V. What is the Hodge conjecture, and why hasn't

it been proved?

Short answer

» the HC proposes necessary and sufficient conditions that
a homology class be represented by an algebraic cycle (a
linear combination of the fundamental classes of algebraic
subvarieties)

» in codimension 1 the result is the Lefschetz (1,1) theorem
— for codimension = 2 there are new Hodge-theoretic
invariants of algebraic cycles of an arithmetic character
and these are not understood.

34



» it is known that the HC has implications for these
arithmetic invariants, but it is not understood what, if
any, direct implications they have for the HC

» the issue boils down to constructing something under
assumptions that have both a geometric and an
arithmetic aspect.

There is basically one case of a variant of the HC beyond the
codimension 1 case that is understood — this can be analyzed
using classical complex analysis plus some arithmetic and will
be the main topic of today's lecture
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Outline
A. The Hodge conjecture (HC)
B. Relative Chow groups for (P!, {0,00}) and (P2, T).

@)

A: The HC

» X = smooth n-dimensional complete algebraic variety
(thus it is a compact 2n-real dimensional manifold)

» H'(X,C) = Hfr(X) where the RHS is

closed r-forms: i.e., }

Z"(X) B { those w with dw =0
1=

Hir(X) = {
PR dA—1(X {exact r—forms}

w=dy
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» for X = complex manifold with local holomorphic

coordinates zi, ..., z,
S A(X)= @ API(X)
p+q=r
- APA(X) = {w = \IJ,J-dzl/\dZJ}
ll=p
[J|=q
= Aq,p(X)

(decomposition into (p, q) types)
» for X a smooth complete algebraic variety this (p, q)
decomposition descends to cohomology

H(X,.C)= @ HPY(X),  HP9(X)= HIP(X)
p+q=r

Hodge decomposition on cohomology

Thus H"(X,C) has a Hodge structure of weight r
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» For X any algebraic variety H"(X) has a mixed Hodge
structure where

complete = weightsare 0 S w < r
X
> smooth but open — r < w < 2r

» There is also a mixed Hodge structure for the cohomology
of relative algebraic varieties; we will implicitly be using
this later.

» Hapr(X) = H'(X) (Poincaré duality)

» Y C X an (n — r)-dimensional subvariety
~ [Y] € Hagnop)(X) = H?"(X) (recall that
dimgr Y =2(n—r))

» [Y] € H""(X)
(Y locally given by z; = --- =z, =0)

» Hodge classes

Hg'(X) = H*'(X,Q) N H™"(X).
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Example: X = algebraic surface
H2(X,C) = H29(X) & HYY(X) & HO?(X)
» H%0(X) = regular 2-forms
» HO2(X) = H20(X)
{Hlvl(X) is there to represent }

the fundamental classes of
the algebraic curves on X

6 /34



» Hodge conjecture: Hg"(X) is generated by fundamental
classes of codimension-r subvarieties on X

» due to Lefschetz when r = 1 — essentially no other
known cases — there are a few examples — it is
non-trivially consistent with known consequences.

Issue: Have to construct something — it is an existence
result — for r = 2 there is an arithmetic aspect and thus far
existing methods of complex analysis/PDE /differential
geometry fall short.

~
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B: (P!, {0,00}) and (P?, T)

00

0
> [XOJX].]

0 — X1 =0
| 4

00 x =0
> z=x1/Xo

x1=0
% =0 xo=0
> [x0, x1, %]
N {X—Xl/XO
Y =x/x

» Line at infinity is xp = 0,
and then [0, x1, x2] gives
the direction in C2 to go
to that point on the line
at infinity.
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0-cycles are D = ). nip;, nj € Z and

P\ {0, 00}
P e {PZ\T

set D, => nip;, nj>0and D_ = > n;p;, n; <0
for (P1;{0,00}) we want to construct a rational function
w(z) such that

(i) (w)=D

(i) w = const. on {0,000} (i.e., W( )= ( )
note that if w,w’ have (w) = D, (w') = D’ and w, w’
are constant on {0, o0}, then (ww') = D + D',

(w/w') =D — D’ and w/w' is constant on {0, 00}
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» for (P!, T) we want to construct a pair (C, w) where

» C is an algebraic curve with C* = C\CN T (C may not
be irreducible)

» pie C”

» a rational function w = pEX’yg such that

X,y C
(i) (w)=D
(i) w=const. on T
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Writing
D=D,—-D_

in both cases we have a rational family D; = w™(t) of
O-cycles where Dy = D, D,, = D_ (this is called a rational
equivalence, written D ~ 0). In the (P2, T) case as t varies
over P! the D, will lie on a curve C.

» Againif D~ 0, D' ~0, then D+ D" ~ 0.

The group of divisors D modulo rational equivalence is the
Chow group CHo(P?, T).

