughley (1976) used
this system to model the biological control of the prickly-pear cactus by the moth Cactoblastis cactorum.
Wollkind et al. (1988) employed this model to study the temperature-mediated stability of the predator–
prey mite interaction between Metaseiulus occidentalis and the phytophagous spider mite Tetranychus
mcdanieli on apple trees. Collings (1997) further suggested that the Holling type II functional response
in system (1.4) can be replaced by other functions, such as the Holling types III and IV functions.
Predator–prey models of Leslie–Gower type with generalized Holling type III and Holling type IV
functions were studied by Hsu & Huang (1995), Huang et al. (2014) and Li & Xiao (2007), respectively.
See also Freedman & Mathsen (1993).

Following Skalski & Gilliam (2001) and Collings (1997), when the predator feeding rate is
decreased by higher predator density even when prey density is high, it is more reasonable to con-
sider a Leslie–Gower-type predator–prey model with Crowley–Martin functional response describing
the predator mutual interference, which takes the form⎧⎪⎪⎨⎪⎪⎩

du

dt
= ru
(

1 − u

K

)
− muv

(1 + au)(1 + bv)
,

dv

dt
= sv
(

1 − v

hu

)
,

(1.5)

where the parameters r, K, a, b, h, m and s have the same meanings as introduced above.
On the other hand, in the evolutionary process of population species, individuals do not remain

fixed in space and their spatial distributions change continuously due to the impact of many factors
(environment, food supplies, season, etc.). Therefore, different spatial effects have been introduced into
population models, such as diffusion and dispersal (Cantrell & Cosner, 2003). To study the spatiotempo-
ral dynamics of the predator–prey model, we consider the following partial differential equation model
under homogeneous Neumann boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− d1Δu = ru

(
1 − u

K

)
− muv

(1 + au)(1 + bv)
, x ∈Ω , t> 0,

∂v

∂t
− d2Δv = sv

(
1 − v

hu

)
, x ∈Ω , t> 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω , t> 0,

u(x, 0)= u0(x)� 0, v(x, 0)= v0(x)� 0, x ∈Ω .

(1.6)

Here, u(x, t) and v(x, t) stand for the densities of the prey and predators at location x ∈Ω and time t,
respectively; Ω ⊂ RN (N � 3) is a bounded domain with smooth boundary ∂Ω; ν is the outward unit
normal vector of the boundary ∂Ω . The homogeneous Neumann boundary conditions indicate that
the predator–prey system is self-contained with zero population flux across the boundary. The positive
constants d1 and d2 are diffusion coefficients, and the initial data u0(x) and v0(x) are non-negative
continuous functions.

Spatial, temporal and spatiotemporal patterns could occur in the reaction–diffusion model (1.6) via
four possible mechanisms: Turing instability, Hopf bifurcation, Turing–Hopf bifurcation and positive
non-constant steady states.
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SPATIOTEMPORAL PATTERNS OF DIFFUSIVE PREDATOR–PREY MODELS 1537

(a) Spatial inhomogeneous patterns via Turing instability. In his seminal work, Turing (1952)
investigated reaction–diffusion equations of two chemicals and found that diffusion could destabilize
an otherwise stable steady state. This mechanism leads to non-uniform spatial patterns which could
then generate biological patterns by gene activation. This kind of instability is usually called Turing
instability (Murray, 1989) or diffusion-driven instability (Okubo, 1980). Segel & Jackson (1972) was
the first to show that Turing instability may occur in ecological systems; more precisely, they proved
that the uniform steady state of a diffusive predator–prey model could be unstable if the predators
exhibit self-limiting or intraspecific competition. See also Levin (1974) for a similar model and conclu-
sion. Thus classical prey-dependent diffusive predator–prey models cannot give rise to spatial structures
through diffusion-driven instability. Segel & Levin (1976) used a combination of successive approxi-
mation and multiple-time scale theory to develop the small amplitude non-linear theory for the diffu-
sive predator–prey model considered in Segel & Jackson (1972), and showed that a new non-uniform
steady state would be attained following destabilization of the spatially uniform steady state. Levin &
Segel (1976) pointed out that Turing instabilities might explain the instance of spatial irregularity in
the observed patchy distribution of plankton in the ocean. Wollkind et al. (1991) showed that Turing
instability occurs in a diffusive Leslie–Gower-type predator–prey model with a Holling type II function
or Holling–Tanner model, that is, the reaction–diffusion equation version of system (1.4). Thus, the
self-limiting or intraspecific competition effect of the predators can be relaxed if the carrying capac-
ity of predator’s environment is described by a Leslie–Gower term. Alonson et al. (2002) demonstrated
that predator-dependent diffusive predator–prey models, such as the diffusive predator–prey model with
ratio-dependent functional response function, can also generate patchiness in a homogeneous environ-
ment via Turing instability. For reviews and related work on Turing instability and Turing pattern forma-
tion of reaction–diffusion systems from applied sciences, we refer the reader to Levin & Segel (1985),
Malchow et al. (2008) and references cited therein.

(b) Temporal periodic patterns via Hopf bifurcation. The Hopf bifurcation theorem gives a set of
sufficient conditions to ensure that an autonomous differential equation with a parameter exhibits non-
trivial time-periodic solutions for certain values of the parameter. Ruan et al. (1998) studied Hopf bifur-
cation in a diffusive predator–prey model; see recent studies in Li et al. (2013) and Yi et al. (2009)
on other predator–prey models. Thus, diffusive predator–prey models with suitable functional response
can generate temporal periodic patterns via Hopf bifurcation.

(c) Spatiotemporal patterns via Turing–Hopf bifurcation. For a given reaction–diffusion system,
when the Hopf bifurcation curve and Turing bifurcation curve intersect, at the codimension-2 bifurcation
point a new bifurcation, called Turing–Hopf bifurcation, occurs and generates spatiotemporal pat-
terns. The interaction of Turing and Hopf bifurcations in chemical and physical systems has
been observed and analysed since the early 1990s (see Rovinsky & Menzinger, 1992; Meixner,
1997; Wit et al., 1996). Recently, for a generalized predator–prey model on a spatial domain.
Baurmanna et al. (2007) derived conditions for the existence of codimension-2 Turing–Hopf and
codimension-3 Turing–Takens–Bogdanov bifurcation which give rise complex pattern formation
processes.

(d) Spatial patterns via positive non-constant steady states. For reaction–diffusion systems, another
possible mechanism that can produce spatial patterns is the existence of positive non-constant steady
states. Du & Hsu (2004) considered a diffusive Leslie–Gower predator–prey model and showed that
positive steady-state solutions with certain prescribed spatial patterns can be obtained if the coefficient
functions are chosen suitably. Pang & Wang (2003) studied a diffusive Holling–Tanner predator–prey
model and obtained the existence and non-existence of positive non-constant steady states. See also Ryu
& Ahn (2005), Zhang et al. (2011) and the references cited therein.
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1538 H.-B. SHI AND S. RUAN

The goal of this article is to show that the diffusive predator–prey model (1.6) exhibits various
spatial, temporal and spatiotemporal patterns via the above-mentioned four mechanisms. For the sake
of simplicity, by applying the following scaling:

rt �→ t,
u

K
�→ u,

v

Kh
�→ v,

mKh

r
�→ m, aK �→ a, bKh �→ b,

s

r
�→ s,

d1

r1
�→ d1,

d2

r1
�→ d2,

system (1.6) can be simplified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− d1Δu = u(1 − u)− muv

(1 + au)(1 + bv)
, x ∈Ω , t> 0,

∂v

∂t
− d2Δv = sv

(
1 − v

u

)
, x ∈Ω , t> 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω , t> 0,

u(x, 0)= u0(x)� 0, v(x, 0)= v0(x)� 0, x ∈Ω .

(1.7)

The rest of this paper is organized as follows. In Section 2, we investigate the asymptotical behaviour
of the interior equilibrium and occurrence of Hopf bifurcation of the local system (the ODE model)
of (1.7). In Section 3, we firstly discuss the invariance, uniform persistence and global asymptotic
stability of the coexistence equilibrium for reaction–diffusion system (1.7). Then we consider the Turing
(diffusion-driven) instability of the coexistence equilibrium for the reaction–diffusion system (1.7) when
the spatial domain is a bounded interval, which will produce spatial inhomogeneous patterns. Thirdly,
we study the existence and direction of Hopf bifurcation and the stability of the bifurcating periodic
solution, which is a spatially homogeneous periodic solution of the reaction–diffusion system (1.7) and
exhibits temporal periodic patterns. Next we investigate the interaction of the Turing instability and
Hopf bifurcation, that is, the existence of Turing–Hopf bifurcation in the reaction–diffusion system
(1.7) which will demonstrate spatiotemporal patterns. Numerical simulations are presented to verify the
theoretical results. In Section 4, we establish the existence and non-existence of positive non-constant
steady states of reaction–diffusion system (1.7). We end our study with some discussions in Section 5.

2. Stability and Hopf bifurcation of the local system

For the sake of completeness, we first consider the dynamics of the spatially homogeneous model of the
diffusive predator–prey system (1.7), based on the following ordinary differential equations:⎧⎪⎪⎨⎪⎪⎩

du

dt
= u(1 − u)− muv

(1 + au)(1 + bv)
,

dv

dt
= sv
(

1 − v

u

)
.

