
IV. What is the Hodge conjecture, and why hasn’t

it been proved?

Short answer
I the HC proposes necessary and sufficient conditions that

a homology class be represented by an algebraic cycle (a
linear combination of the fundamental classes of algebraic
subvarieties)

I in codimension 1 the result is the Lefschetz (1,1) theorem
— for codimension = 2 there are new Hodge-theoretic
invariants of algebraic cycles of an arithmetic character
and these are not understood.
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I it is known that the HC has implications for these
arithmetic invariants, but it is not understood what, if
any, direct implications they have for the HC

I the issue boils down to constructing something under
assumptions that have both a geometric and an
arithmetic aspect.

There is basically one case of a variant of the HC beyond the
codimension 1 case that is understood — this can be analyzed
using classical complex analysis plus some arithmetic and will
be the main topic of today’s lecture
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Outline
A. The Hodge conjecture (HC)

B. Relative Chow groups for (P1, {0,∞}) and (P2,T ).

<◦>

A: The HC
I X = smooth n-dimensional complete algebraic variety

(thus it is a compact 2n-real dimensional manifold)

I H r (X ,C) ∼= H r
DR(X ) where the RHS is

H r
DR(X ) =

{
Z r (X )

dAr−1(X )

}
=

{
closed r -forms; i.e.,
those ω with dω = 0

}
{

exact r -forms
ω = dψ

}
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I for X = complex manifold with local holomorphic
coordinates z1, . . . , zr

I Ar (X ) = ⊕
p+q=r

Ap,q(X )

I Ap,q(X ) =
{

Ψ =
∑
|I |=p
|J|=q

ΨI J̄ dz
I ∧ dz̄J

}
= Aq,p(X )

(decomposition into (p, q) types)
I for X a smooth complete algebraic variety this (p, q)

decomposition descends to cohomology

H r (X ,C) ∼= ⊕
p+q=r

Hp,q(X ), Hp,q(X ) = Hq,p(X )︸ ︷︷ ︸
Hodge decomposition on cohomology

Thus H r (X ,C) has a Hodge structure of weight r
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I For X any algebraic variety H r (X ) has a mixed Hodge
structure where

X
��

H
H smooth but open =⇒ r 5 w 5 2r

complete =⇒ weights are 0 5 w 5 r

I There is also a mixed Hodge structure for the cohomology
of relative algebraic varieties; we will implicitly be using
this later.

I H2n−r (X ) ∼= H r (X ) (Poincaré duality)
I Y ⊂ X an (n − r)-dimensional subvariety
 [Y ] ∈ H2(n−r)(X ) ∼= H2r (X ) (recall that
dimR Y = 2(n − r))

I [Y ] ∈ H r ,r (X )
(Y locally given by z1 = · · · = zr = 0)

I Hodge classes

Hgr (X ) = H2r (X ,Q) ∩ H r ,r (X ).
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Example: X = algebraic surface

H2(X ,C) = H2,0(X )⊕ H1,1(X )⊕ H0,2(X )
I H2,0(X ) = regular 2-forms
I H0,2(X ) = H2,0(X )

I

H1,1(X ) is there to represent
the fundamental classes of
the algebraic curves on X


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I Hodge conjecture: Hgr (X ) is generated by fundamental
classes of codimension-r subvarieties on X

I due to Lefschetz when r = 1 — essentially no other
known cases — there are a few examples — it is
non-trivially consistent with known consequences.

Issue: Have to construct something — it is an existence
result — for r = 2 there is an arithmetic aspect and thus far
existing methods of complex analysis/PDE/differential
geometry fall short.

<◦>
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B: (P1, {0,∞}) and (P2,T )
∞

0

x1 = 0

x2 = 0
x0 = 0

I [x0, x1]

I

{
0 ↔ x1 = 0

∞↔ x0 = 0

I z = x1/x0

I [x0, x1, x2]

I

{
x = x1/x0

y = x2/x0

I Line at infinity is x0 = 0,
and then [0, x1, x2] gives
the direction in C2 to go
to that point on the line
at infinity.
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I 0-cycles are D =
∑

i nipi , ni ∈ Z and

pi ∈

{
P1\{0,∞}
P2\T

I set D+ =
∑

nipi , ni > 0 and D− =
∑

nipi , ni < 0

I for (P1; {0,∞}) we want to construct a rational function
w(z) such that

(i) (w) = D
(ii) w = const. on {0,∞} (i.e., w(0) = w(∞))