In this example the curves C we need will not be mysterious;
they will be configurations of lines.
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Interlude: Recall Abel's theorem:

(xi(t),yi(1))
Z/ w = constant
(

i X0,Y0)

where w = r(x, y(x)) dx is a regular 1-form on the algebraic
curve f(x,y) = 0 (regular means that [ w < c0), and

D, = Z(X’(t)’ yi(t)) = {g(x,y, t) N f(x,y)}

are the intersection points of C with a family of algebraic
curves g(x, y, t) = 0 depending rationally on a parameter.
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» Converse to Abel's theorem:
d d'
Given D = Z pi, D' = Z p: with deg D = deg D' and
AJ(D — D') =0 in J(C), there exists a rationally
parametrized family D; with D = Dy, D' = D,.

In fact there exists a meromorphic function w : C — P! with
w1(0) = D, w(o0) = D’. Thus CHy(C) = J(C).

In general as noted above the Chow group of an algebraic
variety is generated by the group of 0-cycles Z =), nip;
modulo the relation Z ~ Z’ generated by moving Z to Z’ by a
rational parameter.
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Summarizing the story for algebraic curves we have

0 — J(C) — CHo(C) <& Ho(C,Z) — 01

\/’

two Hodge-theoretic
invariants of configurations
of points on C

For algebraic surfaces there will be three Hodge-theoretic
invariants corresponding to integrating 0-forms, 1-forms and
2-forms, and

the third one will be arithmetically defined
It is the relation between the integrals of algebraic functions
and arithmetic that is a (the?) missing piece.

ldegD = [, 1
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Interlude:

» Suppose f(x,y) € Q[x, y] has rational coefficients (or
they could be in k = finite extension of Q such as Q(\/a)
etc.)

» w = r(x,y(x)) dx where r(x,y) € Q[x, y]
» (x0,¥0) € C is a rational point

(X1,Y1)
(Xoa}/o)

» (x1,)1) € C close to (xo, yo) another rational point.
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Theorem: (many people including Siegel). Assume [ w isnot
an algebraic function of the upper limit. Then

(ax1)
I(x1,y;) = / w Is not an algebraic number.?
(

X0,Y0)

» Variant: Only finitely many relations

Z a,-l(x,-,y,-) = 0, a; € @

» Conjecture: Relations come from geometry.

» This gives a conjecturally deep geometric relation
between periods and arithmetic.

2\We may view /(xy,y1) as a period for the relative curve
(Ca {(XanO)a (X17.y1)})'

16
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Recall

c/n PP, o - p2,
Theorem has the
Corollary: p(u) algebraic = u transcendental.®

Example (continued) € — cubic

P3
P2
P1

3This is the tip of the iceberg of a deep story about the arithmetic
properties of periods and the values of transcendental functions that are
solutions of algebraic PE's defined /@ ((p’)? = p* + ap + b in this case
— Picard-Fuchs equations in general).
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3 Pi
Abel: 3~ ["w—0
i=1

Chow group of (P!; {0, c0})
» for w(z) =[](z — z)™ write D = > n;z; and set
degD =>.n;
» in the picture in the complex plane

Im z

Re z

N

~—
=
*
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v

= AJo(D) = deg D = 0 (# zeroes = # poles)
for same figure now choose a single-valued branch of log z

and set
= IogzdW(z)
w(z)

0= g0 =Y nlogz
= AJ(D)=]],z" =

the mixed Hodge structure for H'(PP!; {0, 0}) is
generated by w = dz/z, and then in general AJ;(D)
= > n [ wmod2ri; thus AJ1(D)0 <= [[z" = 1.
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Thus both “deg” and “AJ" have Hodge-theoretic meaning.
The above result is expressed by
1 — C* — CHo(P*; {0,00}) = Z — 0
I

J((P; {0, 00}))

» the simplest O-cycles in ker(deg) N ker(AJ;) are the

D=a+b—-1—-ab
=(a—1)+(b—1)—(ab—1)
:D3+Db_Dab7

then

_ (z—a)(z—b)
w(2) = ;1) (z = ab)

has (w) = D as above.
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Chow group for (P2, T)

> set p; = (x,-,y,-) e C*xC*
» the particular type of curve C will enter the story later; for

now we just consider a rational function w(x, y) = 2

q(x.y)
restricted to any C and with divisor D = > n;p;
» as usual the residue theorem on C for dw/w gives

Zn,‘:O

1

C
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» next the residue theorem for Iogx and Iogy gives?

HX;"’Il, Hyi"’:

» At this point the issue becomes rather subtle. Set
» Divg(IP?2, T) = 0-cycles of degree 0

» Divo(P?, T) C* x C*
W )
D (I TTy™)

» The D,’s above are
D,p=(a,b) —(a,1) — (1,b) + (1,1).
They generate a subgroup
ker(AJo) Nker(AJy)
of Divo(IP?, T), where we set AJy = deg.

“Below we will interpret this in terms of the differentials dx/x and
dy/y that give the mixed Hodge structure on H?.



» We consider the rational function

(X — 31)(X — 32)
(x — 1)(x — a1a2)

on the curve C = {y = b}

This gives

Dal,b + Dag,b i Dalag,b
DaZ,b ~ Da,b + Da,b ~ Da,b2

23 /34



Conclusion: The map
Divo(P?, T)/ — C* @4 C*

is well defined.

» It would have been simpler is the story had ended here.