(2.1)

We can see that system (2.1) has a boundary equilibrium point e1 = (1, 0). Since u(t) and v(t)
represent population densities, we are interested in the existence of an interior equilibrium e∗ = (u∗, v∗)
(i.e. u∗ > 0, v∗ > 0), where u∗ and v∗ are positive solutions of the following algebraic equations:

1 − u∗ − mv∗

(1 + au∗)(1 + bv∗)
= 0 and

v∗

u∗ = 1.
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SPATIOTEMPORAL PATTERNS OF DIFFUSIVE PREDATOR–PREY MODELS 1539

Thus, system (2.1) has a unique positive equilibrium (u∗, v∗) if and only if the cubic equation

abu3 + (a + b − ab)u2 + (m + 1 − a − b)u − 1 = 0 (2.2)

has a unique positive root. In fact, if a + b � ab, then (2.2) has a unique positive root u∗, by Cardan’s
formula, given by

u∗ = 3

√
q +
√

q2 + (n − p2)3 + 3

√
q −
√

q2 + (n − p2)3 + p,

where

n = m + 1 − a − b

3ab
, p = ab − a − b

3ab
, q = p3 + (a + b − ab)(m + 1 − a − b)+ 3ab

6a2b2
.

Note that (u∗, v∗) is also a constant steady-state solution of the diffusive system (1.7) under the
Neumann boundary conditions. From the viewpoint of ecology, the asymptotic properties of the positive
equilibrium are interesting and important.

A straight calculation yields that the Jacobian matrix of system (2.1) at (u∗, v∗) is

J :=
(

s0 σ

s −s

)
, (2.3)

where

s0 = u∗
(

amu∗

(1 + au∗)2(1 + bu∗)
− 1

)
and σ = − mu∗

(1 + au∗)(1 + bu∗)2
.

The characteristic polynomial is

P(λ)= λ2 −Θλ+Δ,

where Θ := s0 − s and

Δ := −s(s0 + σ)= su∗[m + (1 + au∗)2(1 + bu∗)2 − abmu∗2]

(1 + au∗)2(1 + bu∗)2
.

Thus, we have the following conclusions.

Proposition 2.1 Assume that a + b � ab.

(i) If s> s0 and

(H1) m + (1 + au∗)2(1 + bu∗)2 > abmu∗2,

then the positive equilibrium (u∗, v∗) is locally asymptotically stable.

(ii) If (H1) and

(H2) amu∗ > (1 + au∗)2(1 + bu∗)

are satisfied, then the positive equilibrium (u∗, v∗) is unstable when s< s0.
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1540 H.-B. SHI AND S. RUAN

(iii) If

(H3) m + (1 + au∗)2(1 + bu∗)2 < abmu∗2,

then the positive equilibrium (u∗, v∗) is a saddle point.

Remark 2.2 In case (i), s0 is permitted to be positive or negative. If s0 < 0, that is,

amu∗ < (1 + au∗)2(1 + bu∗), (2.4)

then we have

abmu∗2
< (1 + au∗)2(1 + bu∗)bu∗ < (1 + au∗)2(1 + bu∗)2 + m, (2.5)

which indicates that (H1) holds. For case (ii), s0 must be positive. Moreover, we can see that conditions
(H1) and (H2) can hold simultaneously. Furthermore, from (2.4), (2.5) and (H3), we know that s0 is
positive in case (iii).

In the following, we analyse the existence of Hopf bifurcation at the interior equilibrium (u∗, v∗)
by choosing s as the bifurcation parameter. In fact, s can be regarded as the intrinsic growth rate of
predators and plays an important role in determining the stability of the interior equilibrium and the
existence of Hopf bifurcation.

Assume that (H1) and (H2) hold, which guarantee that s0 > 0 and Δ> 0. Define ρ = √
Δ. We

can see that the Jacobian matrix of system (2.1) has a pair of purely imaginary eigenvalues λ= ±iρ
when s = s0. Therefore, according to Poincaré–Andronov–Hopf Bifurcation Theorem, system (2.1) has
a small amplitude non-constant periodic solution bifurcated from the interior equilibrium (u∗, v∗) when
r crosses through s0 if the transversality condition is satisfied.

Let λ(s)= α(s)± iβ(s) be a pair of complex roots of P(λ)= 0 when s is near s0. Then we have
α(s)= 1

2 (s0 − s) and β(s)= 1
2

√
−4sσ − (s0 + s)2. Hence, α(s0)= 0 and α′(s0)= − 1

2 < 0. This shows
that the transversality condition holds. Thus (2.1) undergoes a Hopf bifurcation about (u∗, v∗) as s passes
through the s0.

To understand the detailed property of the Hopf bifurcation, we need a further analysis of the nor-
mal form. We translate the interior equilibrium (u∗, v∗) to the origin by the transformation ũ = u − u∗,
ṽ = v − v∗. For the sake of convenience, we still denote ũ and ṽ by u and v, respectively. Thus, the local
system (2.1) is transformed into

⎧⎪⎪⎨⎪⎪⎩
du

dt
= (u + u∗)− (u + u∗)2 − m(u + u∗)(v + v∗)

(1 + a(u + u∗))(1 + b(v + v∗))
,

dv

dt
= s(v + v∗)

(
1 − v + v∗

u + u∗

)
.

(2.6)

Rewrite system (2.6) as ⎛⎜⎜⎝
du

dt
dv

dt

⎞⎟⎟⎠= J

(
u
v

)
+
(

f (u, v, s)
g(u, v, s)

)
, (2.7)
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where

f (u, v, s)= a1u2 + a2uv + a3u3 + a4u2v + · · · ,

g(u, v, s)= b1u2 + b2uv + b3v2 + b4u3 + b5u2v + b6uv2 + · · ·

and

a1 = −1 + amu∗

(1 + au∗)3(1 + bu∗)
, a2 = − m

(1 + au∗)2(1 + bu∗)2
,

a3 = − a2mu∗

(1 + au∗)4(1 + bu∗)
, a4 = am

(1 + au∗)3(1 + bu∗)2
,

b1 = − s

u∗ , b2 = 2s

u∗ , b3 = − s

u∗ , b4 = s

u∗2 , b5 = − 2s

u∗2 , b6 = s

u∗2 .

Set the matrix

P :=
(

N 1
M 0

)
,

where M = −s/β and N = −(s0 + s)/2β. It is easy to obtain that

P−1JP =Φ(s) :=
(
α(s) −β(s)
β(s) α(s)

)
.

When s = s0, we have

M0 := M |s=s0 = − s0

β0
, N0 := N |s=s0 = − s0

β0
, β0 := β(s0)=

√
−s0(s0 + σ). (2.8)

By the transformation (u, v)
 = P(x, y)
, system (2.7) becomes⎛⎜⎜⎝
dx

dt
dy

dt

⎞⎟⎟⎠=Φ(s)

(
x
y

)
+
(

f 1(x, y, s)
g1(x, y, s)

)
, (2.9)

and

f 1(x, y, s)= 1

M
g(Nx + y, Mx, s)

=
(

N2

M
b1 + Nb2 + Mb3

)
x2 +
(

2N

M
b1 + b2

)
xy + b1

M
y2

+
(

N3

M
b4 + N2b5 + NMb6

)
x3 +
(

3N2

M
b4 + 2Nb5 + Mb6

)
x2y

+
(

3N

M
b4 + b5

)
xy2 + b4

M
y3 + · · · ,
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1542 H.-B. SHI AND S. RUAN

g1(x, y, s)= f (Nx + y, Mx, s)− N

M
g(Nx + y, Mx, s)

=
(

N2a1 + NMa2 − N3

M
b1 − N2b2 − NMb3

)
x2

+
(

2Na1 + Ma2 − 2N2

M
b1 − Nb2

)
xy +
(

a1 − N

M
b1

)
y2

+
(

N3a3 + N2Ma4 − N4

M
b4 − N3b5 − N2Mb6

)
x3

+
(

3N2a3 + 2NMa4 − 3N3

M
b4 − 2N2b5 − NMb6

)
x2y

+
(

3Na3 + Ma4 − 3N2

M
b4 − Nb5

)
xy2 +

(
a3 − N

M
b4

)
y3 + · · · .

Rewrite (2.9) in the following polar coordinate form:

τ̇ = α(s)τ + a(s)τ 3 + · · · ,

θ̇ = β(s)τ + c(s)τ 2 + · · · ,
(2.10)

then the Taylor expansion of (2.10) at s = s0 yields

τ̇ = α′(s0)(s − s0)τ + a(s0)τ
3 + o((s − s0)

2τ , (s − s0)τ
3, τ 5),

θ̇ = β(s)τ + β ′(s0)(s − s0)+ c(s0)τ
2 + o((s − s0)

2, (s − s0)τ
2, τ 4).

(2.11)

In order to determine the stability of the Hopf bifurcation periodic solution, we need to calculate the
sign of the coefficient a(s0), which is given by

a(s0) := 1

16
(f 1

xxx + f 1
xyy + g1

xxy + g1
yyy)+ 1

16β0
[f 1

xy(f
1

xx + f 1
yy)− g1

xy(g
1
xx + g1

yy)− f 1
xxg1

xx + f 1
yyg1

yy],

where all partial derivatives are evaluated at the bifurcation point (x, y, s)= (0, 0, s0) and

f 1
xxx(0, 0, s0)= 6

(
N3

0

M0
b4 + N2

0 b5 + N0M0b6

)
,

f 1
xyy(0, 0, s0)= 2

(
3N0

M0
b4 + b5

)
,

g1
xxy(0, 0, s0)= 2

(
3N2

0 a3 + 2N0M0a4 − 3N3
0

M0
b4 − 2N2

0 b5 − N0M0b6

)
,

g1
yyy(0, 0, s0)= 6

(
A30 − N0

M0
b4

)
,

f 1
xx(0, 0, s0)= 2

(
N2

0

M0
b1 + N0b2 + M0b3

)
,
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f 1
xy(0, 0, s0)= 2N0

M0
b1 + b2, f 1

yy(0, 0, s0)= 2

M0
b1,

g1
xx(0, 0, s0)= 2

(
N2

0 a1 + N0M0a2 − N3
0

M0
b1 − N2

0 b2 − N0M0b3

)
,

g1
xy(0, 0, s0)= 2N0a1 + M0a2 − 2N2

0

M0
b1 − N0b2,

g1
yy(0, 0, s0)= 2

(
a1 − N0

M0
b1

)
.

