Positivity in Hodge theory with applications to algebraic geometry¹

Phillip Griffiths

¹Informal notes for the talks. A more complete set of notes together with references are in the mathematics web sites [G] and [GG].

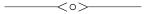
• A polarized Hodge structure (V, F•, Q) has two Hodge-Riemann bilinear relations

$$\begin{cases} (HRI) & Q(F^{p}, F^{n-p+1}) = 0\\ (HRII) & Q(F^{p}, C\overline{F}^{p}) > 0 \end{cases}$$

where C = Weil operator $= i^{p-q}$ Id on $V^{p,q} = F^p \cap \overline{F}^q$. Both are usually assumed but rarely used directly in general cohomological arguments.

• These give metrics in the Hodge bundles and the resulting curvatures have remarkable properties. Purpose of these talks is to discuss their curvatures and give applications to algebraic geometry.

- Anticipating what comes later the curvature matrices have the form Θ = A ∧ ^tA where A is the matrix of a holomorphic bundle mapping whose entries are holomorphic 1-forms. Thus Θ is a first order invariant and Θ = 0 is a complex analytic condition.
- **Example:** Curvature of $\mathcal{O}_{\mathbb{P}^n}(1)$ is $\frac{(dz,dz)(z,z)-(dz,z)(z,dz))}{(z,z)^2}$.



- Y = smooth quasi-projective variety; then Y = Ȳ\Z where Z = ∪Z_i is a normal crossing divisor. Typical interesting properties that Y might have are:
- (A) Y is of log general type; i.e., K_Y(log Z) is big (independent of Z);
- (B) $\Omega^{1}_{\overline{Y}}(\log Z)$ is big (also independent of Z);
- (C) *Y* is hyperbolic (any non-constant holomorphic mapping $f : \Delta(r) \to Y$ has $r \leq r_0(f'(0)) < \infty$).

Also

- (C') Y is algebraically hyperbolic: Smooth algebraic curve $C \subset \overline{Y}$ with $C \cap Y \neq \emptyset$ has $2g 2 + (C \cdot Z) > 0$.
- (C") For X an algebraic variety any holomorphic mapping $f: X \to Y$ is algebraic.
 - (B), (C), (C'), (C") are related to (A) via well-known conjectures (cf. [ATY]).
 - Given a variation of Hodge structure (V, F[•]; Y) (always assumed polarized) set E^p = F^p/F^{p+1} = Gr^p F[•] and let

$$\theta: TY \to \oplus \operatorname{Hom}(E^p, E^{p-1})$$

be the map induced by θ .

Theorem

 θ generically injective \implies (A), (B), and θ injective \implies (C), (C'), (C'').

Conjecture

 θ injective $\implies K_{\overline{Y}}(\log Z), \Omega^{1}_{\overline{Y}}(\log Z)$ ample modulo Z; e.g., this means $K_{\overline{Y}}(\log Z)$ is semi-ample and any curve contracted by $|mK_{\overline{Y}}(\log Z)|, m \gg 0$, is in Z.

One issue is the normal bundles of Z_I ⊂ Y, where
 Z_I = ∩_{i∈I}Z_i. By an interesting formula these are related to the Hodge bundles of the limiting mixed Hodge structures. This will be discussed in the remark at the end of these talks.

• Geometric case: $X \xrightarrow{f} Y$ smooth fibration with X, Yquasi-projective and with $\mathbb{V} = R_f^n \mathbb{Q}$ ($\mathbb{V}_y = H^n(X_y, \mathbb{Q})$), $\operatorname{Var} f = \operatorname{rank} \operatorname{of}$

$$T_y Y \to H^1(TX_y)$$

at a general point; here recall that for $x \in X_y$ the exact first connecting map in the cohomology sequence associated to

$$0 \to T_x X_y \to T_x X \to f^* T_y Y \to 0$$

gives $T_y Y \to H^1(TX_y)$ (Kodaira-Spencer map) and θ is the cup product with the Kodaira-Spencer class.

θ induced by TX_y → Hom(E^p_y, E^{p-1}_y); injectivity is infinitesimal Torelli; here E^p_y = H^{p,n-p}(X_y) ≅ H^{n-p}(Ω^p_{X_y}).

(D)
$$\kappa(\overline{X}) \ge \kappa(X_y) + \kappa(\overline{Y})$$
 where $\kappa =$ Kodaira dimension.

