III. Topology and Hodge theory

- These two topics are closely intertwined and constitute a major aspect of complex algebraic geometry, beginning in the later part of the 19th century (Picard, Poincaré,...) into the 1st half of the 20th century (Lefschetz, Hodge,...) and continuing through today
- In fact questions about integrals on algebraic surfaces (which are real 4-manifolds) were instrumental in the beginnings of topology — one knew (Darboux, Picard, Poincaré, E. Cartan,...) what differential forms

$$\varphi = a \, dx + b \, dy + c \, dz$$

$$\psi = A \, dx \wedge dy + B \, dx \wedge dz + C \, dy \wedge dz$$

$$\eta = D \, dx \wedge dy \wedge dz$$

were, and Stokes' theorem

$$\int_{\mathfrak{U}} d\,\omega = \int_{\partial\mathfrak{U}} \omega$$

shows then when $d\omega = 0$ that $\int_{\Gamma} \omega$ was not only invariant under deformation or homotopy of Γ but also under homology.¹ This led to the notion of *periods*

$$\int_{\Gamma} \omega, \quad d\omega = 0 \, ext{ and } \, \Gamma \in H_p(X,\mathbb{Z}).$$

¹The exterior derivative *d* is uniquely determined (i) $df = f_x dx + f_y dy + f_z dz$ for a function *f*, (ii) $d(\alpha \land \beta) = d\alpha \land \beta + (-1)^{\deg \alpha} \alpha \land d\beta$ and (iii) $dx \land dy = -dy \land dx$ etc.

In the complex case when X has local holomorphic coordinates $z = (z_1, ..., z_n)$ $\omega = \sum_{I,I} f_{I\bar{J}} dz^I \wedge d\bar{z}^J$

where $I = (i_1, \ldots, i_p)$, $dz^J = dz^{i_1} \wedge \cdots \wedge dz^{i_p}$ etc. and as we saw for algebraic curves the periods reflect the complex structure — this is the start of Hodge theory.

Outline for the remainder of this lecture

- Introductory discussion of what an algebraic variety is
- Statements of the Lefschetz theorems
- How they arose historically from the study of algebraic functions of two variables (Picard-Lefschetz or PL theory)
- Origin of the Hodge conjecture (HC)

- ► Complex projective space P^N
 - lines through origin in \mathbb{C}^{N+1}
 - $\blacktriangleright \mathbb{P}^{N} = \mathbb{C}^{N} \cup \mathbb{P}^{N-1} \quad (\mathbb{P}^{1} = \mathbb{C} \cup \{\infty\})$
 - homogeneous coordinates $[z] = [z_0, \ldots, z_N]$
- $\mathbb{P}^1 = \mathsf{Riemann}$ sphere
- ▶ $\mathbb{P}^2 = \mathbb{C}^2 \cup \{\text{lines through the origin}\}\$ where $[z] \leftrightarrow \text{line}$ with slope z_2/z_1
- $\mathbb{P}^N = \text{compact complex manifold}$

Proof $\mathcal{U}_i = \{ [z] : z_i \neq 0 \} \ni [z]$ $\downarrow \qquad \qquad \downarrow$ $\mathbb{C}^N \quad \ni \quad (z_0/z_i, \dots \stackrel{i}{\wedge} \dots, z_N/z_i)$

- Algebraic variety X ⊂ P^N given by F₁(z) = · · · F_m(z) = 0 where F_α(z) = homogeneous polynomial.
- Note that $\dim_{\mathbb{R}} X = 2 \dim_{\mathbb{C}} X$ and X is oriented.

Example

C defined by f(x, y) = 0 in \mathbb{C}^2 . Set

$$x=z_1/z_0, \ y=z_2/z_0$$

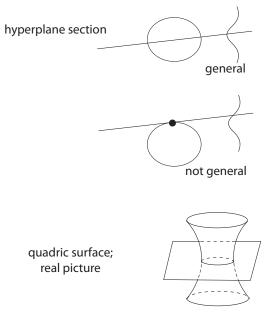
and clear denominators to get

$$\overline{C} = \{F(z) = 0\} \subset \mathbb{P}^2$$

イロト 不得下 イヨト イヨト 二日

where
$$\overline{C} = \left\{ \begin{array}{l} \text{our old} \\ C \subset \mathbb{C}^2 \end{array} \right\} \cup \left\{ \begin{array}{l} \text{points} \\ \text{at } \infty \end{array} \right\}.$$
(asymptotes)