Noting that N0, M0 and β0 are defined by (2.8) and N0 = M0, b1 = b3, b5 = −2b6, b2 = −2b1, we find
that f 1

xx(0, 0, s0)= f 1
xy(0, 0, s0)= 0. Thus, we can calculate that

a(s0)= 1

8
[3a3 − 2b6 + N2

0 (3a3 + 2a4)]

+ 1

8β0

(
2b1(a1 − b1)

N0
− N0(2a1 + a2)[(a1 + a2)N

2
0 + a1 − b1]

)
.

Furthermore, from (2.8), we have

a(s0)= − σ

4(s0 + σ)2
a2

1 + s0

8(s0 + σ)2
a2

2 + 2s0 − σ

8(s0 + σ)2
a1a2 − σ

4s0(s0 + σ)
a1b1

+ 1

8(s0 + σ)
a2b1 + 1

4s0
b2

1 + 3σ

8(s0 + σ)
a3 − s0

4(s0 + σ)
a4 − 1

4
b6. (2.12)

Thus, we obtain μ2 = − a(s0)

α′(s0)
. By Poincaré–Andronov–Hopf Bifurcation Theorem, we have the follow-

ing result.

Theorem 2.3 Assume that a + b � ab, (H1) and (H2) hold. Then system (2.1) undergoes a Hopf bifur-
cation at the interior equilibrium (u∗, v∗) when s = s0. Furthermore,

(i) a(s0) determines the stability of the bifurcated periodic solutions: if a(s0) < 0(> 0); then the
bifurcating periodic solutions are stable (unstable);

(ii) μ2 determines the directions of Hopf bifurcation: if μ2 > 0(< 0), then the Hopf bifurcation is
supercritical (subcritical).

Example 2.4 Now we give some numerical simulations for the following particular case of system
(2.1) with fixed parameters a = 3, b = 0.1 and m = 5. We choose s as the bifurcation parameter.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

du

dt
= u(1 − u)− 5uv

(1 + 3u)(1 + 0.1v)
,

dv

dt
= sv
(

1 − v

u

)
,

u(0)= 0.3, v(0)= 0.4.

(2.13)
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Fig. 1. When s = 0.08> s0 = 0.0555, and solutions u(t) and v(t) of system (2.13) converge to the equilibrium values in (a) and
(b), respectively, solution trajectories spiral towards the interior equilibrium in (c).
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Fig. 2. When s = 0.04< s0 = 0.0555, solutions u(t) and v(t) of system (2.13) oscillate around the equilibrium values in (a) and
(b), respectively, there is a limit cycle surrounding the interior equilibrium in (c) induced by Hopf bifurcation.

It is easy to see that 0.65 = β < 1 + m = 1.1 and system (2.13) has a unique positive equilibrium
E∗ = (u∗, v∗)= (0.2716, 0.2716). Noting that s0 = 0.0555, it follows from Theorem 2.3 that E∗ is locally
asymptotically stable when s> s0 = 0.0555 and unstable when s< s0 = 0.0555. Moreover, when s
passes through s0 from the right-hand side of s0, E∗ will lose its stability and Hopf bifurcation occurs,
that is, a family of periodic solutions bifurcate from the positive equilibrium. By computing, we have
a(s0)= −0.5643 and thus the Hopf bifurcation is subcritical and the bifurcating periodic solutions are
orbitally asymptotically stable. Numerical simulations are presented in Figs 1–2. Figure 1 shows stable
behaviour of the prey and predator species when s> s0 : In Fig. 1(a,b), both components u(t) and v(t)
converge to their corresponding equilibrium values as time approaches infinity; in Fig. 1(c) the solution
trajectories spiral towards the equilibrium point as time goes to infinity. Figure 2(a,b) present the time
plots of the prey and predator species for s< s0, which indicate the oscillations of the two populations
induced by instability. Figure 2(c) is the phase portrait of the predator–prey model which depicts the
limit cycle arising out of Hopf bifurcation around the positive equilibrium E∗.

3. Stability and bifurcations of the reaction–diffusion system

3.1 Invariance, uniform persistence and global stability

In this subsection, the invariance, uniform persistence and the global asymptotic stability of positive
steady state (u∗, v∗) are studied for the diffusive predator–prey system (1.7). First, we will show that any
non-negative solution (u(x, t), v(x, t)) of (1.7) lies in a certain bounded region as t → ∞ for all x ∈Ω .
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Proposition 3.1 All solutions of (1.7) are non-negative. Moreover, the non-negative solution (u, v) of
(1.7) satisfies

lim sup
t→∞

max
Ω̄

u(·, t)� 1, lim sup
t→∞

max
Ω̄

v(·, t)� 1. (3.1)

Proof. The non-negativity of solutions of (1.7) is clear since the initial values are non-negative. We
only consider the boundedness.

The first inequality of (3.1) follows easily from the comparison argument for parabolic problems
since

u(1 − u)− muv

(1 + au)(1 + bv)
� u(1 − u), (x, t) ∈Ω × [0, ∞).

Thus, there exists T ∈ (0, ∞) such that u(x, t)� 1 + ε in Ω̄ × [T , ∞) for an arbitrary ε > 0. Since

sv
(

1 − v

u

)
� sv

(
1 − v

1 + ε

)
= sv

(1 + ε)− v

1 + ε
, x ∈ Ω̄ , t � T ,

the comparison argument shows that

lim sup
t→∞

max
Ω̄

v(·, t)� 1 + ε,

which implies the second assertion by the arbitrariness of ε. The proof is completed. �

Definition 3.2 System (1.7) is said to be uniform persistent if, for any non-negative initial data
(u0(x), v0(x)) with u0(x) �≡ 0, v0(x) �≡ 0, there exists a positive constant ε0 = ε0(u0, v0) such that the
solution (u(x, t), v(x, t)) of (1.7) satisfies

lim inf
t→∞ min

Ω̄
u(·, t)� ε0, lim inf

t→∞ min
Ω̄

v(·, t)� ε0.

Proposition 3.3 If m< ab, then system (1.7) is uniformly persistent.

Proof. Noting that

u

(
1 − u − muv

(1 + au)(1 + bv)

)
� u
(

1 − u − m

ab

)
and m< ab, then we have

lim inf
t→∞ min

Ω̄
u(·, t)� 1 − m

ab
� K > 0. (3.2)

Thus, for any ε(0< ε <K), there exists T ∈ (0, ∞) such that u(x, t)� K − ε in Ω̄ × [T , ∞). As a result,
v satisfies

sv
(

1 − v

u

)
� sv

(
1 − v

K − ε

)
= sv

(K − ε)− v

K − ε
, x ∈ Ω̄ , t � T .

The comparison argument concludes that

lim inf
t→∞ min

Ω̄
v(·, t)� K

by the continuity as ε→ 0. The proof is completed. �

Remark 3.4 By the terminology in Cantrell & Cosner (2003), Propositions 3.1 and 3.3 indeed imply
that system (1.7) is permanent if m< ab.
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1546 H.-B. SHI AND S. RUAN

For convenience, we define

M = 2am + m2 + 1

4
− mK

(1 + a)(1 + b)2
. (3.3)

Theorem 3.5 Assume that a + b � ab, m< ab, ma � (1 + aK)2(1 + bK) and 2K >M (K is defined in
(3.2) and M is given in (3.3)). Then the positive constant steady state (u∗, v∗) with respect to system
(1.7) is globally asymptotically stable; in other words, (u∗, v∗) attracts every positive solution of (1.7).

Proof. Let (u(x, t), v(x, t)) be a positive solution of (1.7). Choose a Lyapunov function as follows:

E(t)=
∫
Ω

W(u(x, t), v(x, t)) dx,

where

W(u, v)=
∫

u2 − u∗2

u2
du + 1

s

∫
v − v∗

v
dv.