I note that if w ,w ′ have (w) = D, (w ′) = D ′ and w ,w ′

are constant on {0,∞}, then (ww ′) = D + D ′,
(w/w ′) = D − D ′ and w/w ′ is constant on {0,∞}
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I for (P1,T ) we want to construct a pair (C ,w) where
I C is an algebraic curve with C ∗ = C\C ∩ T (C may not

be irreducible)

C

I pi ∈ C ∗

I a rational function w = p(x ,y)
q(x ,y)

∣∣∣
C

such that

(i) (w) = D
(ii) w = const. on T
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Writing
D = D+ − D−

in both cases we have a rational family Dt = w−1(t) of
0-cycles where D0 = D+, D∞ = D− (this is called a rational
equivalence, written D ∼ 0). In the (P2,T ) case as t varies
over P1 the Dt will lie on a curve C .

I Again if D ∼ 0, D ′ ∼ 0, then D ± D ′ ∼ 0.

The group of divisors D modulo rational equivalence is the
Chow group CH0(P2,T ).
In this example the curves C we need will not be mysterious;
they will be configurations of lines.
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Interlude: Recall Abel’s theorem:∑
i

ˆ (xi (t),yi (t))

(x0,y0)

ω = constant

where ω = r(x , y(x)) dx is a regular 1-form on the algebraic
curve f (x , y) = 0 (regular means that

´
ω <∞), and

Dt
defn
=
∑
i

(xi(t), yi(t)) = {g(x , y , t) ∩ f (x , y)}

are the intersection points of C with a family of algebraic
curves g(x , y , t) = 0 depending rationally on a parameter.
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I Converse to Abel’s theorem:

Given D =
d∑

pi , D
′ =

d ′∑
p′i with degD = degD ′ and

AJ(D − D ′) = 0 in J(C ), there exists a rationally
parametrized family Dt with D = D0, D ′ = D∞.

In fact there exists a meromorphic function w : C → P1 with
w−1(0) = D, w−1(∞) = D ′. Thus CH0(C ) = J(C ).

In general as noted above the Chow group of an algebraic
variety is generated by the group of 0-cycles Z =

∑
i nipi

modulo the relation Z ∼ Z ′ generated by moving Z to Z ′ by a
rational parameter.
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Summarizing the story for algebraic curves we have

two Hodge-theoretic
invariants of configurations

of points on C

HH
HH

HY

��
��
�*

0→ J(C )→ CH0(C )
deg−−→ H0(C ,Z)→ 0 1

For algebraic surfaces there will be three Hodge-theoretic
invariants corresponding to integrating 0-forms, 1-forms and
2-forms, and

the third one will be arithmetically defined
It is the relation between the integrals of algebraic functions
and arithmetic that is a (the?) missing piece.

1degD =
´
D

1
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Interlude:
I Suppose f (x , y) ∈ Q[x , y ] has rational coefficients (or

they could be in k = finite extension of Q such as Q(
√
a)

etc.)

I ω = r(x , y(x)) dx where r(x , y) ∈ Q[x , y ]

I (x0, y0) ∈ C is a rational point

(x0, y0)
(x1, y1)

I (x1, y1) ∈ C close to (x0, y0) another rational point.
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Theorem: (many people including Siegel). Assume
´
ω isnot

an algebraic function of the upper limit. Then

I (x1, yi) =

ˆ (x1,y1)

(x0,y0)

ω is not an algebraic number.2

I Variant: Only finitely many relations∑
i

ai I (xi , yi) = 0, ai ∈ Q.

I Conjecture: Relations come from geometry.

I This gives a conjecturally deep geometric relation
between periods and arithmetic.

2We may view I (x1, y1) as a period for the relative curve
(C , {(x0, y0), (x1, y1)}).
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Recall

C/Λ
(p(u),p′(u)−−−−−−→ C ⊂ P2.

Theorem has the

Corollary: p(u) algebraic =⇒ u transcendental.3

Example (continued)

p1

p2

p3

C = cubic

3This is the tip of the iceberg of a deep story about the arithmetic
properties of periods and the values of transcendental functions that are
solutions of algebraic PE’s defined /Q ((p′)2 = p3 + ap + b in this case
— Picard-Fuchs equations in general).
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Abel:
3∑

i=1

ˆ pi

ω = 0.