▶ suppose X^n = smooth algebraic variety and $Y = \mathbb{P}^{N-1} \cap Y$ is a general hyperplane section



◆□ → < 団 → < 目 → < 目 → < 目 → ○ Q (?) 7/38 Note: Equation of the quadric in \mathbb{C}^3 is $x^2 + y^2 = z^2 + 1$; equation in \mathbb{P}^3 is $z_1^2 + z_2^2 = z_3^2 + z_0^2$; over \mathbb{C} this is equivalent to $z'_1z'_2 = z'_3z'_0$ where $z'_1 = z_1 + iz_2$, $z'_2 = z_1 - iz_2$ etc.

Lefschetz theorem I

b_{2p+1}(X) ≡ 0 (2) (odd Betti numbers are even)

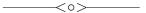
• $b_{2p}(X) \ge 1$ (even Betti numbers are positive).

In the second, if $\dim_{\mathbb{C}} X = n$ and $H \in H_{2n-2}(Y, \mathbb{Z})$ is the class of the cycle given by Y then (non-trivially)

$$\underbrace{H \cap \cdots \cap H}_{n-p} \neq 0 \text{ in } H_{2p}(X,\mathbb{Z})$$

Y is connected if $\dim_{\mathbb{C}} X \ge 2$

Exercise: f(x, y) = irreducible polynomial and $\{f(x, y) = 0\} = C \subset \mathbb{C}^2$. Show that C is connected.

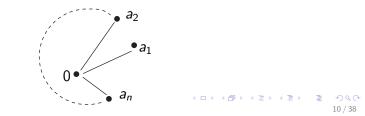


Geometric idea to study topology of an algebraic variety (idea is one of the most basic in algebraic geometry) — use induction by dimension.

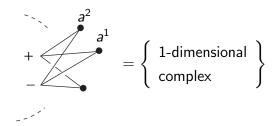
Example

For
$$y^2 = p(x)$$
 where $p(x) = \prod_{i=1}^{2g+2} (x - a_i)$

- first take out the two points over $x = \infty$
- next use the picture of the complex x-plane



retract the slit x-plane and the part of C lying over it onto the part lying over the segments



on as we turn around the branch point the two points interchange (local *monodromy* T_i around a_i)

・ロト ・四ト ・ヨト ・ヨト

 $\prod_i T_i = \text{Id}$ $\Delta_i = \xrightarrow{+}_{-} \text{ lying over } \overrightarrow{0 \quad a_i}$

- C retracts onto the real 1-dimensional complex given by attaching the 2g + 2 1-cells Δ_i to the two points ± lying over 0.
- Δ_i generate the relative homology group $H_1(C, \{+, -\}; \mathbb{Z})$ $\rightsquigarrow H_1(\overline{C}, \mathbb{Z}) \cong \mathbb{Z}^{2g}$

This case is too simple to suggest the general pattern. The next dimension up is due to Picard (1880–2000)

Example

X is the algebraic surface

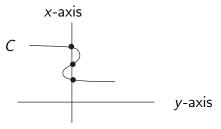
$$z^2 = f(x, y)$$

where $C = \{f(x, y) = 0\}$ is a non-singular plane curve. For a general y we let

$$X_y = \text{ curve } z^2 = f(x, y), \quad y \text{ fixed}$$

12/38

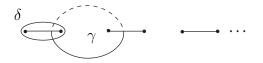
The picture is



 X_y is the algebraic curve of the type we have been considering; it is 2:1 covering of the line y = constant branched at the points of $C \cap \{y = \text{constant}\}$

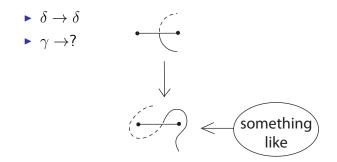
- smooth for general y
- singular when the line y = constant becomes tangent to C

• the picture of X_y is



where the branch points and slits will vary with y

at a point of tangency two branch points come together and interchange.



