III. Topology and Hodge theory

- These two topics are closely intertwined and constitute a major aspect of complex algebraic geometry, beginning in the later part of the $19^{\text {th }}$ century (Picard, Poincaré, ...) into the $1^{\text {st }}$ half of the $20^{\text {th }}$ century (Lefschetz, Hodge, ...) and continuing through today
- In fact questions about integrals on algebraic surfaces (which are real 4-manifolds) were instrumental in the beginnings of topology - one knew (Darboux, Picard, Poincaré, E. Cartan, ...) what differential forms

$$
\begin{aligned}
& \varphi=a d x+b d y+c d z \\
& \psi=A d x \wedge d y+B d x \wedge d z+C d y \wedge d z \\
& \eta=D d x \wedge d y \wedge d z
\end{aligned}
$$

were, and Stokes' theorem

$$
\int_{u} d \omega=\int_{\partial u} \omega
$$

shows then when $d \omega=0$ that $\int_{\Gamma} \omega$ was not only invariant under deformation or homotopy of Γ but also under homology. ${ }^{1}$ This led to the notion of periods

$$
\int_{\Gamma} \omega, \quad d \omega=0 \text { and } \Gamma \in H_{p}(X, \mathbb{Z}) \text {. }
$$

${ }^{1}$ The exterior derivative d is uniquely determined (i) $d f=$ $f_{x} d x+f_{y} d y+f_{z} d z$ for a function f, (ii) $d(\alpha \wedge \beta)=d \alpha \wedge \beta+$ $(-1)^{\operatorname{deg} \alpha} \alpha \wedge d \beta$ and (iii) $d x \wedge d y=-d y \wedge d x$ etc.

In the complex case when X has local holomorphic coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$

$$
\omega=\sum_{l, J} f_{l \bar{J}} d z^{\prime} \wedge d \bar{z}^{J}
$$

where $I=\left(i_{1}, \ldots, i_{p}\right), d z^{J}=d z^{i_{1}} \wedge \cdots \wedge d z^{i_{p}}$ etc. and as we saw for algebraic curves the periods reflect the complex structure - this is the start of Hodge theory.

Outline for the remainder of this lecture

- Introductory discussion of what an algebraic variety is
- Statements of the Lefschetz theorems
- How they arose historically from the study of algebraic functions of two variables (Picard-Lefschetz or PL theory)
- Origin of the Hodge conjecture (HC)
- Complex projective space \mathbb{P}^{N}
- lines through origin in \mathbb{C}^{N+1}
- $\mathbb{P}^{N}=\mathbb{C}^{N} \cup \mathbb{P}^{N-1} \quad\left(\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}\right)$
- homogeneous coordinates $[z]=\left[z_{0}, \ldots, z_{N}\right]$
- $\mathbb{P}^{1}=$ Riemann sphere
- $\mathbb{P}^{2}=\mathbb{C}^{2} \cup\{$ lines through the origin $\}$ where $[z] \leftrightarrow$ line with slope z_{2} / z_{1}
- $\mathbb{P}^{N}=$ compact complex manifold

Proof $\quad U_{i}=\left\{[z]: z_{i} \neq 0\right\} \ni[z]$

$$
\begin{array}{cc}
\downarrow & \downarrow \\
\mathbb{C}^{N} & \ni \\
\left(z_{0} / z_{i}, \ldots \stackrel{i}{\wedge} \ldots, z_{N} / z_{i}\right)
\end{array}
$$

- Algebraic variety $X \subset \mathbb{P}^{N}$ given by $F_{1}(z)=\cdots F_{m}(z)=0$ where $F_{\alpha}(z)=$ homogeneous polynomial.
- Note that $\operatorname{dim}_{\mathbb{R}} X=2 \operatorname{dim}_{\mathbb{C}} X$ and X is oriented.

Example

C defined by $f(x, y)=0$ in \mathbb{C}^{2}. Set

$$
x=z_{1} / z_{0}, y=z_{2} / z_{0}
$$

and clear denominators to get

$$
\bar{C}=\{F(z)=0\} \subset \mathbb{P}^{2}
$$

where $\bar{C}=\left\{\begin{array}{l}\text { our old } \\ C \subset \mathbb{C}^{2}\end{array}\right\} \cup\left\{\begin{array}{l}\text { points } \\ \text { at } \infty\end{array}\right\}$.