Chow group of (P1; {0,∞})
I for w(z) =

∏
(z − zi)

ni write D =
∑

nizi and set
degD =

∑
i ni

I in the picture in the complex plane

Im z

*

*
*

Re z
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0 =
1

2πi

˛
dw(z)

w(z)
=
∑

Res

(
dw

w

)
=
∑
i

ni

I =⇒ AJ0(D) = degD = 0 (# zeroes = # poles)

I for same figure now choose a single-valued branch of log z
and set

ψ = log z
dw(z)

w(z)

I 0 = 1
2πi

¸
ψ =

∑
ni log zi

=⇒ AJ1(D) =
∏

i z
ni
i = 1

I the mixed Hodge structure for H1(P1; {0,∞}) is
generated by ω = dz/z , and then in general AJ1(D)
=
∑

ni
´ zi
z0
ωmod 2πi ; thus AJ1(D)0 ⇐⇒

∏
znii = 1.
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Thus both “deg” and “AJ” have Hodge-theoretic meaning.
The above result is expressed by

1→ C∗ → CH0(P1; {0,∞})→ Z→ 0

=

J((P1; {0,∞}))

I the simplest 0-cycles in ker(deg) ∩ ker(AJ1) are the

D = a + b − 1− ab

= (a − 1) + (b − 1)− (ab − 1)

= Da + Db − Dab,

then

w(z) =
(z − a)(z − b)

(z − 1)(z − ab)

has (w) = D as above.
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Chow group for (P2,T )
I set pi = (xi , yi) ∈ C∗ × C∗

*

*

* *

*

C

I the particular type of curve C will enter the story later; for
now we just consider a rational function w(x , y) = p(x ,y)

q(x ,y)

restricted to any C and with divisor D =
∑

nipi
I as usual the residue theorem on C for dw/w gives∑

i

ni = 0
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I next the residue theorem for log x dw
w

and log y dw
w

gives4∏
xnii = 1,

∏
yni
i = 1

I At this point the issue becomes rather subtle. Set
I Div0(P2,T ) = 0-cycles of degree 0

I Div0(P2,T )
AJ1 // C∗ × C∗
∈ ∈

D // (
∏

xnii ,
∏

ynii )

I The Da’s above are

Da,b = (a, b)− (a, 1)− (1, b) + (1, 1).

They generate a subgroup

ker(AJ0) ∩ ker(AJ1)

of Div0(P2,T ), where we set AJ0 = deg.
4Below we will interpret this in terms of the differentials dx/x and

dy/y that give the mixed Hodge structure on H1.
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I We consider the rational function

(x − a1)(x − a2)

(x − 1)(x − a1a2)

on the curve C = {y = b}

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

y = b

This gives

Da1,b + Da2,b ∼ Da1a2,b

Da2,b ∼ Da,b + Da,b ∼ Da,b2
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Conclusion: The map

Div0(P2,T )/∼ → C∗ ⊗Z C∗

is well defined.

I It would have been simpler is the story had ended here.
But essentially we have only used the lines through the
vertices of the triangle T . Consider now

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

x + y = 1 curve C in
this case

�
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For
w =

∏
(x − ai)

ni

∣∣∣
x+y=1

where
∑

ni = 0,
∏

anii = 1 =
∏

(1− ai)
ni we get∑

i

Dai ,1−ai ∼ 0.

This intertwines x , y in a subtle way.

Definition: K2(C) = C∗ ⊗Z C∗
/
{a ⊗ (1− a)} where

a 6= 0, 1,∞ (i.e., a ∈ C∗\{1}).

The relations a ⊗ (1− a) ∼ 1 are the Steinberg relations.

Theorem: AJ2 : CH(P2,T )
∼−→ K2(C)

I Conjecturally AJ2 can also be defined Hodge-theoretically
(see below).
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I The group K2(C) is a subtle arithmetic object. Setting
{a, b} = image of a ⊗ b in K2(C) one has

I {a, 1} = 1 = {1, b}
I(∗) {a, b} = 1 if a, b ∈ Q.

To prove the first relation and illustrate why the second
relation might hold, on x = y

(ab, ab)− (a, a)− (b, b) + (1, 1) ∼ 0

=⇒ Da,b + Db,a ∼ 0 5

=⇒ {a, b} = {b, a}−1

= {1/b, a}
Then

{a, 1} = {a, 1− a}{a, 1/1− a}
= {a, 1− a}−1

= 1.
5This requires a little calculation.
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For λn = 1

1 = {a, 1} = {a, λ}n

=⇒ {a, λ} is torsion.

This is a step towards showing (∗).