Theorem (litaka conjecture)

Assuming $\kappa(X_y) = \dim X_y$ for general $y \in Y$, $\operatorname{Var} f = \dim Y \implies (\mathsf{D}).$

- $L = \bigoplus_{i=1}^{p} \det F^{p}$; $\omega =$ Chern form of *L*; canonical extensions $L_{e} \to \overline{Y}$ and ω_{e} .
- $\Phi: Y \to \Gamma \setminus D$ period mapping; will show that may assume Φ is proper; i.e., if monodromy T_i around Z_i is of finite order, then Φ extends across Z_i (as will be seen this is a theorem that uses a curvature argument).
- We will also see that $\omega_e \in L^1_{loc}$ is a current representing $c_1(L_e)$ and for $\xi \in TY$, $\omega(\xi) = \|\Phi_*(\xi)\|^2$.

Theorem (BBT)

 $\Phi(Y) \subset \Gamma \setminus D$ is an algebraic variety P over which $L \to P$ is ample.

Conjecture

$$L_e
ightarrow \overline{Y}$$
 is semi-ample.

If true this would give a strong version of BBT and would open the door to defining Satake-Baily-Borel completions of arbitrary period mappings.

Assume θ is injective; then ω = complete Kähler metric with curvature form Θ_Y(ξ, η) on a Zariski open in ξ, η space and finite volume; on Y universal cover of Y we have

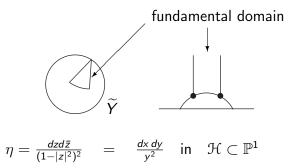
$$\operatorname{Vol}(B_r(\widetilde{y}_0)) \geqq e^{\beta r}.$$

• Exhaustion function $\varphi = \Omega_{\check{D}}/\Omega_D|_{\check{Y}}$ where

$$\varphi:\widetilde{Y}\to\mathbb{R}$$

with $\mathcal{L}(\varphi) = i\partial\overline{\partial}\log\varphi > 0$, and level sets are comparable to $\partial B_r(\widetilde{y}_0)$'s $\implies \widetilde{Y} =$ Stein manifold (Shafarevich conjecture for Y's supporting a VHS).

Conjecture \widetilde{Y} can be realized as a bounded Stein variety in some \mathbb{C}^N . Picture is



 For Y complete the connected fibres of the Shafarevich map are subvarieties W ⊂ Y with im{π₁(W) → π₁(Y)} finite.

Conjecture

Assume θ is injective and for any index set I the N_i are linearly independent. Then there exist m₀ and k_i > 0 such that

$$mL_e - \sum k_i Z_i$$

is ample for $m \ge m_0$.

Example: dim Y = 2 and Z ⊂ Y contracts to a cusp singularity; thus

Then conjecture is true and the k_i are chosen to have $Z_i \cdot \sum k_j Z_j < 0$ for all *i*.

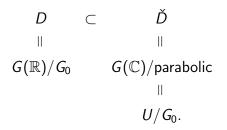
• Notations: VHS = { $\mathcal{V}, \mathcal{F}^{\bullet}, Q, \nabla; Y$ }, fibre V:

$$- \
abla : \mathcal{V}
ightarrow \mathcal{V} \otimes \Omega^1_Y$$
 with $abla^2 = 0$;

- $\mathcal{V}^{\nabla} = \mathbb{V} = \ker \nabla$ is a \mathbb{Q} -local system;
- $\mathfrak{F}^{p} \subset \mathcal{V}$ fibrewise defines a Hodge structure, fibre F^{p} ;
- $Q \in \mathcal{V}^{
 abla}$ defines a polarization in each fibre;

$$- \nabla \mathcal{F}^{p} \subset \mathcal{F}^{p-1} \otimes \Omega^{1}_{Y}.$$

 Period domain D = {PHS's F[•] ⊂ V_C} satisfying HRI, HRII; compact dual Ď = {F[•]} satisfying HRI



where G_0 and U compact $(SL_2(\mathbb{R}) \subset SL_2(\mathbb{C}), G_0 = SO(2), U = SU(2)).$

• $E^{\rho} \rightarrow Y$ have metrics with Chern connections and resulting curvatures $\Theta_{E^{\rho}}$

$$egin{aligned} \Theta_{E^p} \in \operatorname{Hom}(E^p,E^p) \otimes \mathcal{A}^{1,1}(Y) \ &= \mathcal{A}^{1,1}(\operatorname{Hom}(E^p,E^p)) \ (ext{matrix valued (1,1)}) \ ext{form}; \end{aligned}$$

 Θ_{E^p} is skew-Hermitian.