- suppose $X^{n}=$ smooth algebraic variety and $Y=\mathbb{P}^{N-1} \cap Y$ is a general hyperplane section

hyperplane section

quadric surface; real picture

Note: Equation of the quadric in \mathbb{C}^{3} is $x^{2}+y^{2}=z^{2}+1$; equation in \mathbb{P}^{3} is $z_{1}^{2}+z_{2}^{2}=z_{3}^{2}+z_{0}^{2}$; over \mathbb{C} this is equivalent to $z_{1}^{\prime} z_{2}^{\prime}=z_{3}^{\prime} z_{0}^{\prime}$ where $z_{1}^{\prime}=z_{1}+i z_{2}, z_{2}^{\prime}=z_{1}-i z_{2}$ etc.

- $b_{2 p+1}(X) \equiv 0(2) \quad$ (odd Betti numbers are even)
- $b_{2 p}(X) \geqq 1 \quad$ (even Betti numbers are positive).

In the second, if $\operatorname{dim}_{\mathbb{C}} X=n$ and $H \in H_{2 n-2}(Y, \mathbb{Z})$ is the class of the cycle given by Y then (non-trivially)

$$
\underbrace{H \cap \cdots \cap H}_{n-p} \neq 0 \text { in } H_{2 p}(X, \mathbb{Z})
$$

Lefschetz theorem II

$$
H_{p}(Y, \mathbb{Z}) \rightarrow H_{p}(X, \mathbb{Z}) \text { is }
$$

$\left\{\begin{array}{l}\text { isomorphism for } \\ p \leqq n-2\end{array}\right.$
onto for $p=n-1$

Corollary

Y is connected if $\operatorname{dim}_{\mathbb{C}} X \geqq 2$

Exercise: $f(x, y)=$ irreducible polynomial and $\{f(x, y)=0\}=C \subset \mathbb{C}^{2}$. Show that C is connected.

Geometric idea to study topology of an algebraic variety (idea is one of the most basic in algebraic geometry) - use induction by dimension.

Example

For $y^{2}=p(x)$ where $p(x)=\prod_{i=1}^{2 g+2}\left(x-a_{i}\right)$

- first take out the two points over $x=\infty$
- next use the picture of the complex x-plane

- retract the slit x-plane and the part of C lying over it onto the part lying over the segments

$$
=\left\{\begin{array}{l}
\text { 1-dimensional } \\
\text { complex }
\end{array}\right\}
$$

- on \curvearrowleft as we turn around the branch point the two points interchange (local monodromy T_{i} around a_{i})
- $\prod_{i} T_{i}=\mathrm{ld}$
$\Delta_{i}={ }_{-}^{+\bullet}$ lying over $\underset{0}{\bullet} \quad a_{i}$
- C retracts onto the real 1-dimensional complex given by attaching the $2 g+2$ 1-cells Δ_{i} to the two points \pm lying over 0 .
- Δ_{i} generate the relative homology group
$H_{1}(C,\{+,-\} ; \mathbb{Z})$
$\rightsquigarrow H_{1}(\bar{C}, \mathbb{Z}) \cong \mathbb{Z}^{2 g}$
This case is too simple to suggest the general pattern. The next dimension up is due to Picard (1880-2000)
Example
X is the algebraic surface

$$
z^{2}=f(x, y)
$$

where $C=\{f(x, y)=0\}$ is a non-singular plane curve. For a general y we let

$$
X_{y}=\text { curve } z^{2}=f(x, y), \quad y \text { fixed }
$$

The picture is

X_{y} is the algebraic curve of the type we have been considering; it is $2: 1$ covering of the line $y=$ constant branched at the points of $C \cap\{y=$ constant $\}$

- smooth for general y
- singular when the line $y=$ constant becomes tangent to C
- the picture of X_{y} is

where the branch points and slits will vary with y
- at a point of tangency two branch points come together and interchange.

$$
\begin{aligned}
& -\delta \rightarrow \delta \\
& -\gamma \rightarrow ?
\end{aligned}
$$

Picard-Lefschetz formula
(PL)

$$
\gamma \rightarrow \gamma+\delta
$$

How to show PL? The original argument was analytic and in outline went as follows:

- locally analytically change coordinates so that the picture is a neighborhood of the curves

$$
C_{t}=\left\{u^{2}+v^{2}=t\right\}
$$

of the origin in \mathbb{C}^{3} with coordinates (u, v, t)

