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Abstract. We provide an introduction to selected significant advances in the
mathematical understanding of Einstein’s theory of gravitation which have
taken place in recent years.
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1. Introduction

Mathematical general relativity is, by now, a well-established vibrant branch of
mathematics. It ties fundamental problems of gravitational physics with beautiful
questions in mathematics. The object is the study of manifolds equipped with a
Lorentzian metric satisfying the Einstein field equations. Some highlights of its his-
tory include the discovery by Choquet-Bruhat of a well posed Cauchy problem [134],
subsequently globalized by Choquet-Bruhat and Geroch [72], the singularity the-
orems of Penrose and Hawking [231, 145], the proof of the positive mass theorem
by Schoen and Yau [249], and the proof of stability of Minkowski space-time by
Christodoulou and Klainerman [85].

There has recently been spectacular progress in the field on many fronts, includ-
ing the Cauchy problem, stability, cosmic censorship, construction of initial data,
and asymptotic behaviour, many of which will be described here. Mutual bene-
fits are drawn, and progress is being made, from the interaction between general
relativity and geometric analysis and the theory of elliptic and hyperbolic partial
differential equations. The Einstein equation shares issues of convergence, collapse
and stability with other important geometric PDEs, such as the Ricci flow and
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the mean curvature flow. Steadily growing overlap between the relevant scientific
communities can be seen. For all these reasons it appeared timely to provide a
mathematically oriented reader with an introductory survey of the field. This is
the purpose of the current work.

In Section 2 we survey the Lorentzian causality theory, the basic language for de-
scribing the structure of space-times. In Section 3 the reader is introduced to black
holes, perhaps the most fascinating prediction of Einstein’s theory of gravitation,
and the source of many deep (solved or unsolved) mathematical problems. In Sec-
tion 4 the Cauchy problem for the Einstein equations is considered, laying down the
foundations for a systematic construction of general space-times. Section 5 exam-
ines initial data sets, as needed for the Cauchy problem, and their global properties.
In Section 6 we discuss the dynamics of the Einstein equations, including questions
of stability and predictability; the latter question known under the baroque name
of “strong cosmic censorship”. Section 7 deals with trapped and marginally trapped
surfaces, which signal the presence of black holes, and have tantalizing connections
with classical minimal surface theory. The paper is sprinkled with open problems,
which are collected in Appendix A.

2. Elements of Lorentzian geometry and causal theory

2.1. Lorentzian manifolds. In general relativity, and related theories, the space
of physical events is represented by a Lorentzian manifold. A Lorentzian manifold
is a smooth (Hausdorff, paracompact) manifold M = M n+1 of dimension n + 1,
equipped with a Lorentzian metric g. A Lorentzian metric is a smooth assignment
to each point p ∈ M of a symmetric, nondegenerate bilinear form on the tangent
space TpM of signature (− + · · ·+). Hence, if {e0, e1, ..., en} is an orthonormal
basis for TpM with respect to g, then, perhaps after reordering the basis, the matrix
[g(ei, ej)] equals diag (−1,+1, ...,+1). A vector v =

∑
vαeα then has ‘square norm’,

(2.1) g(v, v) = −(v0)2 +
∑

(vi)2 ,

which can be positive, negative or zero. This leads to the causal character of vectors,
and indeed to the causal theory of Lorentzian manifolds, which we shall discuss in
Section 2.3.

On a coordinate neighborhood (U, xα)= (U, x0, x1, ..., xn) the metric g is com-
pletely determined by its metric component functions on U , gαβ := g( ∂

∂xα ,
∂

∂xβ ),

0 ≤ α, β ≤ n: For v = vα ∂
∂xα , w = wβ ∂

∂xβ ∈ TpM , p ∈ U , g(v, w) = gαβv
αwβ .

(Here we have used the Einstein summation convention: If, in a coordinate chart,
an index appears repeated, once up and once down, then summation over that
index is implied.) Classically the metric in coordinates is displayed via the “line
element”, ds2 = gαβdx

αdxβ .
The prototype Lorentzian manifold is Minkowski space R

1,n, the space-time of
special relativity. This is R

n+1, equipped with the Minkowski metric, which, with
respect to Cartesian coordinates (x0, x1, ..., xn), is given by

ds2 = −(dx0)2 + (dx1)2 + · · · + (dxn)2 .

Each tangent space of a Lorentzian manifold is isometric to Minkowski space, and
in this way the local accuracy of special relativity is built into general relativity.
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Every Lorentzian manifold (or, more generally, pseudo-Riemannian manifold)
(M n+1, g) comes equipped with a Levi-Civita connection (or covariant differentia-
tion operator) ∇ that enables one to compute the directional derivative of vector
fields. Hence, for smooth vector fieldsX,Y ∈ X(M ), ∇XY ∈ X(M ) denotes the co-
variant derivative of Y in the direction X . The Levi-Civita connection is the unique
connection ∇ on (M n+1, g) that is (i) symmetric (or torsion free), i.e., that satisfies
∇XY − ∇YX = [X,Y ] for all X,Y ∈ X(M), and (ii) compatible with the metric,
i.e. that obeys the metric product rule, X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ), for
all X,Y, Z ∈ X(M).

In a coordinate chart (U, xα) , one has,

(2.2) ∇XY = (X(Y µ) + Γµ
αβX

αY β)∂µ ,

where Xα, Y α are the components of X and Y , respectively, with respect to the co-
ordinate basis ∂α = ∂

∂xα , and where the Γµ
αβ ’s are the classical Christoffel symbols,

given in terms of the metric components by,

(2.3) Γµ
αβ =

1

2
gµν(∂βgαν + ∂αgβν − ∂νgαβ) .

Note that the coordinate expression (2.2) can also be written as,

(2.4) ∇XY = Xα∇αY
µ∂µ ,

where ∇αY
µ (often written classically as Y µ

;α) is given by,

(2.5) ∇αY
µ = ∂αY

µ + Γµ
αβY

β .

