[I1. Topology and Hodge theory

» These two topics are closely intertwined and constitute a
major aspect of complex algebraic geometry, beginning in
the later part of the 19" century (Picard, Poincaré, .. .)
into the 1 half of the 20" century (Lefschetz,

Hodge, . ..) and continuing through today

» In fact questions about integrals on algebraic surfaces
(which are real 4-manifolds) were instrumental in the
beginnings of topology — one knew (Darboux, Picard,
Poincaré, E. Cartan, ...) what differential forms

¢ =adx+bdy+cdz
Y =AdxANdy+BdxANdz+Cdy Ndz
n=DdxANdyANdz



were, and Stokes' theorem

/dw:/w
u au

shows then when dw = 0 that fr w was not only invariant
under deformation or homotopy of I' but also under
homology.® This led to the notion of periods

/w, dw =0 and T € H,(X,Z).
c

1The exterior derivative d is uniquely determined (i) df =
fy dx +f, dy +f, dz for a function f, (ii) d(a A B) = da A S+
(—1)%e>a A dp and (iii) dx A dy = —dy A dx etc.
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In the complex case when X has local holomorphic coordinates
z=(z1,.-.,2n)
w=Y fdz NdZ’
1,J
where | = (iy, ..., i), dz/ = dz" A--- A dz” etc. and as we
saw for algebraic curves the periods reflect the complex
structure — this is the start of Hodge theory.
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Outline for the remainder of this lecture

Introductory discussion of what an algebraic variety is
Statements of the Lefschetz theorems

How they arose historically from the study of algebraic
functions of two variables (Picard-Lefschetz or PL theory)

Origin of the Hodge conjecture (HC)

o

Complex projective space PN
» lines through origin in CN+1
» PN =CcNuPN-1 (P! =CuU{x})
» homogeneous coordinates [z] = [z, . .., zy]
P! = Riemann sphere
P2 = C? U {lines through the origin} where [z] < line
with slope z,/z
PN = compact complex manifold
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Proof W, ={[z] :z #0} 5[]
l l

chNos (w/z,... /I\ oy 2N/ Z)

» Algebraic variety X C PN given by Fi(z) =+ F,(z) =0
where F,(z) = homogeneous polynomial.
» Note that dimgp X = 2dim¢ X and X is oriented.

Example
C defined by f(x,y) =0 in C2. Set

x=2z/2,y=2/2
and clear denominators to get

C={F(z) =0} c P2



— our old oints
where C = U P )
C cC? at oo
asymptotes

» suppose X" = smooth algebraic variety and
Y =PN-1 N Y is a general hyperplane section
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hyperplane section

general

not general

quadric surface;
real picture
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Note: Equation of the quadric in C3 is x> 4 y? = 22 + 1;
equation in P3 is zZ + z2 = zZ + zZ; over C this is equivalent
to z{z) = Zjzj where z| = z; + iz, Z) = z; — iz, etc.
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Lefschetz theorem |
» bypi1(X)=0(2) (odd Betti numbers are even)
> byp(X) 21 (even Betti numbers are positive).

In the second, if dim¢ X = nand H € Hy,_2(Y,Z) is the class
of the cycle given by Y then (non-trivially)

HN---NH#0 in Hyp(X,Z)

n—p

Lefschetz theorem II isomorphism for

<n-2
Hy (Y, Z) = Hy(X,Z) is — {p—"
onto for p=n—1
Corollary
Y is connected if dimg X = 2



Exercise: f(x,y) = irreducible polynomial and
{f(x,y) =0} = C C C?. Show that C is connected.

o

Geometric idea to study topology of an algebraic variety (idea
is one of the most basic in algebraic geometry) — use
induction by dimension.