- the local picture is

- set $t=\sigma^{2}$ and consider the integrals

$$
\begin{aligned}
& I_{t}(\delta)=\int_{\delta} \frac{d u}{\sqrt{t-u^{2}}}=\int_{\delta} \frac{d u}{\sqrt{\sigma^{2}-u^{2}}}=\int_{\delta} \frac{d u}{\sigma \sqrt{1-(u / \sigma)^{2}}} \\
& I_{t}(\gamma)=\int_{\gamma} \frac{d u}{\sqrt{t-u^{2}}}=\int_{\gamma} \frac{d u}{\sqrt{\sigma^{2}-u^{2}}}=\int_{\gamma} \frac{d u}{\sigma \sqrt{1-(u / \sigma)^{2}}}
\end{aligned}
$$

- the curves C_{t} are parametrized by

$$
z \rightarrow(\sigma \sin z, \sigma \cos z)
$$

and a calculation gives

$$
\left\{\begin{array}{l}
I_{t}(\delta)=2 \pi \\
I_{t}(\gamma)=i \log t
\end{array}\right.
$$

Conclusion

$$
\left\{\begin{array}{l}
I_{e^{2 \pi i} t}(\delta)=I_{t}(\delta) \\
I_{e^{2 \pi i_{t}} t}(\gamma)=I_{t}(\gamma)+I_{t}(\delta)
\end{array}\right.
$$

$\Longrightarrow T(\gamma)=\gamma+\delta$.

Topological pictures

- few pictures worth $1,000(10,000$?) words
- heuristic analytic reasoning suggests what the answer should be - then know what to prove.
- $X^{*}=X \backslash X_{\infty}$
- topological picture of X^{*}

- along $\overline{y_{0} y_{i}}$ we have the locus of the vanishing cycle

- X^{*} obtained from X_{0} by attaching 2-cells Δ_{i}
- In general
X^{*} obtained from X_{0} by attaching $n=\frac{1}{2}\left(\operatorname{dim}_{\mathbb{R}} X\right)$ cells
\Longrightarrow Lefschetz theorems I, II
- Single and double integrals Returning to X given by

$$
z^{2}=f(x, y)
$$

there are single integrals (1-forms)

$$
\psi=\frac{p(x, y) d x}{z}+\frac{q(x, y) d y}{z}
$$

and double integrals (2-forms)

$$
\varphi=\frac{r(x, y) d x \wedge d y}{z}
$$

The story of the ψ 's is very interesting but we will only have time to make a few observations. For one such we note that

- $\int \psi<\infty \Longrightarrow d \psi=0$.

Proof:

$$
\begin{aligned}
d \psi & =d\left(\frac{p(x, y)}{z}\right) \wedge d x+d\left(\frac{q(x, y)}{z}\right) \wedge d y \\
& =\frac{r(x, y) d x \wedge d y}{z} \\
\Longrightarrow \frac{1}{4}(d \psi \wedge \overline{d \psi}) & =\left|\frac{r(x, y)}{z}\right|^{2}\left(\frac{i}{2}\right) d x \wedge d \bar{x} \wedge\left(\frac{i}{2}\right) d y \wedge d \bar{y} \\
& =\text { volume form on } X \\
0<\int_{X} d \psi \wedge \overline{d \psi} & =\int_{X} d(\psi \wedge \overline{d \psi})=0 \Longrightarrow d \psi=0
\end{aligned}
$$

- The space of single integrals is denoted by $H^{1,0}(X)$ and its dimension $h^{1,0}(X)$ is called the irregularity - reason for the name is that in the early days "most" surfaces seemed to be regular, i.e., to have $h^{1,0}(X)=0$.

Example

For $z^{2}=f(x, y)$ to be irregular the curve C cannot be smooth, or even have generic singularities, those being where

$$
\left\{\begin{array}{l}
f_{x}(x, y)=f_{y}(x, y)=0 \\
\operatorname{det}\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{x x}
\end{array}\right|(x, y) \neq 0
\end{array}\right.
$$

Similarly for a hypersurface

$$
F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0
$$

in \mathbb{P}^{3} it is not easy to write down on F where X is irregular.