Straightforward computations yield that

dE(t)

dt
=
∫
Ω

{Wu(u(x, t), v(x, t))ut + Wv(u(x, t), v(x, t))vt} dx

=
∫
Ω

{
d1

u2 − u∗2

u2
Δu + d2

s

v − v∗

v
Δv

}
dx

+
∫
Ω

{
u2 − u∗2

u

(
1 − u − mv

(1 + au)(1 + bv)

)
+ (v − v∗)

(
1 − v

u

)}
dx

= E1(t)+ E2(t),

where

E1(t) :=
∫
Ω

{
d1

u2 − u∗2

u2
Δu + d2

s

v − v∗

v
Δv

}
dx

= −
∫
Ω

{
d1

2u∗2

u3
|∇u|2 + d2

s

v∗

v2
|∇v|2
}

dx � 0

and

E2(t) :=
∫
Ω

{
u2 − u∗2

u

(
1 − u − mv

(1 + au)(1 + bv)

)
+ (v − v∗)

(
1 − v

u

)}
dx

=
∫
Ω

{
u2 − u∗2

u

[
−(u − u∗)+ mv∗

(1 + au∗)(1 + bv∗)
− mv

(1 + au)(1 + bv)

]

+ (v − v∗)
(

v∗

u∗ − v

u

)}
dx
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=
∫
Ω

{
u2 − u∗2

u

[
−(u − u∗)+ mav∗(1 + bv)(u − u∗)− m(1 + au∗)(v − v∗)

(1 + au)(1 + au∗)(1 + bv)(1 + bv∗)

]

+ (v − v∗)(u − u∗)
u

− (v − v∗)2

u

}
dx

= −
∫
Ω

1

u

{
(u − u∗)2(u + u∗)

[
1 − mav∗

(1 + au)(1 + au∗)(1 + bv∗)

]
+
[

m(u + u∗)
(1 + au)(1 + bv)(1 + bv∗)

− 1

]
(u − u∗)(v − v∗)+ (v − v∗)2

}
dx

= −
∫
Ω

1

u

{
(u + u∗)

[
1 − mav∗

(1 + au)(1 + au∗)(1 + bv∗)

]
ξ 2

+
[

m(u + u∗)
(1 + au)(1 + bv)(1 + bv∗)

− 1

]
ξη + η2

}
dx

= −
∫
Ω

(
ξ η
)(p(u, v) q(u, v)

q(u, v) 1

)(
ξ

η

)
dx,

in which ξ = u − u∗, η= v − v∗,

p(u, v)= (u + u∗)
[

1 − mav∗

(1 + au)(1 + au∗)(1 + bv∗)

]
,

q(u, v)= 1

2

[
m(u + u∗)

(1 + au)(1 + bv)(1 + bv∗)
− 1

]
.

It can be seen that dE(t)/dt = E1(t)+ E2(t) < 0 if and only if the matrix(
p(u, v) q(u, v)
q(u, v) 1

)
is positively definite, which is equivalent to p(u, v)+ 1> 0 and ψ(u, v)= p(u, v)− q2(u, v) > 0, where

ψ(u, v)= −1

4
+ (u + u∗)− mav∗(u + u∗)

(1 + au)(1 + au∗)(1 + bv∗)

− m2(u + u∗)2

4(1 + au)2(1 + bv)2(1 + bv∗)2
+ m(u + u∗)

2(1 + au)(1 + bv)(1 + bv∗)
.

By the assumption that ma � (1 + aK)2(1 + bK), we have p(u, v) > 0. Furthermore, ψ(u, v) > 0 is
fulfilled if 2K >M , where M is given in (3.3). Hence, we can conclude that (u(x, t), v(x, t))→ (u∗, v∗)
in [L∞(Ω)]2, which indicates that (u∗, v∗) attracts all solutions of system (1.7). Thus, the proof is
completed. �

Remark 3.6 Under different conditions we can choose another Lyapunov function

W(u, v)= u − u∗ − u∗ ln
u

u∗ + 1

s

(
v − v∗ − v∗ ln

v

v∗

)
.
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1548 H.-B. SHI AND S. RUAN

The computation process is similar to that in the proof of Theorem 3.5. This indicates that different
Lyapunov functions yield different conditions guaranteeing the global stability of (u∗, v∗).

3.2 Turing instability

In this part, we derive conditions for the Turing instability of the spatially homogeneous equilibrium
(u∗, v∗) of diffusive predator–prey system (1.7). Here we consider the special case with the no-flux
boundary conditions in a 1D interval Ω = (0, l):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− d1Δu = u(1 − u)− muv

(1 + au)(1 + bv)
, x ∈ (0, l), t> 0,

∂v

∂t
− d2Δv = sv

(
1 − v

u

)
, x ∈ (0, l), t> 0,

∂u

∂x
= ∂v

∂x
= 0, x = 0, l, t> 0,

u(x, 0)= u0(x)� 0, v(x, 0)= v0(x)� 0, x ∈ (0, l),

(3.4)

where l> 0 is the length of the interval. While our calculations can be carried over to higher-dimensional
spatial domains, we restrict ourselves to the case of the spatial domain (0, l), for which the structure of
the eigenvalues is clear. To this end, let(

u
v

)
=
(
ρ1

ρ2

)
exp(λt + ikx),

where λ is the growth rate of perturbation in time t, ρ1 and ρ2 are the amplitudes, and k is the wave
number of the solutions.

The linearized system of (3.4) at (u∗, v∗) has the form(
ut

vt

)
= L

(
u
v

)
:= D

(
uxx

vxx

)
+ J

(
u
v

)
, (3.5)

where J is the Jacobian matrix defined in Section 2 and D = diag(d1, d2); L is a linear operator with
domain DL = XC := X ⊕ iX = {x1 + ix2 : x1, x2 ∈ X }, where

X :=
{
(u, v) ∈ H2[(0, l)] × H2[(0, l)]

∣∣∣∣ ux(0, t)= ux(l, t)= 0
vx(0, t)= vx(l, t)= 0

}
and H2[(0, l)] denotes the standard Sobolev space. Define

Jk := J − k2D =
(

s0 − k2d1 σ

s −s − k2d2

)
.

It is clear that the eigenvalues of the operator L are given by the eigenvalues of the matrix Jk . The
characteristic equation of Jk is

Pk(λ) := λ2 −Θ(k) · λ+Δ(k)= 0, (3.6)
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where

Θ(k) := s0 − s − k2(d1 + d2),

Δ(k) := d1d2k4 + (sd1 − s0d2)k
2 − s(s0 + σ).

The roots of (3.6) yield the dispersion relation

λ1,2(k)= 1
2 [Θ(k)±

√
Θ2(k)− 4Δ(k)].

If we assume that condition (2.4) holds, then s0 < 0 and (H1) hold. It is easy to see that Θ(k) < 0
and Δ(k) > 0. Thus, we can conclude that the two roots of Pk(λ)= 0 both have negative real parts for
all k � 0. Therefore, we have the following result.

Proposition 3.7 Assume that a + b � ab and (2.4) hold. Then the unique positive constant steady state
(u∗, v∗) of (3.4) is locally asymptotically stable.

From Proposition 2.1, we know that the interior equilibrium (u∗, v∗) of ODE model (2.1) is locally
asymptotically stable when s> s0. Next, we investigate the Turing stability of the spatially homoge-
neous equilibrium (u∗, v∗) of diffusive system (3.4) under the assumption that (H1) and (H2) hold. In
this case, s0 > 0 and Δ> 0. It is well known that the coexistence equilibrium (u∗, v∗) of diffusive sys-
tem (3.4) is unstable when (3.6) has at least one root with positive real part. Noting that Θ(k) < 0 when
s> s0. Hence, (3.6) has no imaginary root with positive real part.

For the sake of convenience, define

ϕ(k2) :=Δ(k)= d1d2k4 + (sd1 − s0d2)k
2 − s(s0 + σ),

which is a quadratic polynomial with respect to k2. It is necessary to determine the sign of ϕ(k2). If
ϕ(k2) < 0, then (3.6) has two real roots in which one is positive and another is negative. When

G(d1, d2) := sd1 − s0d2 < 0, (3.7)

it is easy to see that ϕ(k2) will take the minimum value

min
k
ϕ(k2)= −s(s0 + σ)− (sd1 − s0d2)

2

4d1d2
< 0 (3.8)

at k2 = k2
min, where

k2
min = − sd1 − s0d2

2d1d2
.

Define the ratio θ = d2/d1 and let

Λ(d1, d2) := (sd1 − s0d2)
2 + 4s(s0 + σ)d1d2 = s2

0d2
2 + 2s(s0 + 2σ)d1d2 + s2d2

1 .

Then

Λ(d1, d2)= 0 ⇔ r2
0θ

2 + 2s(s0 + 2σ)θ + s2 = 0,

G(d1, d2)= 0 ⇔ θ = s

s0
≡ θ∗.
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Note that Δ= −s(s0 + σ) > 0 and σ < 0; we have

4s2(s0 + 2σ)2 − 4s2s2
0 = 16s2σ(s0 + σ) > 0.

Then Λ(d1, d2)= 0 has two positive real roots

θ1 = −s(s0 + 2σ)+ 2s
√
σ(s0 + σ)

s2
0

, (3.9)

θ2 = −s(s0 + 2σ)− 2s
√
σ(s0 + σ)

s2
0

. (3.10)

We can see that 0< θ2 < θ
∗ < θ1. Therefore, when d2/d1 > θ1, we have mink ϕ(k2) < 0 and

G(d1, d2)< 0, and thus (u∗, v∗) is unstable. This indicates that the Turing instability occurs.
Based on the above argument, we have the following result about diffusion-driven instability.

Theorem 3.8 Assume that a + b � ab, s> s0, (H1) and (H2) hold (so the coexistence equilibrium is
stable for local system (2.1)). Then there exists an unbounded region

U := {(d1, d2) : d1 > 0, d2 > 0, d2 > θ1d1}

for θ1 > 0, such that, for any (d1, d2) ∈ U , (u∗, v∗) is unstable with respect to the reaction–diffusion
system (3.4), that is, Turing instability occurs.

Remark 3.9 We can see that d2/d1 > 1 under the assumption that s> s0. Hence, for the occurrence of
diffusive instability in system (3.4), the predators must diffuse faster than the prey.

Example 3.10 As an example we consider a diffusive system with no-flux boundary conditions on 1D
spatial domain (0, l) and choose s as the parameter, where d1 and d2 are the diffusion coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− d1Δu = u(1 − u)− 5uv

(1 + 3u)(1 + 0.1v)
, x ∈ (0, l), t> 0,

∂v

∂t
− d2Δv = sv

(
1 − v

u

)
, x ∈ (0, l), t> 0,

∂u

∂ν
= ∂v

∂ν
= 0, x = 0, l, t> 0,

u(x, 0)= u0(x)� 0, v(x, 0)= v0(x)� 0, x ∈ (0, l).