Picard-Lefschetz formula

(PL)
$$\gamma \to \gamma + \delta$$

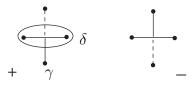
How to show PL? The original argument was analytic and in outline went as follows:

 locally analytically change coordinates so that the picture is a neighborhood of the curves

$$C_t = \{u^2 + v^2 = t\}$$

of the origin in \mathbb{C}^3 with coordinates (u, v, t)

the local picture is



16/38

• set $t = \sigma^2$ and consider the integrals

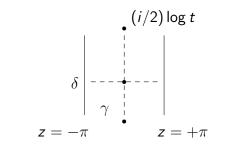
$$I_t(\delta) = \int_{\delta} \frac{du}{\sqrt{t - u^2}} = \int_{\delta} \frac{du}{\sqrt{\sigma^2 - u^2}} = \int_{\delta} \frac{du}{\sigma\sqrt{1 - (u/\sigma)^2}}$$
$$I_t(\gamma) = \int_{\gamma} \frac{du}{\sqrt{t - u^2}} = \int_{\gamma} \frac{du}{\sqrt{\sigma^2 - u^2}} = \int_{\gamma} \frac{du}{\sigma\sqrt{1 - (u/\sigma)^2}}$$

• the curves C_t are parametrized by

$$z \to (\sigma \sin z, \sigma \cos z),$$

and a calculation gives

$$\begin{cases} I_t(\delta) = 2\pi \\ I_t(\gamma) = i \log t \end{cases}$$

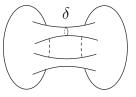


Conclusion

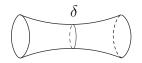
$$\begin{cases} I_{e^{2\pi i}t}(\delta) = I_t(\delta) \\ I_{e^{2\pi i}t}(\gamma) = I_t(\gamma) + I_t(\delta) \end{cases}$$
$$\implies T(\gamma) = \gamma + \delta.$$

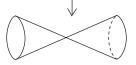
Topological pictures

global

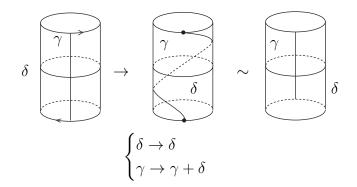


local



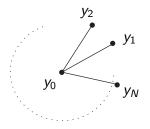


<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),



- ▶ few pictures worth 1,000 (10,000?) words
- heuristic analytic reasoning suggests what the answer should be — then know what to prove.

- $X^* = X \setminus X_\infty$
- topological picture of X*



• along $\overline{y_0y_i}$ we have the locus of the vanishing cycle

$$\bigotimes_{\delta_i} = \Delta_i$$

 \implies \triangleright X^* obtained from X_0 by attaching 2-cells Δ_i

In general

 X^* obtained from X_0 by attaching $n = \frac{1}{2} (\dim_{\mathbb{R}} X)$ cells

 \implies Lefschetz theorems I, II

Single and double integrals
 Returning to X given by

$$z^2 = f(x, y)$$

there are single integrals (1-forms)

$$\psi = \frac{p(x, y) \, dx}{z} + \frac{q(x, y) \, dy}{z}$$

and double integrals (2-forms)

$$\varphi = \frac{r(x, y) \, dx \wedge dy}{z}$$

22 / 38

イロト 不得下 イヨト イヨト 二日

The story of the ψ 's is very interesting but we will only have time to make a few observations. For one such we note that

•
$$\int \psi < \infty \implies d\psi = 0.$$

Proof:

$$d\psi = d\left(\frac{p(x,y)}{z}\right) \wedge dx + d\left(\frac{q(x,y)}{z}\right) \wedge dy$$
$$= \frac{r(x,y) \, dx \wedge dy}{z}$$
$$\implies \frac{1}{4}(d\psi \wedge \overline{d\psi}) = \left|\frac{r(x,y)}{z}\right|^2 \left(\frac{i}{2}\right) dx \wedge d\overline{x} \wedge \left(\frac{i}{2}\right) dy \wedge d\overline{y}$$
$$= \text{ volume form on } X$$
$$0 < \int_X d\psi \wedge \overline{d\psi} = \int_X d(\psi \wedge \overline{d\psi}) = 0 \implies d\psi = 0.$$

 ► The space of single integrals is denoted by H^{1,0}(X) and its dimension h^{1,0}(X) is called the *irregularity* — reason for the name is that in the early days "most" surfaces seemed to be *regular*, i.e., to have h^{1,0}(X) = 0.