12/36

Curvature form: $\Theta_{E^p}(e,\xi) = \Theta^{\alpha}_{\beta i \overline{j}} e_{\alpha} \overline{e}_{\beta} \xi^i \overline{\xi}^j$.

Interpretation: $\mathcal{O}_{\mathbb{P}E^p}(1) = \text{line bundle with metric and Chern form } \psi$ is (1,1) form on $\mathbb{P}E^p$: in vertical fibre ψ is standard (1,1) form on $\mathbb{P}E^p_{\gamma}$ (Fubini-Study form); horizontal tangent space = (vertical)^{\perp} \cong $T_{\gamma}Y$ and ψ "given" by the curvature form.

Curvature formula:² $\theta^{p} : E^{p} \otimes T_{Y}^{1,0} \to E^{p-1}$ and Hermitian adjoint using HRII is $\theta^{p+1^{*}} : E^{p} \otimes T_{Y}^{0,1} \to E^{p+1}$. For $\xi, \eta \in TY$ and $u, v \in E^{p}$,

$$- (\Theta_{E^{p}}(\xi,\eta)u,v) = \\ (\theta^{p}(\xi)u,\theta^{p}(\eta)v) - (\theta^{p+1^{*}}(\eta)u,\theta^{p+1^{*}}(\xi)v); \\ - \Theta_{F^{\bullet}} = -[\theta,\theta^{*}];$$

$$- \Theta_{E^p} = -A_p \wedge {}^t \overline{A}_p + B_{p+1} \wedge {}^t \overline{B}_{p+1} \quad \text{(curvature matrix)}.$$

• Note that Θ_{E^p} has a sign on ker θ^p and on ker θ^{p+1*} .

²Cf. [CM-SP] for the derivation of this formula.

^{13/36}

Basic formula: $\nabla = \theta + \nabla_C + \theta^*$ on $\mathcal{V} \cong \oplus E^p$, $\nabla_C = \text{Chern}$ connection induced by $\nabla|_{V^{p,q}}$

$$\implies 0 = \nabla^2 = \nabla^2_C + [\theta, \theta^*] \implies \Theta_E = -[\theta, \theta^*].$$

Application: Y complete \implies any horizontal holomorphic section of $\mathbb{V}_{\mathbb{C}} \to Y$ has horizontal components.

Reason: $s = s_1 + \cdots + s_m$ type decomposition

$$\nabla s = 0 \implies \theta_m \cdot s_m = 0$$
$$\implies \text{ curvature form on } s_m \text{ has a sign.}$$

For any Hermitian vector bundle $E \to Y$ with holomorphic section e such that $(\Theta_E e, e) \leq 0$ we have

$$\partial \overline{\partial}(e, e) = (De, De) - (\Theta_E e, e)$$

 $\implies ||e||^2 \text{ is sub-harmonic } \implies ||e||^2 = \text{ constant}$
 $\implies De = 0, \ (\Theta e, e) = 0.$

Applied to above gives $\nabla s_m = 0$, and continue.

Corollary

Any sub-bundle $\mathcal{V}' \subset \mathcal{V}$ fixed by ∇ and defined $/\mathbb{Q}$ is a sub-VHS ($\implies \mathcal{V} = \mathcal{V}' \oplus \mathcal{V}'^{\perp}$ giving semi-simplicity of monodromy).

Idea: Apply above to Plücker coordinate of $\wedge^m \mathcal{V}' \subset \wedge^m \mathcal{V}$.

• *tangent bundle*: is not a Hodge bundle but assuming θ is injective it is a sub-bundle of a Hodge bundle

$$TY \xrightarrow{\theta} \oplus \operatorname{Hom}(E^p, E^{p-1})$$
.