(3.11)

Thus, when s = 0.08> s0 = 0.0555, we have θ1 = (−s(s0 + 2σ)+ 2s
√
σ(s0 + σ))/s2

0 = 70.7649. In
this case, the positive equilibrium E∗ of the ODE model (2.13) is stable (see Example 2.4 and Fig. 1).
Now if d2/d1 < θ1, by Proposition 3.7 the spatially homogeneous equilibrium E∗ of the diffusive sys-
tem (3.11) is locally asymptotically stable. Figure 3 shows that the solutions u(x, t) and v(x, t) of the
reaction–diffusion model (3.11) are homogeneous in the space variable and converge to the spatially
homogeneous steady states u∗ and v∗ as the time variable increases.

To have Turing instability, with a = 3, b = 0.1, m = 5 and s = 0.06, we obtain the unstable region
which is between the line d2 = θ1d1 and the d2-axis (see Fig. 5).
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Fig. 3. Numerical simulations of the stable coexistence equilibrium solution (u(x, t), v(x, t) of the reaction–diffusion system (3.11)
with s = 0.08> s0 = 0.0555, l = 4, d1 = 1, d2 = 1 and (u0, v0)= (0.3 + 0.02 cos(2πx/4), 0.3 + 0.05 cos(2πx/4)), in which both
u(x, t) and v(x, t) are homogeneous in space and converge to the spatially homogeneous steady state as time increases.

Fig. 4. Bifurcation diagram for Turing instability in the reaction–diffusion system (3.4) with a = 3, b = 0.1, m = 5 and s = 0.06.
The unstable region is the area between the line d2 = θ1d1 and the d2-axis.

Therefore, according to Theorem 3.8, we know that E∗ becomes unstable when s> s0 and d2/d1 >

θ1 = 70.7649, Turing instability occurs in the diffusive system (3.11), that is, both components u∗(x, t)
and v∗(x, t) become unstable and spatially inhomogeneous (see Fig. 5).

Remark 3.11 The Hopf bifurcation in the ODE system (2.1) gives rise to periodic solutions as stated
in Theorem 2.3. Note that any periodic solution of the ODE model (2.1) is a spatially homogeneous
periodic solution of the reaction–diffusion system (3.4). Follow the technique in Ruan (1998), we can
show that Turing instability may occur at the stable periodic solutions of the ODE model (2.1) as well.
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(a) (b)

Fig. 5. Numerical simulations of Turing instability in the reaction–diffusion system (3.11) with s = 0.08> s0 = 0.0555, l = 4,
d1 = 0.005, d2 = 1 and (u0, v0)= (0.3 + 0.02 cos(2πx/4), 0.3 + 0.05 cos(2πx/4)), in which both (a) u(x, t) and (b) v(x, t) are
inhomogeneous in space and uniform in time, that is, exhibit spatial inhomogeneous patterns.

3.3 Hopf bifurcation

As in Theorem 2.3, we can also perform a Hopf bifurcation analysis in the diffusive system (3.4) at
the same bifurcation point as in the ODE model (2.1), and bifurcating spatially homogeneous periodic
solutions exist near s = s0. However, due to the effect of diffusion, the stability of these periodic solu-
tions with respect to (3.4) could be different from that for local system (2.1). Now, we shall investigate
the direction of these Hopf bifurcations and stability of bifurcating periodic solutions with respect to
system (3.4) by applying the normal form theory and centre manifold theorem introduced by Hassard
et al. (1981). Let L∗ be the conjugate operator of L defined as (3.5):

L∗
(

u
v

)
:= D

(
uxx

vxx

)
+ J∗
(

u
v

)
, (3.12)

where J∗ := J
 with the domain DL∗ = XC . Let

q :=
(

q1

q2

)
=
(

1

− s0

σ
+ β0

σ
i

)
, q∗ :=

(
q∗

1
q∗

2

)
= σ

2πβ0

(
β0

σ
+ s0

σ
i

i

)
.

For any ξ ∈ DL∗ , η ∈ DL, it is not difficult to verify that 〈L∗ξ , η〉 = 〈ξ , Lη〉, L(s0)q = iβ0q, L∗(s0)q∗ =
−iβ0q∗, 〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0, where 〈a, b〉 = ∫ π0 ξ̄Tη dx denotes the inner product in L2[(0, l)] ×
L2[(0, l)]. According to Hassard et al. (1981), we decompose X = X C ⊕ X S with X C = {zq + z̄q̄ : z ∈ C}
and X S = {ω ∈ X : 〈q∗,ω〉 = 0}.

For any (u, v) ∈ X , there exists z ∈ C and ω= (ω1,ω2) ∈ X S such that

(u, v)
 = zq + z̄q̄ + (ω1,ω2)

, z = 〈q∗, (u, v)
〉.
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Thus, ⎧⎪⎨⎪⎩
u = z + z̄ + ω1,

v = z

(−s0

σ
+ i
β0

σ

)
+ z̄

(−s0

σ
− i
β0

σ

)
+ ω2.

System (3.4) is reduced to the following system in (z,ω) coordinates:⎧⎪⎪⎨⎪⎪⎩
dz

dt
= iβ0z + 〈q∗, h̃〉,

dω

dt
= Lω + H(z, z̄,ω),

(3.13)

where

H(z, z̄,ω)= h̃ − 〈q∗, h̃〉q − 〈q̄∗, h̃〉q̄
and h̃ = (f , g)
 (f and g are defined in (2.7)).

It is easy to obtain that

〈q∗, h̃〉 = 1

2β0
[β0f − i(s0f + σg)],

〈q̄∗, h̃〉 = 1

2β0
[β0f + i(s0f + σg)],

〈q∗, h̃〉q = 1

2β0

⎛⎝ β0f − i(s0f + σg)

β0g + i

(
β2

0

σ
f + s2

0
σ

f + s0g

)⎞⎠ ,

〈q̄∗, h̃〉q̄ = 1

2β0

⎛⎝ β0f + i(s0f + σg)

β0g − i

(
β2

0

σ
f + s2

0

σ
f + s0g

)⎞⎠ .

Furthermore, we can get H(z, z̄,ω)= (0, 0)
. Let

H = H20

2
z2 + H11zz̄ + H02

2
z̄2 + o(|z|3).

It follows from Appendix A of Hassard et al. (1981) that the system (3.13) possesses a centre
manifold, and then we can write ω in the form

ω= ω20

2
z2 + ω11zz̄ + ω02

2
z̄2 + o(|z|3).

Thus, we have ⎧⎪⎨⎪⎩
ω20 = (2iβ0I − L)−1H20,

ω11 = (−L)−1H11,

ω02 = ω̄20.

This implies that ω20 =ω02 =ω11 = 0.
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For later uses, define

c0 := fuuq2
1 + 2fuvq1q2 + fvvq2

2 = 2a1 + 2a2q2,

d0 := guuq2
1 + 2guvq1q2 + gvvq2

2 = 2b1 + 2b2q2 + 2b3q2
2,

e0 := f 1
uu|q1|2 + f 1

uv(q1q̄2 + q̄1q2)+ f 1
vv|q2|2 = 2a1 + a2(q2 + q̄2),

f0 := guu|q1|2 + guv(q1q̄2 + q̄1q2)+ gvv|q2|2

= 2b1 + b2(q2 + q̄2)+ 2b3|q2|2,

g0 := fuuu|q1|2q1 + fuuv(2|q1|2q2 + q2
1q̄2)+ fuvv(2q1|q2|2 + q̄1q2

2)+ fvvv|q2|2q2,

= 6a3 + 2a4(2q2 + q̄2),

h0 := guuu|q1|2q1 + guuv(2|q1|2q2 + q2
1q̄2)+ guvv(2q1|q2|2 + q̄1q2

2)+ gvvv|q2|2q2

= 6b4 + 2b5(2q2 + q̄2)+ 2b6(2|q2|2 + q2
2),

with all the partial derivatives evaluated at the point (u, v, s)= (0, 0, s0). Therefore, the reaction–
diffusion system restricted to the centre manifold in z, z̄ coordinates is given by

dz

dt
= iβ0z + 1

2
φ20z2 + φ11zz̄ + 1

2
φ02z̄2 + 1

2
φ21z2z̄ + o(|z|4),

where

φ20 = 〈q∗, (c0, d0)

〉, φ11 = 〈q∗, (e0, f0)


〉, φ21 = 〈q∗, (g0, h0)

〉.

Note that b1 = b3, b2 = −2b1, b5 = −2b6 and β2
0 = −s0(s0 + σ). Then straightforward but tedious

calculations show that

φ20 = σ

2β0

[(
β0

σ
− s0

σ
i

)
c0 − id0

]
= a1 − 2b1 − 2

σ
b1s0 − i

β0

(
2

σ
b1s2

0 + (a1 + a2 + 3b1)s0 + σb1

)
,

φ11 = σ

2β0

[(
β0

σ
− s0

σ
i

)
e0 − if0

]
= a1 − 1

σ
a2s0 − i

β0

(
− 1

σ
a2s2

0 + (a1 + b1)s0 + σb1

)
,

φ21 = σ

2β0

[(
β0

σ
− s0

σ
i

)
g0 − ih0

]
= 3a3 − 2b6 − 2

σ
(a4 + b6)s0 + i

β0

(
2

σ
(a4 − b6)s

2
0 − (3a3 + a4 + 5b6)s0 − 3σb4

)
.

 at U
niversity of M

iam
i - O

tto G
. R

ichter L
ibrary on O

ctober 7, 2015
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


SPATIOTEMPORAL PATTERNS OF DIFFUSIVE PREDATOR–PREY MODELS 1555

According to Hassard et al. (1981), we have

Re(c1(s0))= Re

{
i

2β0

(
φ20φ11 − 2|φ11|2 − 1

3
|φ02|2

)
+ 1

2
φ21

}
= − 1

2β0
[Re(φ20) Im(φ11)+ Im(φ20)Re(φ11)] + 1

2
Re(φ21)

= −a2
2 + 2a1a2 + a2b1 + 2b2

1

2β2
0σ

s2
0 + σb1(a1 − b1)

β2
0

+ 3

2
a3 − b6

+
(

2(a2
1 + a1b1 − 2b2

1)+ a2(a1 − b1)

2β2
0

− a4

σ
− b6

σ

)
s0

= − 1

s0 + σ
a2

1 + s0

2(s0 + σ)σ
a2

2 + 2s0 − σ

2(s0 + σ)σ
a1a2

− 1

s0
a1b1 + 1

2σ
a2b1 + s0 + σ

s0σ
b2

1 + 3

2
a3 − s0

σ
a4 − s0 + σ

σ
b6. (3.14)

Based on the above analysis, we give our results in the following theorem.