We shall feel free to interchange between coordinate and coordinate free no-
tations. The Levi-Civita connection ∇ extends in a natural way to a covariant
differentiation operator on all tensor fields.

The Riemann curvature tensor of (M n+1, g) is the map R : X(M) × X(M) ×
X(M) → X(M), (X,Y, Z) → R(X,Y )Z, given by

(2.6) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z .

This expression is linear in X,Y, Z ∈ X(M ) with respect to C∞(M ). This implies
that R is indeed tensorial, i.e., that the value of R(X,Y )Z at p ∈M depends only
on the value of X,Y, Z at p.

Equation (2.6) shows that the Riemann curvature tensor measures the extent
to which covariant differentiation fails to commute. This failure to commute may
be seen as an obstruction to the existence of parallel vector fields. By Riemann’s
theorem, a Lorentzian manifold is locally Minkowskian if and only if the Riemann
curvature tensor vanishes.

The components Rµ
γαβ of the Riemann curvature tensor R in a coordinate chart

(U, xα) are determined by the equations, R(∂α, ∂β)∂γ = Rµ
γαβ∂µ. Equations (2.2)

and (2.6) then yield the following explicit formula for the curvature components in
terms of the Christoffel symbols,

(2.7) Rµ
γαβ = ∂αΓµ

γβ − ∂βΓµ
γα + Γν

γβΓµ
να − Γν

γαΓµ
νβ .

The Ricci tensor, Ric, is a bilinear form obtained by contraction of the Riemann
curvature tensor, i.e., its components Rµν = Ric(∂µ, ∂ν) are determined by tracing,
Rµν = Rα

µαν . Symmetries of the Riemann curvature tensor imply that the Ricci
tensor is symmetric, Rµν = Rνµ. By tracing the Ricci tensor, we obtain the scalar
curvature, R = gµνRµν , where gµν denotes the matrix inverse to gµν .
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2.2. Einstein equations. The Einstein equation (with cosmological constant Λ),
the field equation of general relativity, is the tensor equation,

(2.8) Ric − 1

2
Rg + Λg = 8πT ,

where T is the energy-momentum tensor. (See, e.g., Section 6.4.2 for an example of
an energy-momentum tensor.) When expressed in terms of coordinates, the Einstein
equation becomes a system of second order equations for the metric components gµν

and the nongravitational field variables introduced through the energy-momentum
tensor. We say that space-time obeys the vacuum Einstein equation if it obeys the
Einstein equation with T = 0.

The Riemann curvature tensor has a number of symmetry properties, one of
which is the so-called first Bianchi identity:

Rαβγδ +Rαγδβ +Rαδβγ = 0 .

The curvature tensor also obeys a differential identity known as the second Bianchi
identity:

(2.9) ∇σRαβγδ + ∇αRβσγδ + ∇βRσαγδ = 0 .

When twice contracted, (2.9) yields the following divergence identity:

(2.10) ∇α

(
Rαβ − R

2
gαβ

)
= 0 .

This plays a fundamental role in general relativity, as, in particular, it implies, in
conjunction with the Einstein equation, local conservation of energy, ∇αT

αβ = 0. It
also plays an important role in the mathematical analysis of the Einstein equations;
see Section 4 for further discussion.

2.3. Elements of causal theory. Many concepts and results in general relativity
make use of the causal theory of Lorentzian manifolds. The starting point for causal
theory is the causal classification of tangent vectors. Let (M n+1, g) be a Lorentzian
manifold. A vector v ∈ TpM is timelike (resp., spacelike, null) provided g(v, v) < 0
(resp., g(v, v) > 0, g(v, v) = 0). The collection of null vectors forms a double cone
Vp in TpM (recall (2.1)), called the null cone at p; see Figure 2.1.

p

future pointing timelike

past pointing timelike

future pointing nullpast pointing null

Figure 2.1. The light cone at p.
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The timelike vectors at p point inside the null cone and the spacelike vectors
point outside. We say that v ∈ TpM is causal if it is timelike or null. We define the

length of causal vectors as |v| =
√
−g(v, v). Causal vectors v, w ∈ TpM that point

into the same half-cone of the null cone Vp obey the reverse triangle inequality,
|v + w| ≥ |v| + |w|. Geometrically, this is the source of the twin paradox.

These notions of causality extend to curves. Let γ : I → M , t → γ(t), be
a smooth curve in M . γ is said to be timelike (resp., spacelike, null, causal)
provided each of its velocity vectors γ′(t) is timelike (resp., spacelike, null, causal).
Heuristically, in accordance with relativity, information flows along causal curves,
and so such curves are the focus of attention in causal theory. The notion of a
causal curve extends in a natural way to piecewise smooth curves, and we will
normally work within this class. As usual, we define a geodesic to be a curve
t → γ(t) of zero covariant acceleration, ∇γ′γ′ = 0. Since geodesics γ are constant
speed curves (g(γ′, γ′) = const.), each geodesic in a Lorentzian manifold is either
timelike, spacelike or null.

The length of a causal curve γ : [a, b] → M , is defined as

L(γ) = Length of γ =

∫ b

a

|γ′(t)|dt =

∫ b

a

√
−g(γ′(t), γ′(t)) dt .

If γ is timelike one can introduce an arc length parameter along γ. In general
relativity, a timelike curve corresponds to the history of an observer, and arc length
parameter, called proper time, corresponds to time kept by the observer. Using
the existence and properties of geodesically convex neighborhoods [225] one can
show that causal geodesics are locally maximal (i.e., locally longest among causal
curves).