Given a VHS $(\mathcal{V}, \mathcal{F}^{\bullet}, \nabla; Y)$ we have a bundle $\mathfrak{g} \to Y$ of Lie algebras $\operatorname{End}(\mathcal{V})$ with Hodge decomposition $\mathfrak{g}^{p,q}$ and fibres

$$\mathfrak{g}^{-1,1} = \oplus \operatorname{Hom}(\mathcal{V}^{p,q}, \mathcal{V}^{p-1,q+1}).$$

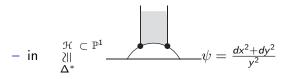
Main observation: In the above for $\theta(TY)$, $\operatorname{Im}(\theta) \subseteq \operatorname{Ker} \theta$. This is integrability $\theta \wedge \theta = 0$; the image $\mathfrak{A} \subset \mathfrak{g}^{-1,1}$ is fibrewise an *abelian* Lie subalgebra.

• $\Theta_Y = \text{curvature matrix for } TY \text{ is given by } -\frac{1}{2}[\xi, \eta^*]$ where

$$\begin{split} \Theta_{Y}(\xi,\eta) &= \text{holomorphic bi-sectional curvature} \\ &= -([\xi,\eta^*],[\xi,\eta^*]) \leqq 0, \\ \Theta_{Y}(\xi) &= \text{holomorphic sectional curvature} \\ &= -\|[\xi,\xi^*]\|^2 < 0 \\ \implies \Theta_{Y}(\xi,\eta) < 0 \text{ on a Zariski open in each fibre.} \end{split}$$

- Motto is: Period maps are "negatively curved"; property has many applications.
- Poincaré metric $\eta = \frac{dz \otimes d\bar{z}}{(1-|z|^2)^2}$ on $\Delta = \{|z| < 1\}$; Gauss curvature K = -1, invariant under $SL_2(\mathbb{R})$.
- Induced Poincaré metric on Δ^* is $\psi = \frac{d\xi \otimes d\overline{\xi}}{|\xi|^2 (\log |\xi|^2)^2} = \frac{dr \, d\theta}{r(\log r^2)^2}$; on circle $\gamma = |\xi| = r$ as $r \to 0$ the length $\ell(\gamma) \to 0$

- area
$$\{|\xi| \leq r\}$$
 is $\iint \frac{dr \, d\theta}{r(\log r^2)^2} \sim \int d\left(\frac{1}{\log r}\right) < \infty$



- Schwarz lemma: Holomorphic $f : \Delta \to \Delta$, $f(0)=0 \implies |f(z)| \le |z|$ $\implies d_{\Delta}(f(z), f(z')) \le d_{\Delta}(z, z')$ $\implies f^* \psi \le \psi$ f is distance decreasing in Poincaré metric
- Ahlfors lemma: f : Δ → M where M has a Hermitian metric with (1,1) form ω and with holomorphic sectional curvatures K ≤ -1

$$\implies f^*\omega \leqq \psi.$$

• $\Phi: Y \to \Gamma \setminus D$ period mapping, assume immersion, curvature of $L \to Y$ gives

 $\omega = c_1(L) = K$ ähler metric on Y with $K(\xi) \leq -c > 0$.

Note: ω has mixed signature on *D*; positive in the horizontal directions, negative in vertical ones for $G(\mathbb{R})/G_0 \to G(\mathbb{R})/K$.

Near a point of $Z = Y \setminus \overline{Y}$ we have taking one Z given by z = 0 so that locally around a point of Z we have

$$\Delta^* imes \Delta^{n-1} \hookrightarrow Y$$

 $\implies \omega \leq \frac{dz \wedge d\overline{z}}{|z|^2(-\log |z|)^2} + (\text{less singular terms})$

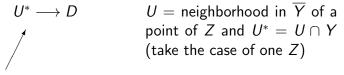
- parallel transport around circles $\gamma_m = (r = \frac{1}{m})$ give rise to monodromy T around γ_m ;

$$- y_m \rightarrow y_0 \in Z$$
,

$$\begin{split} d(y_m, \gamma_m y_m) &= d(g_m \bar{y}, Tg_m \bar{y}), \\ \text{where } y_m &= g_m \bar{y} \text{ with } \bar{y} \in D = G(\mathbb{R})/G_0 \\ &= d(\bar{y}, g_m^{-1} Tg_m \bar{y}) \quad (\text{invariance of metric}) \\ &\longrightarrow 0 \text{ as } m \to \infty \\ &\implies \text{eigenvalues } \lambda \text{ of integral matrix } T \\ &\quad \text{have absolute value } |\lambda| = 1 \\ &\implies \lambda = e^{2\pi i p/q} \text{ (Kronecker).} \end{split}$$

→ Monodromy theorem: Eigenvalues of T are roots of unity.

