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The underlying process

@ X;, t > 0 Markov process on open D C R killed at 9D
PP(t, x,dy) = P(X; € dy|Xo = x) the transition probability
functions

define a Dynkin Feller semigroup
PPf(x) = [, f(y)PP(t,x,dy), f € Co(D)

@ How to continue?

Restart afresh at a random point x with distribution v(¢, dx)
where ¢ is the exit point. Continue indefinitely the new
process X; with transition probabilities P(t, x, dy).

@ Denote 7, the boundary hits and lim,_,, 7, = 7* possible
explosion time

@ Catalytic = contact with a set 9D. Other scenarios.
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Explosion and other questions

@ Is it Markovian? Yes, ¢ — v(&, dx) measurable, etc. v/

@ Does it end in finite time P(7* < c0) > 07 (explode) i.e. the
transition kernel is defective P(t, x, D) < 1.
In the diffusive case a hard problem

o Isit Feller?
Sulfficient condition: If ¢ — v(&, dx) € My(D) is continuous
Example: FV with N > 3 particles is not

@ Is it ergodic? What is the invariant measure?
When D bounded, Xt irreducible, the “boundary chain” has
compact state space
Answer: yes, in most cases of interest.

@ What is the spectral gap \ ?
Doeblin theory is satisfactory for existence of A > 0.
Question for FV: A = Ay ~ O(1) as N — c0?

@ Does X; give information on X; ?
The role of the gsd (Ferrari-Maric 2006)
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Example1: BM with rebirth

@ d > 2 G-Kang 2007 analytic semigroups and a proof using
Doeblin theory, ergodicity, spectral gap

@ v constant, v(&, dx) continuous in £ proof of spectral gap,
functional analytic methods BenAri - Pinsky 2005, 2007

@ The process appeared before:
Ferrari-Kesten-Martinez-Picco 1995 related to gsd




Example 2: A Bak-Sneppen type model

@ N particles move in [0, 1] with reflection at 1 and killed at 0.
Each particle has a set of neighbors (x; has neighbors x;_1
and x;1 but other choices are possible).

The particle killed, together with its neighbors are
redistributed iid uniformly (again generalizations are
abundant)

@ Not mean field for local neighborhood, has strong
hierarchical correlations

@ Mean field case (when any particle may be chosen as
neighbor, uniformly) has hydrodynamic limit when N — oo
= the normalization of a one particle law with birth instead
of killing as in the FV case.
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N — 1 survivors
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Connection to BM with rebirth in Loebus 2009
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Example 3: Fleming-Viot branching systems

@ G CRY, N particles, d = Ng, D = GV

vN(¢, dx) are degenerate measures distributing the particle
at 9G uniformly to the location of one of the remaining
N — 1 survivors

Appears in Burdzy-Holyst-March 2000 and before
Connection to BM with rebirth in Loebus 2009

One can genaralize: non-uniform distributions appear
naturally in establishing large deviations G-2007

In general (diffusions) the number of boundary hits is
regulated by the moving configuration

Unlike in

- Moran particle systems (discretization of the FV
measure-valued process)

- discrete D with uniformly bounded Poisson clocks

Explosion may happen if infinitely many
jumps occur in finite time



Example 3: Fleming-Viot branching systems

@ The interior chain N =2, D = (0,1)
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N = 2 the redistribution is continuous, not tight in My (D)
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Figure: v(¢, dx) is continuous in &.




Example 3: Fleming-Viot branching systems

@ N > 3 not continuous, nor tight in M; (D) Example
D=(0,1)3 arbitrary b >>¢ >0

6/ :( €, ) 5// = (G,O,b)
(5/ ¢) = 7((;5(6 €, b) + Qb(b’ € b))
v(€",¢) = (e €, b) + ¢(e, b, b))
@ At the edge ¢ = 0 (codimension > 2) the limits are not
equal.




The interior set

o
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Figure: Interior set Ds and D.