Each null cone Vp consists of two half-cones, one of which may designated as
the future cone, and the other as the past cone at p. If the assignment of a past
and future cone at each point of M can be carried out in a continuous manner
over M then M is said to be time-orientable. There are various ways to make
the phrase “continuous assignment” precise, but they all result in the following
fact: A Lorentzian manifold (M n+1, g) is time-orientable if and only if it admits
a smooth timelike vector field Z. If M is time-orientable, the choice of a smooth
time-like vector field Z fixes a time orientation on M : For any p ∈ M , a causal
vector v ∈ TpM is future directed (resp. past directed) provided g(v, Z) < 0 (resp.
g(v, Z) > 0). Thus, v is future directed if it points into the same null half cone
at p as Z. We note that a Lorentzian manifold that is not time-orientable always
admits a double cover that is. By a space-time we mean a connected time-oriented
Lorentzian manifold (Mn+1, g). Henceforth, we restrict attention to space-times.

2.3.1. Past and futures. Let (M , g) be a space-time. A timelike (resp. causal)
curve γ : I → M is said to be future directed provided each tangent vector γ′(t),
t ∈ I, is future directed. (Past-directed timelike and causal curves are defined in a
time-dual manner.) I+(p), the timelike future of p ∈ M , is the set consisting of
all points q ∈ M for which there exists a future directed timelike curve from p to
q. J+(p), the causal future of p ∈ M , is the set consisting of p and all points q for
which there exists a future directed causal curve from p to q. In Minkowski space
R

1,n these sets have a simple structure: For each p ∈ R
1,n, ∂I+(p) = J+(p) \ I+(p)

is the future cone at p generated by the future directed null rays emanating from
p. I+(p) consists of the points inside the cone, and J+(p) consists of the points
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on and inside the cone. In general, the curvature and topology of space-time can
strongly influence the structure of these sets.

Since a timelike curve remains timelike under small smooth perturbations, it is
heuristically clear that the sets I+(p) are in general open; a careful proof makes use
of properties of geodesically convex sets. On the other hand the sets J+(p) need
not be closed in general, as can be seen by considering the space-time obtained by
removing a point from Minkowski space.

It follows from variational arguments that, for example, if q ∈ I+(p) and r ∈
J+(q) then r ∈ I+(p). This and related claims are in fact a consequence of the
following fundamental causality result [225].

Proposition 2.1. If q ∈ J+(p)\ I+(p), i.e., if q is in the causal future of p but not
in the timelike future of p then any future directed causal curve from p to q must
be a null geodesic.

Given a subset S ⊂ M , I+(S), the timelike future of S, consists of all points
q ∈ M for which there exists a future directed timelike curve from a point in S to
q. J+(S), the causal future of S consists of the points of S and all points q ∈ M

for which there exists a future directed causal curve from a point in S to q. Note
that I+(S) =

⋃
p∈S I

+(p). Hence, as a union of open sets, I+(S) is always open.

The timelike and causal pasts I−(p), J−(p), I−(S), J−(S) are defined in a time
dual manner in terms of past directed timelike and causal curves. It is sometimes
convenient to consider pasts and futures within some open subset U of M . For
example, I+(p, U) denotes the set consisting of all points q ∈ U for which there
exists a future directed timelike from p to q contained in U .

Sets of the form ∂I±(S) are called achronal boundaries, and have nice structural
properties: They are achronal Lipschitz hypersurfaces, ruled, in a certain sense, by
null geodesics [225]. (A set is achronal if no two of its points can be joined by a
timelike curve.)

2.3.2. Causality conditions. A number of results in Lorentzian geometry and gen-
eral relativity require some sort of causality condition. It is perhaps natural on
physical grounds to rule out the occurrence of closed timelike curves. Physically,
the existence of such a curve signifies the existence of an observer who is able
to travel into his/her own past, which leads to variety of paradoxical situations.
A space-time M satisfies the chronology condition provided there are no closed
timelike curves in M . It can be shown that all compact space-times violate the
chronology condition, and for this reason compact space-times have been of limited
interest in general relativity.

A somewhat stronger condition than the chronology condition is the causality
condition. A space-time M satisfies the causality condition provided there are
no closed (nontrivial) causal curves in M . A slight weakness of this condition is
that there are space-times which satisfy the causality condition, but contain causal
curves that are “almost closed”, see e.g. [148, p. 193].

It is useful to have a condition that rules out “almost closed” causal curves. A
space-time M is said to be strongly causal at p ∈ M provided there are arbitrarily
small neighborhoods U of p such that any causal curve γ which starts in, and leaves,
U never returns to U . M is strongly causal if it is strongly causal at each of its
points. Thus, heuristically speaking, M is strongly causal provided there are no
closed or “almost closed” causal curves in M . Strong causality is the “standard”
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causality condition of space-time geometry, and although there are even stronger
causality conditions, it is sufficient for most applications. A very useful fact about
strongly causal space-times is the following: If M is strongly causal then any
future (or past) inextendible causal curve γ cannot be “imprisoned” or “partially
imprisoned” in a compact set. That is to say, if γ starts in a compact set K, it
must eventually leave K for good.

We now come to a fundamental condition in space-time geometry, that of global
hyperbolicity. Mathematically, global hyperbolicity is a basic ‘niceness’ condition
that often plays a role analogous to geodesic completeness in Riemannian geom-
etry. Physically, global hyperbolicity is connected to the notion of strong cosmic
censorship, the conjecture that, generically, space-time solutions to the Einstein
equations do not admit naked (i.e., observable) singularities; see Section 6.1 for
further discussion.

A space-time M is said to be globally hyperbolic provided:

(1) M is strongly causal.
(2) (Internal Compactness) The sets J+(p)∩J−(q) are compact for all p, q ∈ M .

Condition (2) says roughly that M has no holes or gaps. For example Minkowski
space R

1,n is globally hyperbolic but the space-time obtained by removing one
point from it is not. Leray [189] was the first to introduce the notion of global
hyperbolicity (in a somewhat different, but equivalent form) in connection with his
study of the Cauchy problem for hyperbolic PDEs.