Example

For $z^2 = f(x, y)$ to be irregular the curve C cannot be smooth, or even have generic singularities, those being where

$$\left\{egin{aligned} &f_x(x,y)=f_y(x,y)=0\ &\det igg| f_{xx} & f_{xy}\ &f_{yx} & f_{xx} igg| (x,y)
eq 0 \end{aligned}
ight.$$

Similarly for a hypersurface

$$F(z_0,z_1,z_2,z_3)=0$$

in \mathbb{P}^3 it is not easy to write down on F where X is irregular.

• Suppose now φ is a regular 2-form; i.e.,

$$\int_{\sigma} \varphi < \infty$$

for any 2-chain σ . We set

$$H^{2,0}(X) = egin{cases} ext{space of} \ ext{regular 2-forms} \end{bmatrix}.$$

The *periods* of ψ are the

$$\int_{\Gamma} \psi, \qquad \Gamma \in H_2(X,\mathbb{Z}).$$

Among the Γ 's are the fundamental classes of algebraic curves $C \subset X$; i.e., the images of

$$H_2(C,\mathbb{Z}) \to H_2(X,\mathbb{Z}).$$

25 / 38

We will discuss these further below.

By restriction

$$\psi \to \psi_y = \frac{p(x, y) \, dx}{z}$$

we will generally have $\psi_y \neq 0$ which gives

$$H^{1,0}(X) \hookrightarrow H^{1,0}(X_y).$$

This suggests that we have

$$H^1(X,\mathbb{C}) \hookrightarrow H^1(X_y,\mathbb{C}),$$

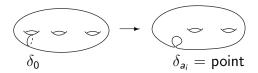
which is true and is what originally suggested the first non-easy case of Lefschetz II — again analysis and topology went hand in hand.

Another example of the use of analysis to suggest topology:

For a vanishing cycle

$$\Delta_i =$$

traced out by $\delta_y \in H_1(X_y, \mathbb{Z})$ along the path from 0 to a_i



we have

$$\int_{\delta_0}\psi=\int_{\delta_{a_i}}\psi=0,\qquad\psi\in H^{1,0}(X).$$

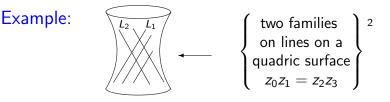
27 / 38

This led to Picard's argument that

$$\ker\{H_1(X_0,\mathbb{Z})\to H_1(X,\mathbb{Z})\}=\begin{cases} \text{span of the}\\ \text{space of vanishing cycles.} \end{cases}$$

Returning to the discussion of

► Among the classes in H₂(X, Z) are those given by the fundamental classes of the algebraic curves C contained in X.



$$\rightsquigarrow H_2(X,\mathbb{Z}) \cong \mathbb{Z}[L_1] \oplus \mathbb{Z}[L_2]$$

► In general *C* is a component of

$$\begin{cases} z^2 = f(x, y) \\ g(x, y, z) = 0 \end{cases}$$

(may take $g(x, y, z) = g_0(x, y) + g_1(x, y)z$)

²The lines are $z_0 = z_2 = 0$, $[z_1, z_3] \in \mathbb{P}^1$ arbitrary and $z_1 = z_3 = 0$, $[z_0, z_2]$ arbitary.

29/38

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > ○ < ⊙ 30 / 38 **Conclusion**: The periods of $H^{2,0}(X)$ on the homology classes of algebraic curves are equal to zero.

- ► The converse statement is the famous *Lefschetz* (1,1) *theorem*.
- The converse to the analogous statement for arbitrary X is the Hodge conjecture.
- In terms of differential forms of degree 2 on X there are three types:

•
$$\frac{p(x,y) dx \wedge dy}{z} \leftrightarrow H^{2,0}(X)$$

- conjugates of these $\leftrightarrow \overline{H^{2,0}(X)} = H^{0,2}(X)$
- ► those that have a dx ∧ dx̄, dx ∧ dȳ, dx̄ ∧ dy, dy ∧ dȳ which are said to be of type (1,1) and contribute H^{1,1}(X) to H²(X, C); it is these that are Poincaré dual to the homology classes carried by the algebraic curves in X.

