Positivity in Hodge theory with
applications to algebraic geometry?

Phillip Griffiths

YInformal notes for the talks. A more complete set of notes together
with references are in the mathematics web sites [G] and [GG]. 1/36



e A polarized Hodge structure (V, F*, Q) has two
Hodge-Riemann bilinear relations

(HRI)  Q(FP,Fr—Ptly =0
(HRI) Q(FP,CF") >0

where C = Weil operator = iP~91d on VP9 = FPNF’.
Both are usually assumed but rarely used directly in
general cohomological arguments.

e These give metrics in the Hodge bundles and the resulting
curvatures have remarkable properties. Purpose of these
talks is to discuss their curvatures and give applications
to algebraic geometry.
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e Anticipating what comes later the curvature matrices
have the form © = A A YA where A is the matrix of a
holomorphic bundle mapping whose entries are
holomorphic 1-forms. Thus © is a first order invariant

and © = 0 is a complex analytic condition.
(dz,dz)(z,z()f()ciz,z)(z,dz)) .

e Example: Curvature of Opn(1) is

(e]

e Y = smooth quasi-projective variety; then Y = Y\Z
where Z = U/Z; is a normal crossing divisor. Typical
interesting properties that Y might have are:

(A) Y is of log general type; i.e., Ky(log Z) is big
(independent of Z);

(B) Q5(log Z) is big (also independent of Z);

(C) Y is hyperbolic (any non-constant holomorphic mapping
f:A(r) = Y has r < rp(f'(0)) < 00). 3/36



Also

(C") Y is algebraically hyperbolic: Smooth algebraic curve
CcYwithCNY#@has2g—2+(C-2Z)>0.

(C") For X an algebraic variety any holomorphic mapping
f: X — Y is algebraic.

e (B), (Q), (C), (C") are related to (A) via well-known
conjectures (cf. [ATY]).

e Given a variation of Hodge structure (V, F*; Y) (always
assumed polarized) set EP = FP/FPT1 = GrP F* and let

0: TY — @Hom(EP, EP™)

be the map induced by 6.
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Theorem

0 generically injective = (A), (B), and 0 injective —>
(), (€), ().

Conjecture

0 injective = Ky (log Z),5(log Z) ample modulo Z; e.g.,
this means Ky (log Z) is semi-ample and any curve contracted
by |ImKy(log Z)|, m> 0, is in Z.

e One issue is the normal bundles of Z, C Y, where
Z; = Nje;Z;. By an interesting formula these are related
to the Hodge bundles of the limiting mixed Hodge
structures. This will be discussed in the remark at the
end of these talks.
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e Geometric case: X <5 Y smooth fibration with X, Y
quasi-projective and with V.= RfQ (V, = H"(X,,Q)),
Var f = rank of

T,Y — HY(TX))

at a general point; here recall that for x € X, the exact
first connecting map in the cohomology sequence
associated to

0—=-TX, - TX—=fT,Y—=0

gives T,Y — H*(TX,) (Kodaira-Spencer map) and @ is
the cup product with the Kodaira-Spencer class.
e 0 induced by TX, — Hom(EP, EP™"); injectivity is
infinitesimal Torelli; here EP = HP"~P(X) = H"‘P(Qf@).
(D) w(X) = k(X,) + x(Y) where k = Kodaira dimension. 6/36



Theorem (litaka conjecture)

Assuming k(X,) = dim X, for general y € Y,
Varf =dimY = (D).

o [ = édet FP; w = Chern form of L; canonical extensions
Le — Y and we.

e ®:Y — '\D period mapping; will show that may
assume & is proper; i.e., if monodromy T; around Z; is of
finite order, then ® extends across Z; (as will be seen this
is a theorem that uses a curvature argument).

e We will also see that w, € L} is a current representing
a(Le) and for £ € TY, w(&) = [|9.()]%

Theorem (BBT)

®(Y) C T'\D is an algebraic variety P over which L — P is
ample.
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Conjecture

Le — Y is semi-ample.

If true this would give a strong version of BBT and would
open the door to defining Satake-Baily-Borel completions of
arbitrary period mappings.

e Assume 6 is injective; then w = complete Kahler metric
with curvature form ©y (&, 1) on a Zariski open in &, 7
space and finite volume; on Y universal cover of Y we
have

Vol(B,(y)) = €.
e Exhaustion function ¢ = QE,/QD‘? where
Y Y >R

with £(p) = iddlog ¢ > 0, and level sets are comparable
to 0B,(y)'s = Y = Stein manifold (Shafarevich
conjecture for Y's supporting a VHS). 8/36



Conjecture
Y can be realized as a bounded Stein variety in some CN.