• no monodromy



length of circle in D tends to zero

 \implies circles shrink to a point of D (metric on D is complete);

- \implies can extend Φ across Z;
- ⇒ may assume $\Phi : Y \rightarrow \Gamma \setminus D$ is *proper* with image an analytic variety of finite volume;
- \implies BBT gives that image is algebraic variety and $L \rightarrow \Phi(Y)$ ample.

 Analysis around Z = Y \Y; take one branch with monodromy T where (T^k − I)^{m+1} = 0; using orbifolds may assume k = 1 and N = log T.

Theorem (monodromy weight filtration)

There exists a unique W_k , $-m \leq k \leq m$ such that

 $\left.\begin{array}{l}- & NW_k \to W_{k-2} \\- & N^k : \operatorname{Gr}_{m+k} \xrightarrow{\sim} G_{m-k}\end{array}\right\} due \ to \ Schmid$

– for $v \in V_{\mathbb{C}}$ we have

$$oldsymbol{v} \in W_k \iff \|oldsymbol{v}\| \leqq (-\log|t|)^k$$

 $\implies Since Nv = 0 \implies v \in W_{\leq 0} \text{ we have} \\ Tv = v \implies ||v|| \leq constant. Thus theorem of the fixed \\ part and semi-singularity of monodromy hold in the \\ general quasi-projective case.$

- (V, W_•, F_∞[•]) where F_∞[•] = lim_{t→0} exp(tN)F₀[•] gives limiting mixed Hodge structure (LMHS).
- Wonderful fact is that the monodromy weight filtration given by Hodge norms.
- Cattani-Kaplan-Schmid analyzed the VHS over Δ^{*k} × Δ^j
 — in particular for the Chern forms c_k(H) for a Hodge
 bundle H
 - $c_k(H)$ is bounded by Poincaré forms; $c_k(H)$ defines a closed current that represents $c_k(H_e)$;
 - we can multiply the $c_k(H)$ as though they are smooth forms.³

Recall that ∇ has regular singular points; leads to Deligne extension $F_e^p \to \overline{Y}$ of Hodge bundles

 For Ω ∈ A^{n,n}(Ȳ, log Z) induced by Hodge metrics the Ricci form Ric Ω defines a positive closed (1, 1) current that is in L¹_{loc}(Ȳ) and whose cohomology class restricted to Y gives c₁(K_Ȳ).

$$\Omega = h \Big(\bigwedge_{j=1}^{n} \Big(\frac{i}{2} \Big) dz_{j} \wedge d\bar{z}_{j} \Big), \quad h > 0$$

Ric $\Omega = \frac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \log h$

where

- h has logarithmic singularities;
- Ω has Poincaré singularities and $\Omega > 0$ where θ is injective.
- $\implies c_1(K_{\overline{Y}}(\log Z)) \geqq 0 \text{ and } c_1(K_{\overline{Y}}(\log Z)) > 0 \text{ on Zariski} \\ \text{open in } \overline{Y}^*.$
- Similar considerations apply to T_Y(− log Z); this follows from the next bullet and leads to (A), (B) above.
- Relation between $\Theta_Y(\xi, \eta)$ and $\Theta_Y(\xi)$ (cf. [BKT]).

Lemma

Suppose $\Theta_Y(\xi, \eta) \leq 0$ and $\Theta_Y(\xi) \leq c < 0$. Then there exists ξ_0 such that $\Theta_Y(\xi_0, \eta) \leq -c/2$.

As a corollary, $\Theta_Y(\xi, \eta) < 0$ on a Zariski open set in $TY \times TY$. In particular the Chern form ψ of $\mathcal{O}_p(1)$ on $P = \mathbb{P}TY$ has $\psi \geq 0$ and $\psi > 0$ on a Zariski open set. Using

$$H^0(Y, \operatorname{Sym}^m \Omega^1_Y) \cong H^0(P, \mathcal{O}_P(m))$$

this implies that if Y is complete, then Ω_Y^1 is big and nef. In general we get the same result for $\Omega_{\overline{V}}^1(\log Z)$).