- Suppose now φ is a regular 2-form; i.e.,

$$
\int_{\sigma} \varphi<\infty
$$

for any 2-chain σ. We set

$$
H^{2,0}(X)=\left\{\begin{array}{c}
\text { space of } \\
\text { regular 2-forms }
\end{array}\right\}
$$

The periods of ψ are the

$$
\int_{\Gamma} \psi, \quad \Gamma \in H_{2}(X, \mathbb{Z}) .
$$

Among the 「's are the fundamental classes of algebraic curves $C \subset X$; i.e., the images of

$$
H_{2}(C, \mathbb{Z}) \rightarrow H_{2}(X, \mathbb{Z})
$$

We will discuss these further below.

- By restriction

$$
\psi \rightarrow \psi_{y}=\frac{p(x, y) d x}{z}
$$

we will generally have $\psi_{y} \neq 0$ which gives

$$
H^{1,0}(X) \hookrightarrow H^{1,0}\left(X_{y}\right)
$$

This suggests that we have

$$
H^{1}(X, \mathbb{C}) \hookrightarrow H^{1}\left(X_{y}, \mathbb{C}\right)
$$

which is true and is what originally suggested the first non-easy case of Lefschetz II - again analysis and topology went hand in hand.

Another example of the use of analysis to suggest

 topology:For a vanishing cycle

traced out by $\delta_{y} \in H_{1}\left(X_{y}, \mathbb{Z}\right)$ along the path from 0 to a_{i}

we have

$$
\int_{\delta_{0}} \psi=\int_{\delta_{a_{i}}} \psi=0, \quad \psi \in H^{1,0}(X)
$$

This led to Picard's argument that

$$
\operatorname{ker}\left\{H_{1}\left(X_{0}, \mathbb{Z}\right) \rightarrow H_{1}(X, \mathbb{Z})\right\}=\left\{\begin{array}{l}
\text { span of the } \\
\text { space of vanishing cycles. }
\end{array}\right.
$$

Returning to the discussion of

- Among the classes in $H_{2}(X, \mathbb{Z})$ are those given by the fundamental classes of the algebraic curves C contained in X.

Example:

$\left\{\begin{array}{c}\text { two families } \\ \text { on lines on a } \\ \text { quadric surface } \\ z_{0} z_{1}=z_{2} z_{3}\end{array}\right\}^{2}$

$$
\rightsquigarrow H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}\left[L_{1}\right] \oplus \mathbb{Z}\left[L_{2}\right]
$$

- In general C is a component of

$$
\left\{\begin{array}{l}
z^{2}=f(x, y) \\
g(x, y, z)=0
\end{array}\right.
$$

(may take $\left.g(x, y, z)=g_{0}(x, y)+g_{1}(x, y) z\right)$
${ }^{2}$ The lines are $z_{0}=z_{2}=0,\left[z_{1}, z_{3}\right] \in \mathbb{P}^{1}$ arbitrary and $z_{1}=z_{3}=0$, $\left[z_{0}, z_{2}\right]$ arbitary.
$\Longrightarrow O n X$

$$
0=d g=g_{x} d x+g_{y} d y+g_{z} d z
$$

which using $d z=\left(-\frac{1}{2}\right)\left(f_{x} d x+f_{y} d y\right)$ gives a relation

$$
a d x+\left.b d y\right|_{c}=0
$$

$\left.\Longrightarrow \psi\right|_{c}=0$
$\Longrightarrow \int_{[C]} \psi=0$.

Conclusion: The periods of $H^{2,0}(X)$ on the homology classes of algebraic curves are equal to zero.

- The converse statement is the famous Lefschetz $(1,1)$ theorem.
- The converse to the analogous statement for arbitrary X is the Hodge conjecture.
- In terms of differential forms of degree 2 on X there are three types:
- $\frac{p(x, y) d x \wedge d y}{z} \leftrightarrow H^{2,0}(X)$
- conjugates of these $\leftrightarrow \overline{H^{2,0}(X)}=H^{0,2}(X)$
- those that have a $d x \wedge d \bar{x}, d x \wedge d \bar{y}, d \bar{x} \wedge d y, d y \wedge d \bar{y}$ which are said to be of type $(1,1)$ and contribute $H^{1,1}(X)$ to $H^{2}(X, \mathbb{C})$; it is these that are Poincaré dual to the homology classes carried by the algebraic curves in X.