We mention a couple of basic consequences of global hyperbolicity. Firstly, glob-
ally hyperbolic space-times are causally simple, by which is meant that the sets
J±(A) are closed for all compact A ⊂ M . This fact and internal compactness
implies that the sets J+(A) ∩ J−(B) are compact, for all compact A,B ⊂ M .

Analogously to the case of Riemannian geometry, one can learn much about the
global structure of space-time by studying its causal geodesics. Global hyperbolicity
is the standard condition in Lorentzian geometry that guarantees the existence of
maximal timelike geodesic segments joining timelike related points. More precisely,
one has the following.

Proposition 2.2. If M is globally hyperbolic and q ∈ I+(p), then there exists
a maximal timelike geodesic segment γ from p to q (where by maximal, we mean
L(γ) ≥ L(σ) for all future directed causal curves from p to q).

Contrary to the situation in Riemannian geometry, geodesic completeness does
not guarantee the existence of maximal segments, as is well illustrated by anti-de
Sitter space, see e.g. [25].

Global hyperbolicity is closely related to the existence of certain ‘ideal initial
value hypersurfaces’, called Cauchy (hyper)surfaces. There are slight variations in
the literature in the definition of a Cauchy surface. Here we adopt the following
definition: A Cauchy surface for a space-time M is a subset S that is met exactly
once by every inextendible causal curve in M . It can be shown that a Cauchy
surface for M is necessarily a C0 (in fact, Lipschitz) hypersurface in M . Note also
that a Cauchy surface is acausal, that is, no two of its points can be joined by a
causal curve. The following result is fundamental.

Proposition 2.3 (Geroch [140]). M is globally hyperbolic if and only if M admits
a Cauchy surface. If S is a Cauchy surface for M then M is homeomorphic to
R × S.
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With regard to the implication that global hyperbolicity implies the existence of
a Cauchy surface, Geroch, in fact, proved something substantially stronger. (We
will make some comments about the converse in Section 2.3.3.) A time function
on M is a C0 function t on M such that t is strictly increasing along every future
directed causal curve. Geroch established the existence of a time function t all of
whose level sets t = t0, t0 ∈ R, are Cauchy surfaces. This result can be strengthened
to the smooth category. By a smooth time function we mean a smooth function
t with everywhere past pointing timelike gradient. This implies that t is strictly
increasing along all future directed causal curves, and that its level sets are smooth
spacelike1 hypersurfaces. In [257], a smoothing procedure is introduced to show
that a globally hyperbolic space-time admits a smooth time function all of whose
levels sets are Cauchy surfaces; see also [39] for a recent alternative treatment. In
fact, one obtains a diffeomorphism M ≈ R × S, where the R-factor corresponds
to a smooth time function, such that each slice St = {t} × S, t ∈ R, is a Cauchy
surface.

Given a Cauchy surface S to begin with, to simply show that M is homeomorphic
to R × S, consider a timelike vector field Z on M and observe that each integral
curve of Z, when maximally extended, meets S is a unique point. This leads to
the desired homeomorphism. (If S is smooth this will be a diffeomorphism.) In a
similar vein, one can show that any two Cauchy surfaces are homeomorphic. Thus,
the topology of a globally hyperbolic space-time is completely determined by the
common topology of its Cauchy surfaces.

The following result is often useful.

Proposition 2.4. Let M be a space-time.

(1) If S is a compact acausal C0 hypersurface and M is globally hyperbolic then
S must be a Cauchy surface for M .

(2) If t is a smooth time function on M all of whose level sets are compact,
then each level set is a Cauchy surface for M , and hence M is globally
hyperbolic.

We will comment on the proof shortly, after Proposition 2.6.

2.3.3. Domains of dependence. The future domain of dependence of an acausal set
S is the set D+(S) consisting of all points p ∈ M such that every past inextendible
causal curve2 from p meets S. In physical terms, since information travels along
causal curves, a point in D+(S) only receives information from S. Thus, in princi-
ple, D+(S) represents the region of space-time to the future of S that is predictable
from S. H +(S), the future Cauchy horizon of S, is defined to be the future bound-

ary of D+(S); in precise terms, H +(S) = {p ∈ D+(S) : I+(p) ∩ D+(S) = ∅}.
Physically, H +(S) is the future limit of the region of space-time predictable from
S. Some examples of domains of dependence, and Cauchy horizons, can be found
in Figure 2.2.

It follows almost immediately from the definition that H +(S) is achronal. In
fact, Cauchy horizons have structural properties similar to achronal boundaries, as
indicated in the following.

1A hypersurface is called spacelike if the induced metric is Riemannian; see Section 2.4.
2We note that some authors use past inextendible timelike curves to define the future domain

of dependence, which results in some small differences in certain results.
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M

D+(M)

D−(M)

M

D+(M)
M

remove

D+(M)

D−(M)

Figure 2.2. Examples of domains of dependence and Cauchy
horizons.

Proposition 2.5. Let S be an acausal subset of a space-time M . Then H +(S)\S̄,
if nonempty, is an achronal C0 hypersurface of M ruled by null geodesics, called
generators, each of which either is past inextendible in M or has past end point on
S̄.

The past domain of dependence D−(S) of S, and the past Cauchy horizon
H −(S) of S, are defined in a time-dual manner. The total domain of depen-
dence D(S) and the total Cauchy horizon H (S), are defined respectively as,
D(S) = D+(S) ∪ D−(S) and H (S) = H +(S) ∪ H −(S)

Domains of dependence may be used to characterize Cauchy surfaces. In fact,
it follows easily from the definitions that an acausal subset S ⊂ M is a Cauchy
surface for M if and only if D(S) = M . Using the fact that ∂D(S) = H (S), we
obtain the following.

Proposition 2.6. Let S be an acausal subset of a space-time M . Then, S is a
Cauchy surface for M if and only if D(S) = M if and only if H (S) = ∅.