- Very brief sketch of the proof of the lemma:
 - Choose ξ_0 where $\Theta_Y(\xi)$ is a maximum.
 - For $\Theta_Y(\xi_0 + t\eta)$ at t = 0 the first *t*-derivative is zero and second derivative is \leq_0 .
 - By making clever use of the identities on the curvature tensor of a Kähler metric conclude that for some η_0 we have $\Theta_Y(\xi_0, \eta_0) \leq -c/2$.
- Corollary of Ahlfors lemma: $\Delta(R) \xrightarrow{f} Y$ and $\|f'(0)\| = 1 \implies R \leq \mathbb{R}_0 < \infty$

 \implies hyperbolicity of Y if θ is injective.

- Algebraicity results from Bishop theorem and finite volume of graph of Φ restricted to Δ^{*k} × Δ^{n-k}'s.
- Recently much work on arithmetic consequences of negative curvature; e.g., [JL]:

"THEOREM 1.1 (Main Result, I) Let $A \subset k = \overline{\mathbb{Q}}$ be a finitely generated subring and let \mathfrak{X} be a finite type A-scheme such that \mathfrak{X}_k is a quasi-projective variety over k which admits a quasi-finite complex-analytic period map. Then the following statements are equivalent:

- (1) For every finitely generated subring $A' \subset k$ containing A, the set $\mathfrak{X}(A')$ is finite (resp. not Zariski-dense) in $\mathfrak{X}(k)$).
- (2) For every finitely generated integral domain B containing A, the set $\mathcal{X}(B)$ is finite (resp. not Zariski-dense in $\mathcal{X}(Frac(B))$) (where(Frac(B)) is a choice of algebraic closure of Frac(B)).

In other words, for varieties admitting a quasi-finite period map, finiteness of $\mathcal{O}_{K,S}$ -points (where K ranges over all number fields and S ranges over all finite collections of finite places of K) implies finiteness of A-points for all \mathbb{Z} -finitely generated integral domains A of characteristic zero, and a similar statement (which requires substantially deeper input) holds for non-Zariski-density of rational points. Both the finiteness and non-density results require input from Hodge theory. Arguably, the novel technical result in our proof of Theorem 1.1 is Theorem 3.7."

- litaka conjecture: $X \xrightarrow{f} Y$ and
 - X_y general type;
 - $\operatorname{Var} f = \dim Y$;

$$\implies \kappa(X) \geqq \kappa(X_y) + \kappa(Y).$$

• Assume X, Y and general X_y are smooth

$$K_X$$
 " = " $K_{X/Y} \otimes f^* K_Y$

("=" means that the correction from singular X_y 's will be concentrated over a proper subvariety of Y and corresponding Hilbert polynomial will have degree $< \dim Y$)

$$\implies H^{0}(K_{X}) \cong H^{0}(K_{X/Y} \otimes f^{*}K_{Y}) \longleftarrow H^{0}(K_{X/Y}) \otimes H^{0}(K_{Y});$$

$$\stackrel{\geq}{\cong} H^{0}(f_{*}K_{X/Y})$$

- \implies many sections of $H^0(f_*K_{X/Y}) \implies$ many sections of $H^0(K_X)$ (assuming $h^0(K_Y) \neq 0$);⁴
- \implies need positivity of $f_*K_{X/Y}$ = Hodge bundle $V^{n,0}$ where dim $X_y = n$.
 - Strong local Torelli: $T_y Y \to \operatorname{Hom}(E^n, E^{n-1})$ generically injective
 - $\implies E^n = V^{n,0} \text{ has positivity of the curvature form}$ $\implies \text{ result we want.}$
 - Hodge metric on $H^0(K_{X_y})$ is given by

$$(\psi,\eta) = \int_{X_y} \psi \wedge \overline{\eta}.$$

⁴Actually should use $\omega_{X/Y}$ instead of $K_{X/Y}$.