FV for diffusions/ sufficient conditions for existence

@ Assume Ex[rP] < o

e.g. D bounded, D positive half line with negative drift
@ Ds = {x € D|d(x,9D) > ¢} interior set (center)

a(0) first hitting time of Ds

1(8) number of jumps until «(9), /(6) = J(a(d) A T*)

{I(9) < o0} ={a(0) < 7*} a.s. = {a(d) < oo}

(Process is non-explosive)
Px(1(6) < 00) =1 < Px(a(d) < 7*) = 1 = non-explosive
Note: I(§) needs not be uniform in x




Exponential ergodicity/sufficient conditions

lim}—;00 SUPxep\p, Px(I(6) > 1) = 0 implies
(i) non-explosion (existence of an honest process)

(ii) lim¢ .00 SUPxc py\ p; Px((6) > t) = O implies the local Doeblin
condition

Why?

@ The set F = Dj is attractive and a Doeblin set because
p(T.x,y) > pP(T,x,y) > infy ycr pP(T, x,y) > 0

p(t,x,y) = p°(t, x,y)+

t
/ p(t — 8, 2, y)e(d2)Pe(x(rP—) € de, 70 € ds)
0 JoD



Exponential ergodicity/sufficient conditions

@ (C1)Im>0 infyep\p, Px(/(6) <m)>c¢1 >0
I

Px(1(0) < o0) = 1 implies the process is nonexplosive
(C1) true for all except FV

m = 1 in diffusion with rebirth (Example 1)

m = N in Bak-Sneppen (Example 2)

@ (C2) {v(&, dx)}ecop tight implies (C1) with m = 1
Not true for Bak-Sneppen or F-V on “edges”




Interior and boundary chains/ invariant measure

@ Interior and boundary chains
A(x, d§) harmonic measure centered at x € D.

° Markov chain on D (interior chain)
S(x,dx") = [5p AM(x, dE)v(€, dx’)

@ Markov chain on 9D (boundary chain)
R(&,d¢) = [pv(& dx)A(x, de’)

0D compact = 3 |nvar|ant probability measure




Interior and boundary chains/ invariant measure

@ Interior and boundary chains
A(x, d§) harmonic measure centered at x € D.
° Markov chain on D (interior chain)
S(x,dx") = [5p AM(x, dE)v(€, dx’)
@ Markov chain on 9D (boundary chain)
R(&,d¢) = [pv(& dx)A(x, de’)
0D compact = 3 |nvar|ant probability measure
@ Let £ be the infinitesimal generator of the killed process X;
K(x, x") Green function for £ with Dirichlet b.c.
wx(dx) interior invariant measure for the interior chain S
p(dx) = Z7 [, K(x, X')px(0x')



Invariant measure: the FV case

o X¢=(x!,x2,...,xN)
Up to a boundary hit the particles are i.i.d. processes killed
at 9G with transition probabilities PZ(x(t) € dy) with
generator L
Empirical measure process pV(t, dy) = 1N ZL 5x;'(dY)
Empirical measure under equilibrium pN(dy)

@ FV case: not a product measure

e uN(dx) = m(dx) quasi invariant measure




Hydrodynamic limit

@ Hydrodynamic limit LLN for the trajectories

Theorem (G-Kang 2004)

uN(0, dy) = po(x) initial profile

pN(t, dy) = p(t, dy) = p(t, y)dy

LLN for the empirical measure: the solution is deterministic and
solves in weak sense the equation

op="Lp+A)p p0,y)=po(y)

exp(—A(t)) = PE(x(t) € G) = Px(% > 1)




Hydrodynamic limit

@ Hydrodynamic limit LLN for the trajectories

Theorem (G-Kang 2004)

uN(0, dy) = po(x) initial profile

pN(t, dy) = p(t, dy) = p(t, y)dy

LLN for the empirical measure: the solution is deterministic and
solves in weak sense the equation

op="Lp+A)p p0,y)=po(y)

exp(—A(t)) = PE(x(t) € G) = Px(% > 1)

@ Interpretation: AV(t) = & {number of jumps up to time t}
limn_oe AN(t) = A(t)
@ Proof: tightness on the Skorohod space, Ito formula



Invariant measure: the FV case

@ Since

m,10.07) = (6. = iy o)

Conditional on survival up to time t > 0

PE(x(t) € G) = Pyy(79 > t)

Connection with quasi-invariant measures (Ferrari-Maric)
@ Under the invariant measure we obtain 0 = L*p + Ap

L symmetric (e.g. BM) A'(t) = Ay > 0 the spectral gap

p = &4 first eigenfunction (normalized)




Quasi invariant measures

x(t) Markov process on G; killed at the boundary of G
Determines a Dynkin-Feller semigroup Pl,G with generator L and
Green function K(x, dy) = [;° P4(t, x, dy)

Theorem

Assume that Ex[rC] < oo for any x € A.