Part 1 of Proposition 2.4 can now be readily proved by showing, with the aid of
Proposition 2.5, that H (S) = ∅. Indeed if H +(S) 6= ∅ then there exists a past
inextendible null geodesic η ⊂ H +(S) with future end point p imprisoned in the
compact set J+(S)∩J−(p) which, as already mentioned, is not possible in strongly
causal space-times. Part 2 is proved similarly; compare [57, 137].

The following basic result ties domains of dependence to global hyperbolicity.

Proposition 2.7. Let S ⊂ M be acausal.

(1) Strong causality holds at each point of intD(S).
(2) Internal compactness holds on intD(S), i.e., for all p, q ∈ intD(S), J+(p)∩

J−(q) is compact.

Propositions 2.6 and 2.7 immediately imply that if S is a Cauchy surface for a
space-time M then M is globally hyperbolic, as claimed in Proposition 2.3.

2.4. Submanifolds. In addition to curves, one may also speak of the causal char-
acter of higher dimensional submanifolds. Let V be a smooth submanifold of a
space-time (M , g). For p ∈ V , we say that the tangent space TpV is spacelike
(resp. timelike, null) provided g restricted to TpV is positive definite (resp., has
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Lorentzian signature, is degenerate). Then V is said to be spacelike (resp., time-
like, null) provided each of its tangent spaces is spacelike (resp., timelike, null).
Hence if V is spacelike (resp., timelike) then, with respect to its induced metric,
i.e., the metric g restricted to the tangent spaces of V , V is a Riemannian (resp.,
Lorentzian) manifold.

3. Stationary black holes

Perhaps the first thing which comes to mind when general relativity is men-
tioned are black holes. These are among the most fascinating objects predicted
by Einstein’s theory of gravitation. In this section we focus attention on station-
ary black holes that are solutions of the vacuum Einstein equations with vanishing
cosmological constant, with one exception: the static electro-vacuum Majumdar–
Papapetrou solutions, an example of physically significant multiple black holes. By
definition, a stationary space-time is an asymptotically flat space-time which is in-
variant under an action of R by isometries, such that the associated generator —
referred to as Killing vector — is timelikein the asymptotically flat region. These
model steady state solutions. Stationary black holes are the simplest to describe,
and most mathematical results on black holes, such as the uniqueness theorems
discussed in Section 3.7, concern those. It should, however, be kept in mind that
one of the major open problems in mathematical relativity is the understanding
of the dynamical behavior of black hole space-times, about which not much is yet
known (compare Section 6.5).

3.1. The Schwarzschild metric. The simplest stationary solutions describing
compact isolated objects are the spherically symmetric ones. According to Birkhoff’s
theorem [42], any (n+1)–dimensional, n ≥ 3, spherically symmetric solution of the
vacuum Einstein equations belongs to the family of Schwarzschild metrics, param-
eterized by a mass parameter m:

g = −V 2dt2 + V −2dr2 + r2dΩ2 ,(3.1)

V 2 = 1 − 2m
rn−2 , t ∈ R , r ∈ (2m,∞) .(3.2)

Here dΩ2 denotes the metric of the standard (n − 1)-sphere. (This is true without
assuming stationarity.)

From now on we assume n = 3, though identical results hold in higher dimension.
We will assume

m > 0 ,

because m < 0 leads to metrics which are called “nakedly singular”; this deserves
a comment. For Schwarzschild metrics we have

(3.3) RαβγδR
αβγδ =

48m2

r6
,

in dimension 3 + 1, which shows that the geometry becomes singular as r = 0 is
approached; this remains true in higher dimensions. As we shall see shortly, for
m > 0 the singularity is “hidden” behind an event horizon, and this is not the case
for m < 0.

One of the first features one notices is that the metric (3.1) is singular as r = 2m
is approached. It turns out that this singularity is related to an unfortunate choice
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of coordinates (one talks about “a coordinate singularity”); the simplest way to see
this is to replace t by a new coordinate v defined as

(3.4) v = t+ f(r) , f ′ =
1

V 2
,

leading to
v = t+ r + 2m ln(r − 2m) .

This brings g to the form

(3.5) g = −(1 − 2m

r
)dv2 + 2dvdr + r2dΩ2 .

We have det g = −r4 sin2 θ, with all coefficients of g smooth, which shows that g is
a well defined Lorentzian metric on the set

(3.6) v ∈ R , r ∈ (0,∞) .

More precisely, (3.5)-(3.6) provides an analytic extension of the original space-time
(3.1).

It is easily seen that the region {r ≤ 2m} for the metric (3.5) is a black hole
region, in the sense that

(3.7) observers, or signals, can enter this region, but can never leave it.

In order to see that, recall that observers in general relativity always move on
future directed timelike curves, that is, curves with timelike future directed tan-
gent vector. For signals, the curves are causal future directed. Let, then, γ(s) =
(v(s), r(s), θ(s), ϕ(s)) be such a timelike curve; for the metric (3.5) the timelikeness
condition g(γ̇, γ̇) < 0 reads

−(1 − 2m

r
)v̇2 + 2v̇ṙ + r2(θ̇2 + sin2 θϕ̇2) < 0 .

This implies

v̇
(
− (1 − 2m

r
)v̇ + 2ṙ

)
< 0 .

It follows that v̇ does not change sign on a timelike curve. The usual choice of time
orientation corresponds to v̇ > 0 on future directed curves, leading to

−(1 − 2m

r
)v̇ + 2ṙ < 0 .

For r ≤ 2m the first term is non-negative, which enforces ṙ < 0 on all future
directed timelike curves in that region. Thus, r is a strictly decreasing function
along such curves, which implies that future directed timelike curves can cross the
hypersurface {r = 2m} only if coming from the region {r > 2m}. This motivates
the name black hole event horizon for {r = 2m, v ∈ R}. The same conclusion (3.7)
applies for causal curves: it suffices to approximate a causal curve by a sequence of
timelike ones.