Picture is

fundamental domain

l

;L

z dxd .
n=gahpr = S5 in HCP

e For Y complete the connected fibres of the Shafarevich
map are subvarieties W C Y with im{m (W) — m(Y)}
finite.
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Conjecture

Assume 0 is injective and for any index set | the N; are linearly

independent. Then there exist my and k; > 0 such that

mL, — Z ki Z;

is ample for m = my.

e Example: dimY =2 and Z C Y contracts to a cusp
singularity; thus

z- Q 1z <o.

Then conjecture is true and the k; are chosen to have
Z - Y kiZy <0 for all i.
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e Notations: VHS = {V.F* Q,V; Y}, fibre V:
V:V—)V@Q%, with V2 = 0;

- VW =V=kerVisa Q-local system;

FP C V fibrewise defines a Hodge structure, fibre FP;

— Q € VV defines a polarization in each fibre;
VIP Cc FPle QL.
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e Period domain D = {PHS'’s F* C V(} satisfying HRI,
HRII; compact dual D = {F*} satisfying HRI
D C D
I Il
G(R)/Gy G(C)/parabolic
Il
U/ Go.
where Gy and U compact (SLy(R) C SLy(C),
Go = SO(2), U = SU(2)).
e EP — Y have metrics with Chern connections and
resulting curvatures ©gp
Ofr € Hom(EP, EP) @ AVY(Y)
= A (Hom(EP, EP)) (matrix valued (1,1)) form;

Of» is skew-Hermitian. 12/36



Curvature form: O, (e, §) = @gi]eaéﬁfigj-

Interpretation: Opg»(1) = line bundle with metric and Chern
form # is (1,1) form on PEP: in vertical fibre ¢ is standard
(1,1) form on IPEP (Fubini-Study form); horizontal tangent
space = (vertical)™ = T,Y and ¢ “given” by the curvature
form.

Curvature formula:? 6” : EP @ T;° — EP~! and Hermitian
adjoint using HRIl is 6P+ EP @ TO' — EPTL. For
&me TY and u,v € EP,
- (eEP(gvn)ua V) = i X
(07(&)u, 07 (m)v) — (074 (n)u, 671 (€)v);
- @Ec — —[0,9*],
— Op = A, ANtA,+ B, 1 AN'Byy1  (curvature matrix).

e Note that ©f, has a sign on ker P and on ker §P+1*,

2Cf. [CM-SP] for the derivation of this formula. 13/36



Basic formula: V=04V +6*onV = ®EP, Vc = Chern
connection induced by V|VM

— 0=V?=V2+1[0,0] = O =—[0,0
Application: Y complete = any horizontal holomorphic
section of V¢ — Y has horizontal components.
Reason: s = s, + - - - + s, type decomposition

Vs=0 = 60,,-5,=0

= curvature form on s, has a sign.

For any Hermitian vector bundle E — Y with holomorphic
section e such that (Oge, e) < 0 we have

00(e, e) = (De, De) — (Oge, e)
— ||e||? is sub-harmonic = |e||> = constant
= De =0, (Be,e) =0.
Applied to above gives Vs,, = 0, and continue. 14/36



Corollary

Any sub-bundle V' C V fixed by V and defined /Q is a
sub-VHS (= V =V @ V'* giving semi-simplicity of
monodromy).

Idea: Apply above to Pliicker coordinate of A"V C A™V.

e tangent bundle: is not a Hodge bundle but assuming 6 is
injective it is a sub-bundle of a Hodge bundle

TY~ ¢ Hom(EP, EP7Y).
Given a VHS (V,3°,V; Y) we have a bundle g — Y of
Lie algebras End(V) with Hodge decomposition g9 and

fibres
gl =0 Hom('VP9, \7”_1"7+1).
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Main observation: In the above for (TY'), Im(6) C Ker .
This is integrability A 6 = 0; the image 21 C g~ 11 is fibrewise
an abelian Lie subalgebra.

e ©y = curvature matrix for TY is given by —2[¢,7*]
where

©y(&,n) = holomorphic bi-sectional curvature

= _([577]*]7 [5777*]) § 0’

©y (&) = holomorphic sectional curvature

=—|l&.€17 <0

= Oy(&,n) <0 on a Zariski open in each fibre.
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e Motto is: Period maps are “negatively curved”; property
has many applications.

o Poincaré metric 1) = #2%; on A = {|z| < 1}; Gauss

curvature K = —1, invariant under SL(R).
e Induced Poincaré metric on A* is
dé®d drdo . - o] —
P = \£|2(Edg|§£|2)2 = r(lorgrQ)Q’ oncircley=|{|=rasr—0

the length ¢(v) — 0
—area {|¢| = r}is [ r(l‘i’g‘g ~ [d (@) < o0

H C Pl A2ty
: +d
—in Y=
A*
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e Schwarz lemma: Holomorphic f : A — A,
f(0)=0 = [f(z)|=]Z]

= da(f(2),f(2')) = da(z,2) | f is distance decreasing in
_— frp <) Poincaré metric

e Ahlfors lemma: f : A — M where M has a Hermitian
metric with (1,1) form w and with holomorphic sectional
curvatures K < —1

= w9,

e ®:Y — '\D period mapping, assume immersion,
curvature of L — Y gives

w = ¢1(L) = Kahler metric on Y with K(§) < —c > 0.