Further topics

► These involve the *multiplicative structure* on cohomology: For X of dimension n and H ∈ H²(X) the class of a hyperplane section

(*)
$$L^k: H^{n-k}(X) \to H^{n+k}(X).$$

Hard Lefschetz theorem: (*) is an isomorphism

Lefschetz stated the result but his proof was incomplete. Hodge developed Hodge theory to prove (*).

- Define operators L, H, Λ on $H^*(X)$ by
 - L as above
 - H = (d n) Id on $H^d(X)$

Then the commutator

$$[H, L] = 2L.$$

There is a unique $sl_2 = \{L, H, \Lambda\}$ with

$$\begin{cases} [L,\Lambda] = H\\ [L,\Lambda] = -2\Lambda. \end{cases}$$

Decomposing $H^*(X)$ into irreducible sl₂-modules gives the *Lefschetz decomposition* of cohomology into primitive subspaces — every class is a linear combination of powers of *L* applied to primitive classes

$$\begin{cases} L^k \cdot \eta \\ \Lambda \eta = 0. \end{cases}$$

- ► Any irreducible sl₂-module is isomorphic to
 - $V = \operatorname{span}\{x^n, x^{n-1}y, \dots, xy^{n-1}, y^n\}$

•
$$L = \partial_x$$
, $\Lambda = \partial_y$

• primitive part is generated by x^n .

Example: X = algebraic surface

$$H^1(X) \xrightarrow{\sim} H^3(X)$$

and

$$H^0(X) \xrightarrow{L} H^2(X) \xrightarrow{L} H^4(X)$$

has

Finally, you may ask: OK, we know a lot about the homology of X — what about its homotopy?

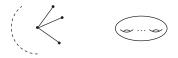
Theorem

The rational homotopy type of X is uniquely determined by $H^*(X)$.

- Thus the
 - $\pi_i(X) \otimes \mathbb{Q}$
 - \blacktriangleright Massey triple products $/\mathbb{Q},$ etc. are all equal to zero
- \implies Very strong homotopy-theoretic conditions that X be topologically a smooth algebraic variety.

Appendix: Monodromy

• $C_0 =$ smooth algebraic curve over the origin



- fundamental group $\pi_1 = \pi_1(\mathbb{C} \setminus \{\text{slits}\}) \text{ acts on } H_1(C_0, \mathbb{Z})$
- action of π_1 is generated by PL transformation

$$T_i: \gamma \to \gamma + (\gamma, \delta_i)\delta_i$$

- $\prod T_i = \text{identity}$
- action of π_1 preserves the intersection form

$$Q: H_1(C_0,\mathbb{Z})\otimes H_1(C_0,\mathbb{Z}) \to \mathbb{Z}$$

Invariant cycles

$$H_1(C_0, \mathbb{Q})^{\mathrm{inv}} = \operatorname{span}\{\gamma : (\gamma, \delta_i) = 0 \text{ for all } i\}$$

36 / 38

Vanishing cycles

$$H_1(\mathcal{C},\mathbb{Q})^{\mathrm{van}} = \mathrm{span}\{\delta_i\}$$

If we know that

$$(*) \qquad \qquad H_1(C_0,\mathbb{Q})^{\mathrm{van}}\cap H_1(C_0,\mathbb{Q})^{\mathrm{inv}}=(0)$$

then

$$Q=egin{pmatrix} *&*=0\ 0&* \end{pmatrix}$$

and the monodromy representation is semi-simple

 Lefschetz stated (*) but his proof was incomplete — in fact

(*) is true, but its proof requires analysis

The analysis was provided by Hodge.

It is a general fact proved by Deligne in the geometric case and by Schmid in general that general monodromy representations are always semi-simple.

The proofs require Hodge theory and are among the most basic properties of the topology of algebraic varieties.

The reason Lefschetz wanted to have the result is that

$$(*) \iff \mathsf{Hard}\ \mathsf{Lefschetz}$$

Lefschetz proof of this assertion was correct.