The transition from (3.1) to (3.5) is not the end of the story, as further exten-
sions are possible. For the metric (3.1) a maximal analytic extension has been
found independently by Kruskal [187], Szekeres [262], and Fronsdal [136]; for some
obscure reason Fronsdal is almost never mentioned in this context. This extension
is depicted3 in Figure 3.1. The region I there corresponds to the space-time (3.1),
while the extension just constructed corresponds to the regions I and II.

3We are grateful to J.-P. Nicolas for allowing us to use his figure from [222].
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Figure 3.1. The Carter-Penrose diagram3 for the Kruskal-
Szekeres space-time with mass M . There are actually two asymp-
totically flat regions, with corresponding event horizons defined
with respect to the second region. Each point in this diagram rep-
resents a two-dimensional sphere, and coordinates are chosen so
that light-cones have slopes plus minus one.

The Kruskal-Szekeres extension is singled out by being maximal in the class
of vacuum, analytic, simply connected space-times, with all maximally extended
geodesics γ either complete, or with the curvature scalar RαβγδR

αβγδ diverging
along γ in finite affine time.

An alternative convenient representation of the Schwarzschild metrics, which
makes the space-part of g manifestly conformally flat, is given by

(3.8) g = −
(

1 −m/2|x|n−2

1 +m/2|x|n−2

)2

dt2 +

(
1 +

m

2|x|n−2

) 4
n−2

(
n∑

1=1

(dxi)2

)
.

3.2. Rotating black holes. Rotating generalizations of the Schwarzschild metrics
are given by the family of Kerr metrics, parameterized by a mass parameter m and
an angular momentum parameter a. One explicit coordinate representation of the
Kerr metric is

ĝ = −
(
1 − 2mr

Σ

)
dv2 + 2drdv + Σdθ2 − 2a sin2 θdφdr(3.9)

+
(r2 + a2)2 − a2∆sin2 θ

Σ
sin2 θdφ2 − 4amr sin2 θ

Σ
dφdv ,

where

Σ = r2 + a2 cos2 θ , ∆ = r2 + a2 − 2mr .

Note that (3.9) reduces to the Schwarzschild solution in the representation (3.5)
when a = 0. The reader is referred to [226, 62] for a thorough analysis. All Kerr
metrics satisfying

m2 ≥ a2
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provide, when appropriately extended, vacuum space-times containing a rotating
black hole. Higher dimensional analogues of the Kerr metrics have been constructed
by Myers and Perry [218].

A fascinating class of black hole solutions of the 4 + 1 dimensional station-
ary vacuum Einstein equations has been found by Emparan and Reall [127] (see
also [126, 128, 234, 94, 71, 129]). The solutions, called black rings, are asymptot-
ically Minkowskian in spacelike directions, with an event horizon having S1 × S2

cross-sections. The “ring” terminology refers to the S1 factor in S1 × S2.

3.3. Killing horizons. Before continuing some general notions are in order. By
definition, a Killing field is a vector field the local flow of which preserves the metric.
Killing vectors are solutions of the over-determined system of Killing equations

(3.10) ∇αXβ + ∇βXα = 0 .

One of the features of the metric (3.1) is its stationarity, with Killing vector field
X = ∂t: As already pointed out, a space-time is called stationary if there ex-
ists a Killing vector field X which approaches ∂t in the asymptotically flat region
(where r goes to ∞, see Section 3.4 for precise definitions) and generates a one
parameter group of isometries. A space-time is called static if it is stationary and
if the distribution of hyperplanes orthogonal to the stationary Killing vector X is
integrable.

A space-time is called axisymmetric if there exists a Killing vector field Y which
generates a one parameter group of isometries and which behaves like a rotation:
this property is captured by requiring that all orbits are 2π–periodic, and that the
set {Y = 0}, called the axis of rotation, is non-empty.

Let X be a Killing vector field on (M , g), and suppose that M contains a
null hypersurface (see Sections 2.4 and 7.1) N0 = N0(X) which coincides with a
connected component of the set

N (X) := {p ∈ M | g(Xp, Xp) = 0 , Xp 6= 0} ,
with X tangent to N0. Then N0 is called a Killing horizon associated to the Killing
vector X . The simplest example is provided by the “boost Killing vector field”

(3.11) K = z∂t + t∂z

in four-dimensional Minkowski space-time R
1,3: N (K) has four connected compo-

nents

N (K)ǫδ := {t = ǫz , δt > 0} , ǫ, δ ∈ {±1} .
The closure N (K) of N (K) is the set {|t| = |z|}, which is not a manifold, because
of the crossing of the null hyperplanes {t = ±z} at t = z = 0. Horizons of this type
are referred to as bifurcate Killing horizons.

A very similar behavior is met in the extended Schwarzschild space-time: the
set {r = 2m} is a null hypersurface E , the Schwarzschild event horizon. The

stationary Killing vector X = ∂t extends to a Killing vector X̂ in the extended
space-time which becomes tangent to and null on E , except at the “bifurcation
sphere” right in the middle of Figure 3.1, where X̂ vanishes.

A last noteworthy example in Minkowski space-time R
1,3 is provided by the

Killing vector

(3.12) X = y∂t + t∂y + x∂y − y∂x = y∂t + (t+ x)∂y − y∂x .
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Thus, X is the sum of a boost y∂t + t∂y and a rotation x∂y − y∂x. Note that X
vanishes if and only if

y = t+ x = 0 ,

which is a two-dimensional null submanifold of R
1,3. The vanishing set of the

Lorentzian length of X ,

g(X,X) = (t+ x)2 = 0 ,

is a null hyperplane in R
1,3. It follows that, e.g., the set

{t+ x = 0 , y > 0 , t > 0}
is a Killing horizon with respect to two different Killing vectors, the boost Killing
vector x∂t + t∂x, and the Killing vector (3.12).