Theorem 3.12 Suppose that a + b � ab, (H1) and (H2) hold. Then system (3.4) undergoes Hopf bifur-
cation at s = s0.

(i) The direction of Hopf bifurcation is subcritical and the bifurcating (spatially homogeneous) peri-
odic solutions are orbitally asymptotically stable if Re(c1(s0)) < 0.

(ii) The direction of Hopf bifurcation is supercritical and the bifurcating periodic solutions are unsta-
ble if Re(c1(s0)) > 0.

Remark 3.13 From (2.12) and (3.14), we can find that Re(c1(s0))= 4(s0 + σ)a(s0)/σ . Under the
conditions that (H1) and (H2) hold, we have s0 + σ < 0. Then Re(c1(s0)) < 0(> 0) if and only if
a(s0) < 0(> 0) since 4(s0 + σ)/σ > 0. We can conclude that the direction of Hopf bifurcation of system
(3.4) is the same as that of local system (2.1).

Example 3.14 As in Example 3.10, we continue to consider the diffusive system (3.11). By
Theorem 3.12, for the reaction–diffusion system (3.11) Hopf bifurcation occurs at s = s0 and the
bifurcating temporal periodic solutions exist when s< s0. Choosing s = 0.03< 0.0555, we have
Re(c1(s0))= −2.0806< 0, which indicates that the bifurcating temporal periodic solutions are orbitally
asymptotically stable (see Fig. 6). Comparing with Fig. 3, we can see that the solutions u(x, t) and v(x, t)
of the reaction–diffusion model (3.11) are homogeneous in the space variable and oscillatory in the time
variable about the spatially homogeneous steady states u∗ and v∗.

3.4 Turing–Hopf bifurcation

Ecologically speaking, the Turing instability breaks the spatial symmetry leading to the pattern forma-
tion that is stationary in time and oscillatory in space, while the Hopf bifurcation breaks the temporal
symmetry of the system and gives rise to oscillations which are uniform in space and periodic in time.
In this part, we will investigate the coupling between two different instabilities, i.e. Turing–Hopf bifur-
cation, in the (s, d1)-parameter space.
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1556 H.-B. SHI AND S. RUAN

Fig. 6. Numerical simulations of the stable time-periodic solutions for the reaction–diffusion system (3.11) with s = 0.08> s0 =
0.0555, l = 4, d1 = 0.004, d2 = 1 and (u0, v0)= (0.3 + 0.02 cos(2πx/4), 0.3 + 0.05 cos(2πx/4)), in which both u(x, t) and v(x, t)
are oscillatory in time and homogeneous in space, that is, exhibit temporal periodic patterns.

Assume that a + b � ab, (H1) and (H2) hold. We choose s as the bifurcation parameter. From
Theorem 3.12, we know that the critical value of the Hopf bifurcation parameter s is

sH = s0 = u∗
(

amu∗

(1 + au∗)2(1 + bu∗)
− 1

)
. (3.15)

At the bifurcation point, the frequency of these temporal oscillations is given by

ωH = Im(λ)=
√
Δ(k = 0)=

√
−s(s0 + σ).

Based on the analysis in Section 3.1, we know that the Turing instability occurs when d1 � d2. In
the following, we fix d2 = 1. From (3.9), the critical value of the Turing bifurcation parameter s takes
the form

sT = s2
0

d1(−(s0 + 2σ)+ √−σ(s0 + σ))
. (3.16)

At the Turing instability threshold, the bifurcation of stationary spatially periodic patterns is character-
ized by the wavenumber kT with

kT =
√

−s(s0 + σ)

d1
.

In Fig. 7, the Turing bifurcation curve and Hopf bifurcation curve are plotted in the (s, d1)-parameter
space for fixed m = 5, a = 3, b = 0.1 and d2 = 1. The Hopf bifurcation and Turing bifurcation curves
divide the parametric space into four distinct regions. In region I, the upper part of the displayed param-
eter space, the coexistence equilibrium is the only stable solution of diffusive system (3.4). Domain II is
the region of pure Turing bifurcation, while domain III is the region of pure Hopf bifurcation. In domain
IV, located below the two bifurcation curves, both Turing instability and Hopf bifurcation occur. This
can give rise to an interaction of both types, producing particularly complex spatiotemporal patterns if
the thresholds for both instabilities occur close to each other. This is the case in the neighbourhood of
a degenerate point (marked by TH), where the Turing and the Hopf bifurcations coincide: this is called
a codimension-2 Turing–Hopf point, since two control variables are necessary to fix these bifurcation
points in a generic system of equations.
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Fig. 7. Turing–Hopf bifurcation diagram for the reaction–diffusion system (3.4) with m = 5, a = 3, b = 0.1 and d2 = 1.

At the Turing–Hopf point, we have sH = sT (sH and sT are given in (3.15) and (3.16)). Thus, we can
obtain the critical value of d1:

d∗
1 = s0

(
√−σ + √−(s0 + σ))2

.

Remark 3.15 If d1 < d∗
1 , then sH < sT. With increasing s, the Hopf threshold is the first to be crossed

and thus Hopf bifurcation will be the first to occur near the criticality. On the contrary, if d1 > d∗
1 , the

first bifurcation will occur towards Turing patterns.

Example 3.16 As in Examples 3.10 and 3.14, we still consider the reaction–diffusion system (3.11).
From Section 3.3, we know that when (s, d1) is in region IV, the interaction of Turing instability and
Hopf bifurcation occurs. Figure 8 shows the Turing–Hopf structures for the diffusive system (3.11).
Moreover, in order to observe the spatiotemporal patterns of Turing–Hopf bifurcation in a 2D spatial
domain when the parameters locate in region IV in Fig. 7, we should discretize the space and the time
of the problem because the dynamical behaviour of the spatial predator–prey system cannot be investi-
gated by using analytical methods or normal forms. We will transform it from an infinite-dimensional
(continuous) to a finite-dimensional (discrete) form. In practice, the continuous problem defined by the
reaction–diffusion system in a 2D space domain is solved in a discrete domain with M × N lattice sites.
The spacing between the lattice points is defined by the lattice constant Δh. In the discrete system, the
Laplacian describing diffusion is calculated by using finite difference schemes, i.e. the derivatives are
approximated by differences over Δh. For Δh → 0, the differences approach the derivatives. The time
evolution is also discrete, that is, the time goes by steps of Δt, and is solved by using the Euler method,
which means approximating the value of the concentration at the next step based on the change rate of
the concentration at the previous time step. The model (3.11) is solved by numerically approximating
the spatial derivatives and an explicit Euler’s method for the time integration with a time stepΔt = 0.01
and space step size Δh = 1.25. In order to avoid numerical artefacts, we checked the sensitivity of the
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Fig. 8. Numerical simulations of Turing–Hopf structures for the reaction–diffusion system (3.11) with s = 0.04< s0 = 0.0555,
l = 80, d1 = 0.001, d2 = 1 and (u0, v0)= (0.3 + 0.02 cos(2πx/4), 0.3 + 0.05 cos(2πx/4)), in which both u(x, t) and v(x, t) are
inhomogeneous in space and non-uniform in time, that is, exhibit spatiotemporal patterns.

(a) (b) (c)

Fig. 9. Snapshots of contour pictures of the time evolution of the prey population density at different instants for the reaction–
diffusion system (3.11) in a 2D spatial domain with s = 0.04< s0 = 0.0555, d1 = 0.008 and d2 = 1. (a) 0 iteration; (b) 2000
iterations; (c) 10000 iterations.

results to the choice of the time and space steps and their values have been chosen sufficiently small.
Both numerical schemes are standard, hence we do not describe them here.

In the simulations, different types of dynamics are observed and we have found that the distribu-
tions of predators and the prey are always of the same type. So, we can restrict our analysis of pattern
formation to one distribution (for instance, we show the distribution of the prey in this paper). The ini-
tial density distributions are random spatial distributions of the species, which is more general from the
biological point of view. In Fig. 9, we show the evolution of the spatial pattern of the prey at 0, 2000
and 10000 iterations, with random perturbation of the steady states u∗ and v∗. We see from this figure
that the spotted and labyrinth patterns prevail over the whole domain.

4. Positive non-constant steady states

In this section, we use the Leray–Schauder degree theory to study the existence and non-existence of
positive non-constant steady states of system (1.7), that is, the existence and non-existence of positive
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non-constant solutions of the corresponding elliptic system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−d1Δu = u(1 − u)− muv

(1 + au)(1 + bv)
, x ∈Ω ,

−d2Δv = sv
(

1 − v

u

)
, x ∈Ω ,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω .

(4.1)

Let 0 =μ0 <μ1 <μ2 < · · · → ∞ be the eigenvalues of −Δ on Ω under homogeneous
Neumann boundary condition. By S(μi), we denote the space of eigenfunctions correspond-
ing to μi for i = 0, 1, 2, . . .. Xij := {c · ϕij : c ∈ R

2}, where {ϕij} are orthonormal basis of S(μi)

for j = 1, 2, . . . , dim[S(μi)]. X := {u = (u, v) ∈ [C1(Ω̄)]2 : ∂u/∂ν = ∂v/∂ν = 0}, and so X =⊕∞
i=1 Xi,

where Xi =
⊕dim[S(μi)]

j=1 Xij.

4.1 A priori estimates

It is necessary to establish a priori positive upper and lower bounds for the positive solution of (4.1).
We first cite two lemmas which are due to Lin et al. (1988) and Lou & Ni (1996).

Lemma 4.1 (Harnack Inequality Lin et al., 1988) Assume that c ∈ C(Ω̄) and let w ∈ C2(Ω) ∩ C1(Ω̄)

be a positive solution toΔw(x)+ c(x)w(x)= 0 inΩ and ∂w/∂ν = 0 on ∂Ω . Then there exists a positive
constant C∗ = C∗(‖c‖∞) such that

max
Ω̄

w � C∗ min
Ω̄

w.

Lemma 4.2 (Maximum Principle Lou & Ni, 1996) Suppose that g ∈ C(Ω̄ × R).

(i) Assume that w ∈ C2(Ω) ∩ C1(Ω̄) satisfies Δw(x)+ g(x, w(x))� 0 in Ω and ∂w/∂ν � 0 on ∂Ω .
If w(x0)= maxΩ̄ w; then g(x0, w(x0))� 0.

(ii) Assume that w ∈ C2(Ω) ∩ C1(Ω̄) satisfies Δw(x)+ g(x, w(x))� 0 in Ω and ∂w/∂ν � 0 on ∂Ω .
If w(x0)= minΩ̄ w; then g(x0, w(x0))� 0.

Note that the positive solutions of (4.1) are contained in C2(Ω̄)× C2(Ω̄) by the standard regularity
theory for elliptic equations (Gilbarg & Trudinger, 2001), so Lemmas 4.1 and 4.2 can be applied to (4.1)
after proper estimates. For notational convenience, we write Γ = Γ (a, b, m, s) in the sequel.

Theorem 4.3 (Upper bounds) For any positive solution (u, v) of (4.1),

max
Ω̄

u(x)� 1, max
Ω̄

v(x)� 1. (4.2)

Proof. A direct application of Lemma 4.2 to the first equation of (4.1) yields the first inequality of
(4.2). Since 0< v � ‖u‖∞ � 1, we have v(x)� 1 in Ω̄ . �

Theorem 4.4 (Lower bounds) Let d be a fixed positive constant. Then, for d1, d2 � d, there exists a
positive constant C = C(Γ , d) such that any positive solution (u, v) of (4.1) satisfies

min
Ω̄

u(x)� C, min
Ω̄

v(x)� C.
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Proof. Let
u(x0)= min

Ω̄
u(x), v(y0)= min

Ω̄
v(x), v(y1)= max

Ω̄

v(x).

By Lemma 4.2, it is clear that

1 − u(x0)− mv(x0)

(1 + au(x0))(1 + bv(x0))
� 0, 1 − v(y0)

u(y0)
� 0, 1 − v(y1)

u(y1)
� 0,

and so

u(x0)� u(y0)� v(y0), (4.3)

v(y1)� u(y1)� max
Ω̄

u(x). (4.4)

From (4.4), we have

1 − u(x0)�
m

(1 + au(x0))(1 + bv(x0))
v(x0)� mv(x0)� m max

Ω̄

v(x)� m max
Ω̄

u(x).

These estimates imply that

1 � u(x0)+ m max
Ω̄

u(x)= min
Ω̄

u(x)+ m max
Ω̄

u(x). (4.5)

Define

c(x)= d−1
1

(
1 − u − mv

(1 + au)(1 + bv)

)
;

then u satisfies

Δu + c(x)u = 0 in Ω ,
∂u

∂ν
= 0 on ∂Ω .

Lemma 4.1 further indicates that
max
Ω̄

u(x)� C∗ min
Ω̄

u(x),

where C∗ is a positive constant depending on ‖c‖∞.
Combining this with (4.5), we obtain

u(x0)= min
Ω̄

u(x)� 1

1 + mC∗
� C.

It follows from (4.3) that v(y0)� C. The proof is completed. �

4.2 Non-existence of positive non-constant steady states

Now we show the non-existence of positive non-constant solutions of (4.1) by the effect of large diffu-
sivity. For convenience, we define

f1(u, v)= u(1 − u)− muv

(1 + au)(1 + bv)
and f2(u, v)= sv

(
1 − v

u

)
. (4.6)

Theorem 4.5 Let d∗
2 > s/μ1 be a fixed positive constant. Then there exists a positive constant

d∗
1 = d∗

1 (Γ , d∗
2 ) such that (4.1) has no positive non-constant solution provided that d1 � d∗

1 and d2 � d∗
2 .
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Proof. Assume that (u, v) is a positive solution of (4.1). Let ϕ̄ = (1/|Ω|) ∫
Ω
ϕdx for any ϕ ∈ L1(Ω).

By multiplying (u − ū) to the first equation in (4.1) and then integrating on Ω , we have∫
Ω

d1|∇u|2dx =
∫
Ω

f1(u, v)(u − ū) dx

=
∫
Ω

{f1(u, v)− f1(ū, v̄)}(u − ū) dx

=
∫
Ω

{
[1 − (u + ū)](u − ū)2 − mv̄(u − ū)2

(1 + au)(1 + aū)(1 + bv̄)

− mu(u − ū)(v − v̄)

(1 + au)(1 + bv)(1 + bv̄)

}
dx

�
∫
Ω

{(u − ū)2 + m|u − ū||v − v̄|} dx.

Similarly, we can establish the following estimate:∫
Ω

d2|∇v|2dx =
∫
Ω

f2(u, v)(v − v̄) dx

=
∫
Ω

{f2(u, v)− f2(ū, v̄)}(v − v̄) dx

=
∫
Ω

{
s(v − v̄)+ sv̄2

ū
− sv̄2

u
− sv2

u
+ sv̄2

u

}
(v − v̄) dx

=
∫
Ω

{
sv̄2

uū
(u − ū)(v − v̄)+

(
s − s(v + v̄)

u

)
(v − v̄)2

}
dx

�
∫
Ω

{
sv̄2

uū
(u − ū)(v − v̄)+ s(v − v̄)2

}
dx.

These estimates indicate that∫
Ω

{d1|∇u|2 + d2|∇v|2} dx �
∫
Ω

{(u − ū)2 + 2ϑ |u − ū||v − v̄| + s(v − v̄)2} dx

�
∫
Ω

{
(u − ū)2

(
1 + ϑ

ε

)
+ (v − v̄)2(s + ϑε)

}
dx

for some positive constant ϑ and an arbitrary small positive constant ε, in which the last inequality
follows from the following fact:

2ϑ |u − ū||v − v̄| = 2

√
ϑ

ε
|u − ū| ·

√
ϑε|v − v̄| � ϑ

ε
|u − ū|2 + ϑε|v − v̄|2.

By using the Poincáre inequality, we obtain∫
Ω

{d1μ1|u − ū|2 + d2μ1|v − v̄|2} dx �
∫
Ω

{
(u − ū)2

(
1 + ϑ

ε

)
+ (v − v̄)2(s + ϑε)

}
dx.
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Since d2μ1 > s, from the assumption, we can find a sufficiently small ε0 > 0 such that
d2μ1 � s + ϑε0. Finally, by taking d∗

1 := (1/μ1)(1 + ϑ/ε0), we can conclude that u = ū and v = v̄. This
completes the proof. �

4.3 Existence of positive non-constant steady states

In this part, we discuss the existence of positive non-constant solutions to (4.1) when the diffusion coef-
ficients d1 and d2 vary while the parameters a, k, m, δ and β are kept fixed by using the Leray–Schauder
degree theory. In view of Theorem 3.8, Turing pattern occurs when the diffusion of the predators is
larger than that of the prey.

For simplicity, define u = (u, v)
 and F = (f1, f2)
 (f1, f2 are defined in (4.6)). Thus, Fu(e∗)= J
(J is given by (2.3)) and the problem (4.1) can be written as follows:⎧⎨⎩−Δu = D−1F(u), x ∈Ω ,

∂u
∂ν

= 0, x ∈ ∂Ω ,
(4.7)

where D = diag(d1, d2). Therefore, u∗ solves (4.7) if and only if it satisfies

f̂ (d1, d2; u) := u − (I −Δ)−1{D−1F(u)+ u} = 0 on X, (4.8)

where (I −Δ)−1 represents the inverse of I −Δ with homogeneous Neumann boundary condition.
A straightforward computation reveals

Du f̂ (d1, d2; u)= I − (I −Δ)−1(D−1J + I).

For each Xi, λ is an eigenvalue of Du f̂ (d1, d2; u) on Xi if and only if λ(1 + μi) is an eigenvalue of
the following matrix:

Mi :=μiI − D−1J =
(
μi − d−1

1 s0 −d−1
1 σ

−d−1
2 s μi + d−1

2 s

)
.

Clearly,
detMi = d−1

1 d−1
2 [d1d2μ

2
i + (d1s − d2s0)μi − s(s0 + σ)]

and trMi = 2μi + d−1
2 s − d−1

1 s0. Define

ĝ(d1, d2;μ)= d1d2μ
2 + (d1s − d2s0)μ− s(s0 + σ).