Further topics

- These involve the multiplicative structure on cohomology: For X of dimension n and $H \in H^{2}(X)$ the class of a hyperplane section

$$
L^{k}: H^{n-k}(X) \rightarrow H^{n+k}(X)
$$

Hard Lefschetz theorem: (*) is an isomorphism
Lefschetz stated the result but his proof was incomplete. Hodge developed Hodge theory to prove $(*)$.

- Define operators L, H, Λ on $H^{*}(X)$ by
- L as above
- $H=(d-n)$ Id on $H^{d}(X)$

Then the commutator

$$
[H, L]=2 L .
$$

There is a unique $\mathrm{sl}_{2}=\{L, H, \Lambda\}$ with

$$
\left\{\begin{array}{l}
{[L, \Lambda]=H} \\
{[L, \Lambda]=-2 \Lambda .}
\end{array}\right.
$$

Decomposing $H^{*}(X)$ into irreducible sl2-modules gives the Lefschetz decomposition of cohomology into primitive subspaces - every class is a linear combination of powers of L applied to primitive classes

$$
\left\{\begin{array}{l}
L^{k} \cdot \eta \\
\Lambda \eta=0
\end{array}\right.
$$

- Any irreducible sl_{2}-module is isomorphic to
- $V=\operatorname{span}\left\{x^{n}, x^{n-1} y, \ldots, x y^{n-1}, y^{n}\right\}$
- $L=\partial_{x}, \Lambda=\partial_{y}$
- primitive part is generated by x^{n}.

Example: $X=$ algebraic surface

$$
H^{1}(X) \xrightarrow{\sim} H^{3}(X)
$$

and

$$
H^{0}(X) \xrightarrow{L} H^{2}(X) \xrightarrow{L} H^{4}(X)
$$

has

- $H^{2}(X)_{\text {prim }}=\operatorname{ker}\left\{H^{2}(X) \xrightarrow{L} H^{4}(X)\right\}$
- $H^{2}(X)=L H^{0}(X) \oplus H^{2}(X)_{\text {prim }}$
- Finally, you may ask: OK, we know a lot about the homology of X - what about its homotopy?

Theorem
The rational homotopy type of X is uniquely determined by $H^{*}(X)$.

Thus the

- $\pi_{i}(X) \otimes \mathbb{Q}$
- Massey triple products $/ \mathbb{Q}$, etc. are all equal to zero
\Longrightarrow Very strong homotopy-theoretic conditions that X be topologically a smooth algebraic variety.

Appendix: Monodromy

- $C_{0}=$ smooth algebraic curve over the origin

- fundamental group $\pi_{1}=\pi_{1}(\mathbb{C} \backslash\{$ slits $\})$ acts on $H_{1}\left(C_{0}, \mathbb{Z}\right)$
- action of π_{1} is generated by PL transformation

$$
T_{i}: \gamma \rightarrow \gamma+\left(\gamma, \delta_{i}\right) \delta_{i}
$$

- $\Pi T_{i}=$ identity
- action of π_{1} preserves the intersection form

$$
Q: H_{1}\left(C_{0}, \mathbb{Z}\right) \otimes H_{1}\left(C_{0}, \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

- Invariant cycles

$$
H_{1}\left(C_{0}, \mathbb{Q}\right)^{\text {inv }}=\operatorname{span}\left\{\gamma:\left(\gamma, \delta_{i}\right)=0 \text { for all } i\right\}
$$

- Vanishing cycles

$$
H_{1}(C, \mathbb{Q})^{\operatorname{van}}=\operatorname{span}\left\{\delta_{i}\right\}
$$

- If we know that
$(*) \quad H_{1}\left(C_{0}, \mathbb{Q}\right)^{\text {van }} \cap H_{1}\left(C_{0}, \mathbb{Q}\right)^{\text {inv }}=(0)$
then

$$
Q=\left(\begin{array}{cc}
* & *=0 \\
0 & *
\end{array}\right)
$$

and the monodromy representation is semi-simple

- Lefschetz stated $(*)$ but his proof was incomplete - in fact
$(*)$ is true, but its proof requires analysis
The analysis was provided by Hodge.
- It is a general fact proved by Deligne in the geometric case and by Schmid in general that general monodromy representations are always semi-simple.

The proofs require Hodge theory and are among the most basic properties of the topology of algebraic varieties.

- The reason Lefschetz wanted to have the result is that

$$
(*) \Longleftrightarrow \text { Hard Lefschetz }
$$

Lefschetz proof of this assertion was correct.