Example
For y? = p(x) where p(x) = HI?SF?(X — a)
» first take out the two points over x = oo

» next use the picture of the complex x-plane
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v

v

v

retract the slit x-plane and the part of C lying over it
onto the part lying over the segments

+ _J 1-dimensional
complex

on /<'D as we turn around the branch point the two
points interchange (local monodromy T; around a;)

[, T = Id

+
A= _> lying over 0 2
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» C retracts onto the real 1-dimensional complex given by
attaching the 2g 4 2 1-cells A; to the two points £ lying

over 0.
» A, generate the relative homology group
Hi(C.{+, -} Z)

~ Hy(C,Z) = 7%
This case is too simple to suggest the general pattern. The
next dimension up is due to Picard (1880-2000)

Example
X is the algebraic surface

2> =f(x,y)

where C = {f(x,y) = 0} is a non-singular plane curve. For a
general y we let

X, = curve z2° = f(x,y), y fixed
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The picture is
X-axis

y-axis

X, is the algebraic curve of the type we have been considering;
it is 2:1 covering of the line y = constant branched at the
points of C N {y = constant}

» smooth for general y

» singular when the line y = constant becomes tangent
to C
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» the picture of X, is

where the branch points and slits will vary with y

» at a point of tangency two branch points come together
and interchange.
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»)— 0

I

>y =7 \

H—- something
like

Picard-Lefschetz formula

(PL) Y= y+0
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How to show PL? The original argument was analytic and in
outline went as follows:

» locally analytically change coordinates so that the picture
is a neighborhood of the curves

C={r+v? =t}

of the origin in C* with coordinates (u, v, t)

» the local picture is

1
0

+ y —

16
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» set t = 02 and consider the integrals

lt(5)2/5 tdju2:/5\/%:/60\/%

h(+) _/ du _/ du _/ du
7 v Vit —u? v Vo2 —u? vy oy/1—(u/o)?
» the curves C; are parametrized by
z — (osinz, o cos z),

and a calculation gives
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(i/2)log t
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Topological pictures

0
global
0
local ‘Iillllll'llllllll’
¢ §—0
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{'y—>7+(5

» few pictures worth 1,000 (10,0007?) words

» heuristic analytic reasoning suggests what the answer
should be — then know what to prove.
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b Xt = X\ Xao

» topological picture of X*
Y2

n

Yo Cyn

» along yoy; we have the locus of the vanishing cycle

Oi
= » X* obtained from Xy by attaching 2-cells A;
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» In general

X* obtained from X, by attaching
n =2 (dimg X) cells

—> Lefschetz theorems |, Il

» Single and double integrals
Returning to X given by

2> =f(x,y)

there are single integrals (1-forms)

(x,y) dx N q(x,y)dy
Z Z

p
P =
and double integrals (2-forms)

r(x,y) dx A dy

z
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The story of the 's is very interesting but we will only have
time to make a few observations. For one such we note that

» [ <oco = dy=0.

Proof:
d;@:d(@)Adxw(q%”)Ady
_r(x,y)dx Ady
o Z
— Ldvnam) = A gendzn (1) dy ndy
4 z 2 ) IV

= volume form on X

0</Xd¢AW:/Xd(¢AW):o — diy =0.
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» The space of single integrals is denoted by H*°(X) and
its dimension h%%(X) is called the irregularity — reason
for the name is that in the early days “most” surfaces
seemed to be regular, i.e., to have h%(X) = 0.

Example

For z2 = f(x, y) to be irregular the curve C cannot be
smooth, or even have generic singularities, those being where

f(x,y) =f,(x,y) =0
det Fo ;é;y

£ fo (x,y) #0

Similarly for a hypersurface
F(z0,21,20,23) = 0

in P3 it is not easy to write down on F where X is irregular.
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Suppose now ¢ is a regular 2-form; i.e.,

/go<oo

for any 2-chain 0. We set

H2O(X) = { space of } .

regular 2-forms

The periods of i are the

/@D, e Hy(X,Z).
.

Among the I''s are the fundamental classes of algebraic
curves C C X; i.e., the images of

HQ(C, Z) — HQ(X, Z)
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We will discuss these further below.

» By restriction

B, = p(x,i/) dx

we will generally have 1, # 0 which gives
HY(X) — HY(X,).
This suggests that we have
H'(X,C) — H*(X,,C),

which is true and is what originally suggested the first
non-easy case of Lefschetz |l — again analysis and
topology went hand in hand.
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Another example of the use of analysis to suggest
topology:

For a vanishing cycle

A,-:©>'

traced out by ¢, € H;(X,,Z) along the path from 0 to a;

= point
we have

v=[ v=0 ¢eHX).
8o 8a;
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This led to Picard’s argument that

f th
ker{Hy(Xo, Z) — Hy(X,Z)} = { P00 O €
space of vanishing cycles.