3.3.1. Surface gravity. The surface gravity κ of a Killing horizon is defined by the
formula

(3.13) d
(
g(X,X)

)
= −2κX♭ ,

where X♭ is the one-form metrically dual to X , i.e. X♭ = gµν X
νdxµ. Two com-

ments are in order: First, since g(X,X) = 0 on N (X), the differential of g(X,X)
annihilates TN (X). Now, simple algebra shows that a one–form annihilating a
null hypersurface is proportional to g(ℓ, ·), where ℓ is any null vector tangent to
N (those are defined uniquely up to a proportionality factor, see Section 7.1). We
thus obtain that d(g(X,X)) is proportional to X♭; whence (3.13). Next, the name
“surface gravity” stems from the following: using the Killing equations (3.10) and
(3.13) one has

(3.14) Xµ∇µX
σ = −Xµ∇σXµ = κXσ .

Since the left-hand-side of (3.14) is the acceleration of the integral curves of X , the
equation shows that, in a certain sense, κ measures the gravitational field at the
horizon.

A key property is that the surface gravity κ is constant on bifurcate [175, p. 59]
Killing horizons. Furthermore, κ [152, Theorem 7.1] is constant for all Killing
horizons, whether bifurcate or not, in space-times satisfying the dominant energy
condition: this means that

(3.15) TµνX
µY ν ≥ 0 for causal future directed vector fields X and Y .

As an example, consider the Killing vector K of (3.11). We have

d(g(K,K)) = d(−z2 + t2) = 2(−zdz + tdt) ,

which equals twice K♭ on N (K)ǫδ. On the other hand, for the Killing vector X of
(3.12) one obtains

d(g(X,X)) = 2(t+ x)(dt + dx) ,

which vanishes on each of the Killing horizons {t = −x , y 6= 0}. This shows that
the same null surface can have zero or non-zero values of surface gravity, depending
upon which Killing vector has been chosen to calculate κ.

The surface gravity of black holes plays an important role in black hole thermo-
dynamics; see [56] and references therein.

A Killing horizon N0(X) is said to be degenerate, or extreme, if κ vanishes
throughout N0(X); it is called non-degenerate if κ has no zeros on N0(X). Thus,
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the Killing horizons N (K)ǫδ are non-degenerate, while both Killing horizons of X
given by (3.12) are degenerate. The Schwarzschild black holes have surface gravity

κm =
1

2m
.

So there are no degenerate black holes within the Schwarzschild family. Theorem ??

below shows that there are no regular, degenerate, static vacuum black holes at all.
In Kerr space-times we have κ = 0 if and only if m = |a|.

3.3.2. Average surface gravity. Following [216], near a smooth null hypersurface
one can introduce Gaussian null coordinates, in which the metric takes the form

(3.16) g = rϕdv2 + 2dvdr + 2rχadx
adv + habdx

adxb .

The hypersurface is given by the equation {r = 0}. Let S be any smooth compact
cross-section of the horizon; then the average surface gravity 〈κ〉S is defined as

(3.17) 〈κ〉S = − 1

|S|

∫

S

ϕdµh ,

where dµh is the measure induced by the metric h on S, and |S| is the volume of
S. We emphasize that this is defined regardless of whether or not the stationary
Killing vector is tangent to the null generators of the hypersurface; on the other
hand, 〈κ〉S coincides with κ when κ is constant and the Killing vector equals ∂v.

3.4. Asymptotically flat metrics. In relativity one often needs to consider ini-
tial data on non-compact manifolds, with natural restrictions on the asymptotic
geometry. The most commonly studied such examples are asymptotically flat man-
ifolds, which model isolated gravitational systems. Now, there exist several ways
of defining asymptotic flatness, all of them roughly equivalent in vacuum. We will
adapt a Cauchy data point of view, as it appears to be the least restrictive; the
discussion here will also be relevant for Section 5.

So, a space-time (M , g) will be said to possess an asymptotically flat end if M

contains a spacelike hypersurface Mext diffeomorphic to R
n \B(R), where B(R) is

a coordinate ball of radius R. An end comes thus equipped with a set of Euclidean

coordinates {xi, i = 1, . . . , n}, and one sets r = |x| :=
(∑n

i=1(x
i)2
)1/2

. One then
assumes that there exists a constant α > 0 such that, in local coordinates on Mext

obtained from R
n \ B(R), the metric h induced by g on Mext, and the second

fundamental form K of Mext (compare (4.15) below), satisfy the fall-off conditions,
for some k > 1,

hij − δij = Ok(r−α) , Kij = Ok−1(r
−1−α) ,(3.18)

where we write f = Ok(rβ) if f satisfies

(3.19) ∂k1
. . . ∂kℓ

f = O(rβ−ℓ) , 0 ≤ ℓ ≤ k .

In applications one needs (h,K) to lie in certain weighted Hölder or Sobolev space
defined on M , with the former better suited for the treatment of the evolution as
discussed in Section 6.4

4The analysis of elliptic operators such as the Laplacian on weighted Sobolev spaces was
initiated by Nirenberg and Walker [223] (see also [208, 210, 209, 196, 69, 198, 197, 199, 18] as well
as [68]). A readable treatment of analysis on weighted spaces (not focusing on relativity) can be
found in [228].
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3.5. Asymptotically flat stationary metrics. For simplicity we assume that
the space-time is vacuum, though similar results hold in general under appropriate
conditions on matter fields, see [104, 27] and references therein.

Along any spacelike hypersurface M , a Killing vector field X of (M , g) can be
decomposed as

X = Nn+ Y ,

where Y is tangent to M , and n is the unit future-directed normal to M . The
fields N and Y are called “Killing initial data”, or KID for short. The vacuum field
equations, together with the Killing equations, imply the following set of equations
on M

DiYj +DjYi = 2NKij ,(3.20)

Rij(h) +Kk
kKij − 2KikK

k
j −N−1(LYKij +DiDjN) = 0 ,(3.21)

where Rij(h) is the Ricci tensor of h. These equations play an important role in
the gluing constructions described in Section 5.3.