(i) If there exists k > 0 and a probability measure m(dx) such
that [ m(dx)K(x, dy) = km(dy), then m(dx) is a quasi-invariant
probability measure and k = Ep[7C].

(i) If m is a quasi-invariant probability measure for the
semigroup and k = Ep[7C] < oo, then K(x, -) is finite for all x m
-a.s. and mRy = km.




Perron-Frobenius and Krein-Rutman theorems

Assume that Ex[7€] < oo for any x € A and v is a probability
measure. Then v is a left eigenfunction of the Green function K
corresponding to k > 0 if and only if v is a left eigenfunction of
the infinitesimal generator L corresponding to —1/k = \y.

@ Results on the eigenfunctions and eigenvalues of a strictly
positive operator are available as soon as G is compact.

@ Perron-Frobenius theorem (finite dimensional case)

@ The infinite dimensional case is covered by the Krein-
Rutman theorem.

@ To obtain nontrivial results on gsd one needs to look for
dynamics with non-compact semigroups. A simple
example is motion on the half line with drift towards the
origin. (multiple gsd) Ferrari-Martinez-Picco 1992
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Commutative diagram

@ From PS(t, x, dy) generate PN(t, x, dy) the corresponding

FV process
°
(FV) = PN(t,x, dy) Z% uN(dy) = (empirical)
lN — 00 lN — 00
(Hydrodynamic) = p(t,dy) = m(dy) = (gsd)
Directions:

@ Estimates on correlations Asselah-Ferrari-Groisman 2010
@ Uniform lower bound (in N) for the spectral gap



FV case - Nonexplosion

@ F-Vcase: 7 = 40
@ A potential theory argument: Many boundary visits =

many particles hang around a set they should not even see
(lower dimension) Bienek-Burdzy-Finch 2011

Theorem (G-Kang 2010)

Non-explosion for diffusions with smooth bounded coefficients
on domains with quasi-distance to the boundary.

e G=G\G; ¢cC¥G)nC(Q)
#(x) >00n G $»=00n0G infyea Lo(Xx) > —o0
0 < infycq [VO(X)| < SUPyeq [V(X)| < +o0
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FV case - Nonexplosion

Figure: Interior set Ds and D.
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Test function ¢ - Eikonal equation/Distance function

e G =G\Gs € C?*(G)NC(Q)
#(x)>00on G ¢»=00n0G infyeg Lo(x) > —o0
0 <infyea [Vo(X)| < sUpyea [VO(X)| < +o0

@ 0G € C? sufficient condition; ¢(x) = d(x, dG) solving the
eikonal equation ||V¢(x)||? = 1.

@ G interior sphere condition, Green function K(-,x") € C'
o(x) = K(x,x'), X' € Gogs

@ similar result with first eigenfunction W(x) € C’
Hopf’s maximum principle

@ True for all N and G bounded Lipschitz domain with
integrable Martin kernel



FV case - Nonexplosion

@ D; = {x € D|d(x,0D) > ¢} interior set (center)
() first hitting time of Ds
1(8) number of jumps before ()
We need Px(/(0) < co) = 1 nonexplosive

@ X; € F, = there are exactly k particles in G\ G
I'(0) number of jumps before reaching D\ Fy.

e Goalistoenter Ds = GY = Fy




FV case; the “ladder’” scheme

@ Step 1. We must exit Fy (all are near the boundary). Most
work is to ensure that at least one particle eneters the
center of the set. Vx e Fy Px(I'(6) < 00) =1