Note: w has mixed signature on D; positive in the
horizontal directions, negative in vertical ones for

G(R)/Gy — G(R)/K. 18/36



Near a point of Z = Y\Y we have taking one Z given by
z = 0 so that locally around a point of Z we have

A x A"l Yy

dz NdZ .
= W= 5 + (less singular terms)
|2[?(—log |2])
— parallel transport around circles v, = (r = %) give rise
to monodromy T around ~p;
~— Ym — Yo € Z,

d(Ym, Ymym) = d(gmy. Tgmy),
where ym = gmy with y € D= G(R)/Gp
=d(7,8n  Tgmy) (invariance of metric)
— 0 as m—
— eigenvalues X\ of integral matrix T

have absolute value |A| =1

— \ = e?™P/9 (Kronecker).
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—> Monodromy theorem: Eigenvalues of T are roots of
unity.

e no monodromy

uU-— D U = neighborhood in Y of a
pointof Zand U* =UNY
/ (take the case of one 2)

length of circle in
D tends to zero

IR

circles shrink to a point of D (metric on D is complete);
can extend ® across Z;

may assume ® : Y — ['\D is proper with image an
analytic variety of finite volume;

BBT gives that image is algebraic variety and L — ®(Y)
ample.
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e Analysis around Z = V\Y; take one branch with
monodromy T where (T* — [)™! = 0; using orbifolds
may assume k =1 and N =log T.

Theorem (monodromy weight filtration)
There exists a unique W), —m < k < m such that
- NW, — W,_,
- N*: Grppx — Gk
— for v € V¢ we have

due to Schmid

ve W, < |v|] £ (~log|t])*

— Since N\v =0 = v € W, we have
Tv=v = ||v|| < constant. Thus theorem of the fixed

part and semi-singularity of monodromy hold in the
general quasi-projective case.
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o (V,W,, F%) where F3 = lim;_exp(tN)Fg gives limiting
mixed Hodge structure (LMHS).

e Wonderful fact is that the monodromy weight filtration
given by Hodge norms.

e Cattani-Kaplan-Schmid analyzed the VHS over A*% x AJ
— in particular for the Chern forms ¢, (H) for a Hodge
bundle H

— ¢x(H) is bounded by Poincaré forms; cx(H) defines a
closed current that represents cx(He);
— we can multiply the cx(H) as though they are smooth

forms.3

3Cf. [GG] for details. 22/36



Recall that V has regular singular points; leads to Deligne
extension F? — Y of Hodge bundles

Ty(—log Z)~"~ QL (log Z) ® Gr* F.)

T

TY

e For Q € A™"(Ylog Z) induced by Hodge metrics the
Ricci form Ric (2 defines a positive closed (1, 1) current
that is in L .(Y) and whose cohomology class restricted

to Y gives ¢(Ky).
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e Locally

th(j/n\1<é)dzj/\d2j>, h>0

RicQ = 2—_185 log h
T

where
— h has logarithmic singularities;
— € has Poincaré singularities and 2 > 0 where 6 is
injective.
— c1(Ky(log Z)) 2 0 and ci(Ky(log Z)) > 0 on Zariski
openin Y.
e Similar considerations apply to Ty(— log Z); this follows
from the next bullet and leads to (A), (B) above.

e Relation between ©y(&,n) and ©y () (cf. [BKT]).
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Lemma
Suppose ©y(&,1m) £ 0 and ©y(§) < ¢ < 0. Then there exists

&o such that ©y(&o,n) < —c/2.

As a corollary, ©y(&,m) < 0 on a Zariski open set in
TY x TY. In particular the Chern form ) of O,(1) on
P =PTY has = 0 and ¢ > 0 on a Zariski open set. Using

HO(Y, Sym™ Q) = H(P, 0p(m))

this implies that if Y is complete, then Q3 is big and nef. In
general we get the same result for Q. (log Z)).
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Very brief sketch of the proof of the lemma:

— Choose &y where ©y(£) is a maximum.

— For ©y(& + tn) at t = 0 the first t-derivative is zero
and second derivative is <.

— By making clever use of the identities on the curvature
tensor of a Kahler metric conclude that for some 7y we

have @y(fo,no) § —C/2.

Corollary of Ahlfors lemma: A(R) L ¥ and
If'(0)| =1 = R=Rp<
—> hyperbolicity of Y if € is injective.