Corollary: Given xi , yi ∈ Q, ni ∈ Z such that
∑

i ni = 0,∏
i x

ni
i =

∏
i y

ni
yi

= 1, there exists a curve C , and on C a
rational function w such that (w) =

∑
ni(xi , yi).

This is not the case without the assumption xi , yi ∈ Q — we
now discuss a Hodge-theoretic construction that proves that
for general D =

∑
i ni(xi , yi) where the xi , yi are not algebraic,

we do not have D ∼ 0.
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Hodge-theoretic interpretation in terms of periods
I For

D =
∑
i

nipi =
∑
i

ni(xi , yi)

we first have that the two classical Hodge-theoretic
assumptions

I AJ0(D) = degD =
´
D 1 =

∑
i ni = 0 where

1 ∈ H0(Ω0
X∗)

I AJ1(D) =
(´

γ
dx
x ,
´
γ

dy
y

)
≡ 0

{
mod

periods

}
where

dx
x ,

dy
y ∈ H0(Ω1

X∗) and ∂γ = D

are necessary to have D ∼ 0, but by the theorem above
they are not sufficient unless the xi , yi ∈ Q.

I The remaining part of the Hodge theory of (P2,T ) is
given by

ω =
dx

x
∧ dy

y
∈ H0(Ω2

X∗).
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This raises the question: Is there an “Abel-Jacobi” map
involving ω that gives the remaining necessary and sufficient
conditions to have D ∼ 0?

The answer to this is only conjecturally known. The issue is to
construct something that is both geometric and arithmetic
(more precisely, to construct something geometric /C and
arithmetic /Q).

Spreads: Given D =
∑

ni(xi , yi) as above the xi , yi generate
a subfield k ⊂ C. This field has finite transcendence degree;
thus

k ∼= Q
[

α1, . . . , αn︸ ︷︷ ︸
independent

transcendentals

; β1, . . . , β`︸ ︷︷ ︸
algebraic over

Q[α1,...,αn]

]

where Tr deg(k/Q) = n.

29 / 34



Using the equations that define the βi over α1, . . . , αn there
exists an n-dimensional smooth projective algebraic variety S ,
defined /Q up to birational equivalence, with function field

Q(S) ∼= k .

I We may think of X ∗ = P2\T and D as algebro-geometric
objects defined respectively over Q and over the extension
field k of Q — then S may be thought of as geometric
realizations of the different embeddings k ↪→ C.

I For each s ∈ S we have xi(s), yi(s) and

Ds =
∑
i

ni(xi(s), yi(s))

satisfies
I degDs = 0
I
∏

i xi (s)ni =
∏

yi (s)ni = 1.
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The second equation above is because any algebraic relation
/Q satisfied by the original xi , yi is still satisfied for the
xi(s), yi(s).

We want to define
AJ2(D)

using ω = dx
x
∧ dy

y
. For this we need something real

2-dimensional to integrate ω over. For γ ∈ H1(S ,Z) each
point s ∈ γ gives

I Ds =
∑

ni(xi(s), yi(s)) = Σ

I 1-chain λs with ∂λs = Ds .

S

s

λs
q1(s)

p1(s)

p2(s)

q2(s)
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The locus
Γ =

⋃
s∈γ

λs

is then of 2 real dimensions, and we set

AJ2(D) =

ˆ
Γ

ω
{

modulo
ambiguities

}
.

Using the assumption AJ1(Ds) = 0 the ambiguities can be
made sense of.
One should think of AJ2(D) as involving one integration in a
geometric direction and one integration in an arithmetic
direction. This is the new, additional ingredient that appears
in Hodge theory when studying algebraic cycles of codimension
= 2.
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What so far as I know has not been done is to show that

D ∼ 0 ⇐⇒ AJi(D) = 0 for i = 0, 1, 2.

The implication =⇒ is OK;6 missing is an interpretation

AJ2(D) ∈ K2(C)

and an argument that

AJ2(D) = 0 =⇒ D ∼ 0 (mod torsion)

This would be the full converse to Abel’s theorem for this
example.

6That is, D ∼ 0 =⇒ AJ2(D) ≡ 0mod{periods + ambiguities}.
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Conclusion: The HC is formulated for smooth complex
algebraic varieties. A proof requires that we construct
algebraic subvarieties starting from a homology class that
satisfies Hodge-theoretic conditions. However there are
Hodge-theoretic invariants of an algebraic cycle that arise
arithmetically, and a deeper understanding of these may be
necessary for HC. Basically we have to relate the arithmetic
and geometric properties of periods.
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