I'(0) number of boundary hits until exiting Fy

@ Step 2. From Fj to Fx_1 we use the facts
- we may always choose the partilce in the interior upon
redistribution from the boundary
- the “interior” particle did not go too far from the center
with positive probability
21 VxeFc  Py(x(7P-) € 0FkndD) > ¢, >0
2.2
VE=x(rP=) e 0F  ve(x(rP) e UF) > ¢ >0
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How to bring at least one perticle to the center

e G=G\Gs € C?(G)NC(Q)
¢(x)>00on G ¢=00n0G
[|IVo(x)|| > c— > 0 on G (can be relaxed very much)

yi(t) = (xi(1)) 1<i<N
r(t) = (V2(t) + ... + y3(1))?

If(Inr(t)) >0 (local) sub-martingale then Ex[I'(9)] < co.

Proof
1. LInr(t) > 0 between jumps

2. ExlInr(r) —Inr(r—)|F-]>U>0
Ex[I'(8)] < UTT[E[Inr(e/(6))] — Inr(0)] < oo




The sub-martingale

@ Proof of 2) in the Lemma. Each boundary hit “costs” a
minimum amount in the test function In r(t)
Inr(r) —Inr(r—) > %In <1 + y’((T ))

for indices j such that x;(7—) ¢ 0G

Einr(r)-inr(r-)] = Ex | By | 3

X,'(T—) S 66”
> 3 n <1 + yf(T))
= 2(N-1) Luj#i r2(r—)

1 1
= 2= In (1 + Yy (r=) 2)
Z/ #'(}/max(f ))

> sy (14 7)) == U >0




The sub-martingale

@ Proof of 1) in the Lemma. Similar to a Bessel process
bi(t) = L¢>(X,( ), Gi(t) = [lo" (xi(1)) Ve(xi(t))]]
dyi(t) = bi(t)dt + 5(t)dwi(t),  yi(0) = é(xi)
dr(t) = B(t)dt + S(t)dW(t)

B(t) =2 ()< (y(1), (l‘)>+7'r(5(t)5*(t))_w>

S(t) = ( @l
In r( ) su artmgale if 2r(t)B(t) — S?(t) > 0
( #)3 + aB(inf [IV4(x)[1)2) — 2/l B(sup Vo (x)]])?
o2 [sup|[Vé(x)l|]>
V=2l e



Exponential ergodicity by coupling

@ Exponential ergodicity proof by coupling
G =G\ Gs € C?(G)NC(Q)
Vxe G o(x)>0; Plag = 0; Plogs =1
Proof by coupling z;(t) follows y;(t) suppressing jumps
dzi(t) = B(t,x(t))dt + S(t,x(t))dw;(t)
ay(0) < az(d) < oo
SUPyep Ex[€°(9)] < oo with b > 0
J

exponential ergodicity




N=2 - explicit formulas

@ Case N =2, d = 1, BM with negative drift
Interior chain (X) >0 S(x,dy) = P(Xi e dy| Xo = x)

S(x, dy) = 2 / PA(t, x, dy)Py(+C < dif)
0

1 (y—x)? (y+x)? 1,2
G - - e —(y—x)—
Lx,y)= e = e 2z e M 2
p=(t X, y) 2ﬂ( )
Ex[m1 A 2] = Ex[X?] ~ o(X), im EX1 _ 5. (1)

x—0 X




N=2 - explicit formulas

@ Proposition
When p = 0, the distribution of V = X,/ X,,_1 is
independent of the starting point x having density

8v
ml(v—12+1][(v+1)2+1]"

fu(v) =

fy(v) ~ O(v)atv =0and f,(v) ~ O(v=3) at v = 40
E[Vd <occuptoa<?2
py =2, 02, = oo and E[In V] ~ 0.34.

(LLN) M:%(Inx—kzkln%)—)E[ln V>0

n




Immortal particle

@ Labeled particle system (x;(t), ni(t)), ni € C
When x; — x; then n; — 7
7, first time when there is only one label
Theorem Px(1; < c0) =1
Proposition All particles alive at time t can be traced
continuously to an ancestor from time t = 0.

4

Theorem There exists a unique immortal particle.