- This induces metric in (ℙH⁰(K_{Xy})*, 𝔅(1)) := M_y, and as above positivity of curvature form for H⁰(K_{Xy})'s → Y ↔ positivity of curvature form for M_y.
- In general only have $H^0(K_{X_y}^{\otimes m}) \neq 0$ for $m \gg 0$.
- The new geometric idea (Kawamata-Vieweg) is to use sections ψ of K^{⊗m'}_{Xy} s → Y to produce cyclic branched coverings X̃_{y,ψ} → X_y together with ψ̃ ∈ H⁰(K_{X̃y,ψ}).
- Differential geometrically, for $\psi \in H^0(K_{X_y}^{\otimes m})$

$$\|\psi\|^{2/m} = \|\widetilde{\psi}\|^2 = \int (\psi \wedge \overline{\psi})^{2/m}$$

is a *Finsler metric* on $H^0(K_{X_y}^{\otimes m})$; induces a metric in $\widetilde{O}_m(1) \to \mathbb{P}H^0(K_{X_y}^{\otimes m})$.

31/36

- Varying X_y, ψ as above gives family of ψ̃ ∈ H⁰(K_{X̃y,ψ})'s and curvature form from the VHS gives the Chern form of Õ_m(1).
- As for singularities these at most contribute terms whose h^0 grows like a Hilbert polynomial of lower degree.
- After a significant amount of technical argument one has a proof of litaka (delicate estimates on Chern forms of Hodge bundles are needed; Cattani-Kaplan-Schmid plus refinement by Kollár).
- Use of curvature via $L^2 \overline{\partial}$ methods applied to singular metrics is by now a vast subject; cf. papers by Paun and Zuo plus many others.

Remark: The "geometry at infinity" of a period mapping is still a work in progress. Along Z_I := ∩ we have a generalized period mapping

$$\Phi_I: Z_I^* \to \Gamma_I \backslash D_I$$

where D_I is a period domain for mixed Hodge structures and Φ_I is given by the LMHS's.

The first level is given by the mapping

$$\Phi^0_I: Z^*_I \to \Gamma^0_I \backslash D^0_I$$

to the associated graded pure Hodge structures. For the next level given

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

where A, C are pure Hodge structures where wt(C) = wt(A) + 1 we have

 $B \leftrightarrow \operatorname{Ext}^{1}_{\operatorname{MHS}}(\mathcal{C}, \mathcal{A}) = \operatorname{compact}$, complex torus.

It turns out that the induced mapping

$$\Phi^1_I: Z^*_I o \left\{ egin{array}{c} {
m level} \ 1 \ {
m extension} \ {
m data} \end{array}
ight\}$$

maps to an abelian subvariety of the above $\operatorname{Ext}^1_{\mathrm{MHS}}$'s. The basic relation between the geometry along Z_I and the geometry normal to Z_I is expressed by the formula on a Φ_I^0 -fibre

$$(*) \qquad \Phi_{I}^{1,*}(\mathcal{L}) + \sum_{i} k_{i}[Z_{i}] = 0, \quad k_{i} > 0$$

where $\mathcal{L} \to \operatorname{Ext}^{1}_{\operatorname{MHS}}(C, A)$ is a line bundle that is ample on the image of Φ^{1}_{I} .

• The next level of extension data maps to a $\prod \mathbb{C}^*$, and on $\Phi_I^0 = \Phi_I^1 = \Phi_I^2 = \text{constant}$ the remaining extension data is constant.

Example

If dim Y = 2 and Φ^0 is constant, then for connected Z, (*) gives that

$$\|Z_i\cdot Z_j\|<0$$

and so Z contracts to a normal singularity.

A significant missing piece to the story is to make full use of (*) as part of a more complete understanding of Φ at infinity.

References

- [ATY] Ascher, Turchet and Yeong, Algebraic Green-Griffiths-Lang conjecture for complements of very general pairs of divisors, arXiv:2410.00640v1
- [BKT] Brunebarbe, Klinger and Totaro, Symmetric differentials and the fundamental group, *Duke Math. J.* **162** no. 14 (2013).
- [CM-SP] Carlson, Müller-Stach, Peters, *Period Mappings and Period Domains*, Cambridge Univ. Press, 2017.
 - [G] Phillip Griffiths, Positivity in Hodge theory and algebraic geometry. Lecture given in Cambridge, 2020. https://albert.ias.edu/20.500.12111/8259
 - [GG] Phillip Griffiths and Mark Green, Positivity of vector bundles and Hodge 32, no. 12 (2021) 2140008 (68 pages).
 - [JL] A. Javanpeyka and D. Litt, Integral points on algebraic subvarieties of period domains: from number fields to finitely generated fields, *Manuscripta Math.* **173** (2024), 23–44.