Thus, ĝ(d1, d2;μi)= d1d2detMi. If

(d1s − d2s0)
2 >−4d1d2s(s0 + σ), (4.9)

then ĝ(d1, d2; λ)= 0 has two real roots, that is,

μ+(d1, d2)= d2s0 − d1s +
√
(d2s0 − d1s)2 + 4d1d2s(s0 + σ)

2d1d2
,

μ−(d1, d2)= d2s0 − d1s −
√
(d2s0 − d1s)2 + 4d1d2s(s0 + σ)

2d1d2
.
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Define

A=A(d1, d2)= {μ :μ� 0,μ−(d1, d2) < μ<μ+(d1, d2)},
Sp = {μ0,μ1,μ2, . . .},

and let m(μi) be the multiplicity of μi. In order to calculate the index of f̂ (d1, d2; ·) at e∗, we need the
following lemma.

Lemma 4.6 (Pang & Wang, 2003) Suppose ĝ(d1, d2;μi) |= 0 for all μi ∈ Sp. Then

index(f̂ (d1, d2; ·), e∗)= (−1)σ ,

where

σ =

⎧⎪⎨⎪⎩
∑

μi∈A∩Sp

m(μi) if A ∩ Sp |= ∅,

0 if A ∩ Sp = ∅.

In particular, if ĝ(d1, d2;μi) > 0 for all μi � 0, then σ = 0.

From Lemma 4.6, in order to calculate the index of f̂ (d1, d2; ·) at e∗, we need to determine the range
of μ for which ĝ(d1, d2;μ)< 0.

Theorem 4.7 Suppose that a + b � ab and (H2) hold. If s0/d1 ∈ (μk ,μk+1) for some k � 1, and
σk =Σk

i=1m(μi) is odd, then there exists a positive constant d∗, such that system (4.1) has at least one
positive non-constant solution for all d2 � d∗.

Proof. Since (H2) holds, equivalently, s0 > 0, it follows that if d2 is large enough, then (4.9) holds and
μ+(d1, d2) > μ−(d1, d2) > 0. Furthermore,

lim
d2→∞

μ+(d1, d2)= s0

d1
, lim

d2→∞
μ−(d1, d2)= 0.

As s0/d1 ∈ (μk ,μk+1), there exists d0 � 1 such that

λ+(d1, d2) ∈ (μk ,μk+1), 0<μ−(d1, d2) < μ1 ∀d2 � d0. (4.10)

From Theorem 4.5, we know that there exists d > d0 such that (4.1) with d1 = d and d2 � d has no
positive non-constant solution. Let d > 0 be large enough such that s0/d1 <μ1; then there exists d∗ > d
such that

0<μ−(d1, d2) < μ+(d1, d2) < λ1 ∀d2 � d∗. (4.11)

Now we prove that, for any d2 � d∗, (4.1) has at least one positive non-constant solution. By way of
contradiction, assume that the assertion is not true for some d∗

2 � d∗. By using the homotopy argument,
we can derive a contradiction in the sequel.
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Fixing d2 = d∗
2 , for t ∈ [0, 1], we define

D(t)=
(

td1 + (1 − t)d 0
0 td2 + (1 − t)d∗

)
and consider the following problem:⎧⎨⎩−Δu = D−1(t)F(u), x ∈Ω ,

∂u
∂ν

= 0, x ∈ ∂Ω .
(4.12)

Thus, u is a positive non-constant solution of (4.1) if and only if it solves (4.12) with t = 1. Evidently, e∗

is the unique positive constant solution of (4.12). For any t ∈ [0, 1], u is a positive non-constant solution
of (4.12) if and only if it is a solution of the following problem:

h(u; t)= u − (I −Δ)−1{D−1(t)F(u)+ u} = 0, on X. (4.13)

From the discussion above, we know that (4.13) has no positive non-constant solution when t = 0,
and we have assumed that there is no such solution for t = 1 at d2 = d∗

2 . Clearly, h(u; 1)= f̂ (d1, d2; u),
h(u; 0)= f̂ (d, d∗; u) and

Duf (d1, d2; e∗)= I − (I −Δ)−1(D−1J + I),

Duf (d, d∗; e∗)= I − (I −Δ)−1(D̃−1J + I).

Here, f̂ (·, ·; ·) is as given in (4.8) and D̃ = diag(d, d∗). From (4.10) and (4.11), we have A(d1, d2) ∩ Sp =
{μ1,μ2, . . . ,μk} and A(d, d∗) ∩ Sp = ∅. Since σk is odd, Lemma 4.6 yields

index(h(·; 1), e∗)= index(f̂ (d1, d2; ·), e∗)= (−1)σq = −1,

index(h(·; 0), e∗)= index(f̂ (d, d∗; ·), e∗)= (−1)0 = 1.

From Theorems 4.3 and 4.4, there exist positive constants C = C(d, d1, d∗, d∗
2 ,Λ) and C̄ = C̄(d, d∗,Λ)

such that the positive solutions of (4.13) satisfy C< u(x), v(x) < C̄ on Ω̄ for all t ∈ [0, 1].
Define Σ = {u ∈ X : C< u(x), v(x) < C̄, x ∈ Ω̄}. Then h(u; t) |= 0 for all u ∈ ∂Σ and t ∈ [0, 1]. By

virtue of the homotopy invariance of the Leray–Schauder degree (Nirenberg, 2001), we have

deg(h(·; 0),Σ , 0)= deg(h(·; 1),Σ , 0). (4.14)

Note that both equations h(u; 0)= 0 and h(u; 1)= 1 have the unique positive solution e∗ in Σ , and we
obtain

deg(h(·; 0),Σ , 0)= index(h(·; 0), e∗)= 1,

deg(h(·; 1),Σ , 0)= index(h(·; 1), e∗)= −1,

which contradicts (4.14). The proof is complete. �
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5. Discussions

Pattern formation in ecological systems has been an important and fundamental topic in ecology. In
their pioneering work, Segel & Jackson (1972) showed that spatial inhomogeneous patterns occur in
predator–prey systems via Turing instability. However, their analysis indicates that the classical dif-
fusive predator–prey models with prey-dependent functional response, such as the Holling type II
function, cannot give rise to spatial structures through diffusion-driven instability unless the preda-
tors exhibit self-limiting or intraspecific competition. In studying a temperature-dependent reaction–
diffusion predator–prey mite system on fruit trees, Wollkind et al. (1991) found that Turing instability
occurs in a diffusive Leslie–Gower-type predator–prey model with Holling type II function, that is, a
diffusive Holling–Tanner predator–prey system. This shows that the self-limiting or intraspecific com-
petition effect of the predators can be relaxed if the carrying capacity of predator’s environment is
described by a Leslie–Gower term. Alonson et al. (2002) demonstrated that diffusive predator–prey
models with ratio-dependent functional response can also generate patchiness in a homogeneous envi-
ronment via Turing instability.

The prey-dependent functional response is derived based on the assumption that predators do not
interfere with one another’s activities (Cosner et al., 1999), so the only competition among preda-
tors occurs in the depletion of prey. Predator-dependent functional response, include the Beddington–
DeAngelis function (Cantrell & Cosner, 2001; Zhang et al., 2012) and Crowley–Martin function
(Skalski & Gilliam, 2001), describes mutual interference among predators, a phenomenon in which
individuals from a population of more than two predators not only allocate time in searching for and
processing their prey but also take time in encountering with other predators. The experimental obser-
vations of Skalski & Gilliam (2001) suggested use of the Beddington–DeAngelis functional response
when the predator feeding rate becomes independent of predator density at high prey density and the
Crowley–Martin functional response when the predator feeding rate is decreased by higher predator
density even when prey density is high.

In this paper, we have considered a diffusive Leslie–Gower predator–prey system with a Crowley–
Martin functional response under homogeneous Neumann boundary conditions. After studying the
local stability and Hopf bifurcation in the corresponding ODE system and discussing the invari-
ance, uniform persistence and global asymptotic stability of the coexistence equilibrium for the
reaction–diffusion system, we provided detailed analyses on the spatial, temporal and spatiotemporal
patterns in the reaction–diffusion model via four possible mechanisms. Firstly, we considered Turing
(diffusion-driven) instability of the coexistence equilibrium for the reaction–diffusion system when the
spatial domain is a bounded interval, which produces spatial inhomogeneous patterns. Then we studied
the existence and direction of Hopf bifurcation and the stability of the bifurcating periodic solution
in the reaction–diffusion system, which exhibits temporal periodic patterns. Next we investigated
the interaction of the Turing instability and Hopf bifurcation in the reaction–diffusion system which
demonstrates spatiotemporal patterns. Finally, we established the existence of positive non-constant
steady states of a reaction–diffusion system. Our theoretical results further suggest that mutual
interference between predators and the feeding strategy of predators are the determining factors in
generating spatial and spatiotemporal patterns through predator–prey interaction in a homogeneous
environment (Alonson et al., 2002).

Since the Crowley–Martin functional response function is more general than the Beddington–
DeAngelis functional response function and includes the Holling type II functional response function,
we would like to mention that our results remain true for the diffusive Leslie–Gower predator–prey
system with the Beddington–DeAngelis functional response and the diffusive Holling–Tanner predator–
prey system.
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Another important property of ecological systems is the existence of travelling wave solutions which
describe how interacting species invade and establish. It would be very interesting to study the exis-
tence of travelling waves in the diffusive Leslie–Gower predator–prey systems with Crowley–Martin or
Beddington–DeAngelis functional response. We leave this for future consideration.
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