Algebraicity results from Bishop theorem and finite
volume of graph of ® restricted to A** x A"’

Recently much work on arithmetic consequences of
negative curvature; e.g., [JL]:
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“THEOREM 1.1 (Main Result, 1) Let A C k = Q be a finitely
generated subring and let X be a finite type A-scheme such
that Xy is a quasi-projective variety over k which admits a
quasi-finite complex-analytic period map. Then the following
statements are equivalent:
(1) For every finitely generated subring A’ C k containing A,
the set X(A') is finite (resp. not Zariski-dense) in X(k)).
(2) For every finitely generated integral domain B containing
A, the set X(B) is finite (resp. not Zariski-dense in
X(Frac(B))) (where(Frac(B)) is a choice of algebraic
closure of Frac(B)).

27/36



In other words, for varieties admitting a quasi-finite period
map, finiteness of Ok s-points (where K ranges over all
number fields and S ranges over all finite collections of finite
places of K) implies finiteness of A-points for all Z-finitely
generated integral domains A of characteristic zero, and a
similar statement (which requires substantially deeper input)
holds for non-Zariski-density of rational points. Both the
finiteness and non-density results require input from Hodge
theory. Arguably, the novel technical result in our proof of
Theorem 1.1 is Theorem 3.7."
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e litaka conjecture: X LY and
— X, general type;
— Varf =dimY;
= k(X) 2 k(X)) + K(Y).
e Assume X, Y and general X, are smooth

Kx" ="Ky @ Ky

(“=" means that the correction from singular X,'s will be
concentrated over a proper subvariety of Y and
corresponding Hilbert polynomial will have degree

< dimY)
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—  HY(Kx)"~"H(Kx/y ® f*Ky) +— H°(Kx,v) ® H°(Ky);
Al
HO(f.Kx/v)
many sections of H°(f,Kx,;y) = many sections of
H°(Kx) (assuming h°(Ky) # 0);*
need positivity of f,Kx,y =Hodge bundle V™0 where
dim X, =n.

e Strong local Torelli: T,Y — Hom(E", E™') generically
injective

I

I

— E" = V™0 has positivity of the curvature form
— result we want.

e Hodge metric on H°(Kx,) is given by

(w,n)zfxwm

Y

*Actually should use wy,y instead of Kx y. 30/36



This induces metric in (PH%(Kx,)*, O(1)) := M,, and as
above positivity of curvature form for H°(Kx,)'s = Y <
positivity of curvature form for M,,.

In general only have HO(K)%’") #0 for m> 0.

The new geometnc idea (Kawamata-Vieweg) is to use
sections v of K)‘?’" s — Y to produce cyclic branched

coverings X,.,, — X, together with ¢) € HO(K~y ).
Differential geometrically, for 1) € HO(K)%m)

ol = 191 = [ 6 AT

is a Finsler metric on HO(K3™); induces a metric in
Om(1) = PHO(KE™).
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Varying X,, v as above gives family of Y€ HO (K » )'s
and curvature form from the VHS gives the Chern form of
O,,,(l).

As for singularities these at most contribute terms whose
h° grows like a Hilbert polynomial of lower degree.

After a significant amount of technical argument one has
a proof of litaka (delicate estimates on Chern forms of
Hodge bundles are needed; Cattani-Kaplan-Schmid plus
refinement by Kolldr).

Use of curvature via L? — 0 methods applied to singular
metrics is by now a vast subject; cf. papers by Paun and
Zuo plus many others.
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e Remark: The “geometry at infinity” of a period mapping

is still a work in progress. Along Z; := ] we have a
icl
generalized period mapping

(D/ . ZI* — I',\D,

where D, is a period domain for mixed Hodge structures
and @, is given by the LMHS's.
The first level is given by the mapping

oYz — r\D?

to the associated graded pure Hodge structures.
For the next level given

0O—-—A—-B—-C—=0

where A, C are pure Hodge structures where
wt(C) = wt(A) + 1 we have

B <+ Extys(C, A) = compact, complex torus. 33/36



It turns out that the induced mapping

level 1
Cb} . ZI* — {extension}

data

maps to an abelian subvariety of the above Extyyg's.
The basic relation between the geometry along Z; and
the geometry normal to Z; is expressed by the formula on
a ®9-fibre

(%) O (L) + > klZ]=0, k>0

where £ — Extyus(C, A) is a line bundle that is ample
on the image of ®}.

The next level of extension data maps to a [[C*, and on
®? = ¢} = ®? = constant the remaining extension data

is constant.
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Example

If dim Y =2 and ®° is constant, then for connected Z, (x)

gives that
12 - Zj] <0

and so Z contracts to a normal singularity.

A significant missing piece to the story is to make full use of
(x) as part of a more complete understanding of ® at infinity.
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