@)

Returning to the discussion of

» Among the classes in Hy(X,Z) are those given by the
fundamental classes of the algebraic curves C contained
in X.
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Example: 1

two families 2
on lines on a

quadric surface
2021 = 2223

-~

o Ho(X,Z) = Z[L1] & Z[Lo]

» In general C is a component of

{Zz—f(x,y)
g(x7y7z) = O

(may take g(x,y,z) = go(x,y) + g1(x,y)z)

2The lines are zg = z, = 0, [z, z3] € P! arbitrary and z; = z3 = 0,

[20, 2] arbitary.
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— On X
0=dg = gcdx+g,dy+g,dz

which using dz = (—%) (f dx +f, dy) gives a relation
adx+bdy |C =0
= 77Z}|C =0

= Y =0.
[l
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Conclusion: The periods of H>°(X) on the homology
classes of algebraic curves are equal to zero.

» The converse statement is the famous Lefschetz (1,1)
theorem.

» The converse to the analogous statement for arbitrary X
is the Hodge conjecture.
» In terms of differential forms of degree 2 on X there are
three types:
p(x.y) dx A dy 2,0
» BEETEE o HAO(X)

» conjugates of these «+ H20(X) = H%2(X)

» those that have a dx A dx,dx Ady,dx Ndy,dy ANdy
which are said to be of type (1,1) and contribute
HY1(X) to H?(X,C); it is these that are Poincaré dual

to the homology classes carried by the algebraic curves
in X.
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Further topics

» These involve the multiplicative structure on cohomology:
For X of dimension n and H € H?(X) the class of a
hyperplane section

(%) LK H™H(X) — H™5(X).

Hard Lefschetz theorem: (x) is an isomorphism
Lefschetz stated the result but his proof was incomplete.
Hodge developed Hodge theory to prove (x).

» Define operators L, H, A on H*(X) by

» [ as above
» H=(d—n)Id on HYX)
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Then the commutator
[H, L] =2L.

There is a unique sl = {L, H, A} with

[LA]=H
[L,A] = —2A.

Decomposing H*(X) into irreducible sl,-modules gives the
Lefschetz decomposition of cohomology into primitive
subspaces — every class is a linear combination of powers of L
applied to primitive classes

Lk n
An = 0.
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» Any irreducible sl,-module is isomorphic to
» V =span{x", x""ly ... xy" 1 y"}
» L=0, N=0,
» primitive part is generated by x”.
Example: X = algebraic surface

~

HY(X) = H3(X)

and

HO(X) & HX(X) & HY(X)

has
b H2(X)prm = ker{H2(X) 5 H4(X)}
> HA(X) = LH(X) & H*(X)prim
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» Finally, you may ask: OK, we know a lot about the
homology of X — what about its homotopy?

Theorem
The rational homotopy type of X is uniquely determined by

H(X).
Thus the

» m(X)®Q

» Massey triple products /Q, etc. are all equal to zero

— Very strong homotopy-theoretic conditions that X be
topologically a smooth algebraic variety.
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Appendix: Monodromy

» (o = smooth algebraic curve over the origin

,
’
I -
' e
'
\
\

fundamental group m = 71 (C\{slits}) acts on H,(Co, Z)
action of 7 is generated by PL transformation

v

v

Tity = v+ (7,0:)di

v

[1 T: = identity
action of 7, preserves the intersection form

Q . Hl(Co,Z) & Hl(Co,Z) — 7

v

v

Invariant cycles

Hi(Co, Q)™ = span{y : (v,6;) = 0 for all i}
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Vanishing cycles
Hi(C, Q)™ = span{d;}
If we know that

(%) Hi(Co, Q)" N Hi(Go, Q)™ = (0)

then
x x=0
0 *

and the monodromy representation is semi-simple

Lefschetz stated () but his proof was incomplete — in
fact

(%) is true, but its proof requires analysis

The analysis was provided by Hodge.
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» It is a general fact proved by Deligne in the geometric
case and by Schmid in general that general monodromy
representations are always semi-simple.

The proofs require Hodge theory and are among the most
basic properties of the topology of algebraic varieties.

» The reason Lefschetz wanted to have the result is that
(*) <= Hard Lefschetz

Lefschetz proof of this assertion was correct.
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