But essentially we have only used the lines through the
vertices of the triangle T. Consider now

curve C in
this case
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For

w = x — a;)"
H( ) x+y=1
where > " n; =0, [[a" =1=]](1 — a;)™ we get

Z Da,-,lfa,‘ ~ 0.

This intertwines x, y in a subtle way.
Definition: K(C) = C* ®; C*/{a® (1 — a)} where
a#0,1,00 (i.e, aec C*\{1}).
The relations a® (1 — a) ~ 1 are the Steinberg relations.
Theorem: AJ, : CH(P?, T) = Ky(C)

» Conjecturally AJ, can also be defined Hodge-theoretically

(see below).
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» The group K>(C) is a subtle arithmetic object. Setting
{a, b} = image of a® b in K3(C) one has
» {a,1} =1={1,b}
(x) » {a,b}=1ifa,bcQ.
To prove the first relation and illustrate why the second
relation might hold, on x =y

(ab,ab) — (a,a) — (b,b) + (1,1) ~ 0

— Da,b + Db,a ~0°
= {a, b} = {b, a}’1

= {1/b, a}
Then
{a,1} ={a,1—a}{a,1/1 — a}
={a1-a}!
=1.

5This requires a little calculation.
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For A" =1

1 = {37 1} = {37 A}r"
—> {a, A} is torsion.

This is a step towards showing ().

Corollary: Given x;,y; € Q, nj € Z such that >.ni =0,
[I;x7" = I1; v = 1, there exists a curve C, and on C a
rational function w such that (w) = >_ n;(x;, yi).

This is not the case without the assumption x;, y; € Q — we
now discuss a Hodge-theoretic construction that proves that
for general D = . ni(x;, y;) where the x;, y; are not algebraic,
we do not have D ~ 0.



Hodge-theoretic interpretation in terms of periods

D= an, = ni(xi 1)
we first have that the two classical Hodge-theoretic
assumptions
» AJo(D) =degD = [,1=73";nj =0 where
le HO(Q&*)
mod
» AJ1(D (fv ot —) = 0{ periods} where
=3 dy € H(QL.) and 9y =D
are necessary to have D ~ 0, but by the theorem above
they are not sufficient unless the x;, y; € Q.

» The remaining part of the Hodge theory of (P2, T) is
given by

» For

w:d—/\d c H°(Q%.).
X y
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This raises the question: Is there an “Abel-Jacobi” map
involving w that gives the remaining necessary and sufficient
conditions to have D ~ 07

The answer to this is only conjecturally known. The issue is to
construct something that is both geometric and arithmetic
(more precisely, to construct something geometric /C and
arithmetic /Q).

Spreads: Given D = Y ni(x;, y;) as above the x;, y; generate
a subfield k C C. This field has finite transcendence degree;
thus

ng Oél,...,O{E ; @1,...,B£

independent  algebraic over
transcendentals  Qlox,...,an]

where Trdeg(k/Q) = n.
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Using the equations that define the f3; over ay, ..., a, there
exists an n-dimensional smooth projective algebraic variety S,
defined /Q up to birational equivalence, with function field

Q(S) = k.

» We may think of X* =P?\T and D as algebro-geometric
objects defined respectively over (Q and over the extension
field k of Q@ — then S may be thought of as geometric
realizations of the different embeddings k — C.

» For each s € S we have x(s), yi(s) and

D, = Z ni(xi(s), yi(s))
satisfies
> deg Ds == O
» [ xi(s)" =[1yi(s)" = 1.
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The second equation above is because any algebraic relation
/Q satisfied by the original x;, y; is still satisfied for the
xi(s), yi(s)-
We want to define

AJy(D)

using w = % A %. For this we need something real

2-dimensional to integrate w over. For v € H;(S,Z) each
point s € 7y gives

» Dy = ni(xi(s),yi(s) =X
» 1-chain A\ with O\; = D;.
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The locus

I‘:U)\S

sey

is then of 2 real dimensions, and we set
Al(D) = [ w modulo
2 . ambiguities [ -

Using the assumption AJ;(Ds) = 0 the ambiguities can be
made sense of.

One should think of AJ,(D) as involving one integration in a
geometric direction and one integration in an arithmetic
direction. This is the new, additional ingredient that appears

in Hodge theory when studying algebraic cycles of codimension
> 2.
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What so far as | know has not been done is to show that
D~0 < AJ(D)=0 for i=0,1,2.
The implication = is OK;® missing is an interpretation
AJy(D) € Ky(C)
and an argument that
AJy(D)=0 = D ~0 (mod torsion)

This would be the full converse to Abel's theorem for this
example.

®That is, D ~ 0 = AlJy(D) = 0mod{periods + ambiguities}.
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Conclusion: The HC is formulated for smooth complex
algebraic varieties. A proof requires that we construct
algebraic subvarieties starting from a homology class that
satisfies Hodge-theoretic conditions. However there are
Hodge-theoretic invariants of an algebraic cycle that arise
arithmetically, and a deeper understanding of these may be
necessary for HC. Basically we have to relate the arithmetic
and geometric properties of periods.
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