Under the boundary conditions (3.18), an analysis of these equations provides
detailed information about the asymptotic behavior of (N,Y ). In particular one
can prove that if the asymptotic region Mext is contained in a hypersurface M
satisfying the requirements of the positive energy theorem (see Section 5.2.1), and
if X is timelike along Mext, then (N,Y i) →r→∞ (A0, Ai), where the Aµ’s are
constants satisfying (A0)2 >

∑
i(A

i)2 [28, 104]. Further, in the coordinates of
(3.18),

θi = Ok(r−α) , V − 1 = Ok(r−α) .(3.22)

As discussed in more detail in [29], in h-harmonic coordinates, and in e.g. a maximal
(i.e., mean curvature zero) time-slicing, the vacuum equations for g form a quasi-
linear elliptic system with diagonal principal part, with principal symbol identical
to that of the scalar Laplace operator. It can be shown that, in this “gauge”, all
metric functions have a full asymptotic expansion in terms of powers of ln r and
inverse powers of r. In the new coordinates we can in fact take

(3.23) α = n− 2 .

By inspection of the equations one can further infer that the leading order correc-
tions in the metric can be written in the Schwarzschild form (3.8).

3.6. Domains of outer communications, event horizons. A key notion in the
theory of asymptotically flat black holes is that of the domain of outer communica-
tions, defined for stationary space-times as follows: For t ∈ R let φt[X ] : M → M

denote the one-parameter group of diffeomorphisms generated by X ; we will write
φt for φt[X ] whenever ambiguities are unlikely to occur. Let Mext be as in Sec-
tion 3.4, and assume that X is timelike along Mext. The exterior region Mext and
the domain of outer communications 〈〈Mext〉〉 are then defined as5

(3.24) Mext := ∪tφt(Mext) , 〈〈Mext〉〉 = I+(Mext) ∩ I−(Mext) .

The black hole region B and the black hole event horizon H + are defined as (see
Figures 3.2 and 3.3)

(3.25) B = M \ I−(Mext) , H
+ = ∂B .

5See Section 2.3.1 for the definition of I±(Ω).
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Figure 3.2. Mext, Mext, together with the future and the past of
Mext. One has Mext ⊂ I±(Mext), even though this is not immedi-
ately apparent from the figure. The domain of outer communica-
tions is the intersection I+(Mext)∩I−(Mext), compare Figure 3.3.

The white hole region W and the white hole event horizon H − are defined as above
after changing time orientation:

W = M \ I+(Mext) , H
− = ∂W .

It follows that the boundaries of 〈〈Mext〉〉 are included in the event horizons. We
set

(3.26) E
± = ∂〈〈Mext〉〉 ∩ I±(Mext) , E = E

+ ∪ E
− .

The sets E ± are achronal boundaries and so, as mentioned in Section 2, they are
ruled by null geodesics, called generators.

In general, each asymptotically flat end of M determines a different domain of
outer communications. Although there is considerable freedom in choosing the as-
ymptotic regionMext giving rise to a particular end, it can be shown that I±(Mext),
and hence 〈〈Mext〉〉, H ± and E ±, are independent of the choice of Mext.

3.7. Uniqueness theorems. It is widely expected that the Kerr metrics provide
the only stationary, regular, vacuum, four-dimensional black holes. In spite of many
works on the subject (see [244, 63, 152, 273, 220, 95, 1, 162, 219] and references
therein), the question is far from being settled.

To describe the current state of affairs, some terminology is needed. A Killing
vector X is said to be complete if its orbits are complete, i.e., for every p ∈ M the
orbit φt[X ](p) of X is defined for all t ∈ R. X is called stationary if it is timelike
at large distances in the asymptotically flat region.

A key definition for the uniqueness theory is the following:

Definition 3.1. Let (M , g) be a space-time containing an asymptotically flat end
Mext, and let X be a stationary Killing vector field on M . We will say that
(M , g,X) is I+–regular if X is complete, if the domain of outer communications
〈〈Mext〉〉 is globally hyperbolic, and if 〈〈Mext〉〉 contains a spacelike, connected,
acausal hypersurface M ⊃ Mext, the closure M of which is a topological manifold
with boundary, consisting of the union of a compact set and of a finite number of
asymptotically flat ends, such that the boundary ∂M := M \M satisfies

(3.27) ∂M ⊂ E
+ ,

(see (3.26)) with ∂M meeting every generator of E + precisely once; see Figure 3.3.
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Mext∂M

M〈〈Mext〉〉

E +

Figure 3.3. The hypersurface M from the definition of I+–
regularity. To avoid ambiguities, we note that Mext is a subset
of 〈〈Mext〉〉.

Some comments might be helpful. First one requires completeness of the orbits of
the stationary Killing vector because one needs an action of R on M by isometries.
Next, one requires global hyperbolicity of the domain of outer communications
to guarantee its simple connectedness, and to avoid causality violations. Further,
the existence of a well-behaved spacelike hypersurface gives reasonable control of
the geometry of 〈〈Mext〉〉, and is a prerequisite to any elliptic PDEs analysis, as
is extensively needed for the problem at hand. The existence of compact cross-
sections of the future event horizon E + prevents singularities on the future part of
the boundary of the domain of outer communications, and eventually guarantees
the smoothness of that boundary.

The event horizon in a stationary space-time will be said to be rotating if the
stationary Killing vector is not tangent to the generators of the horizon; it will
be said mean non-degenerate if < κ >∂M 6= 0 (compare (3.17)). The proof of the
following can be found in [95] in the mean non-degenerate case, and in [105] in the
degenerate rotating one:

Theorem 3.2. Let (M , g) be an I+–regular, vacuum, analytic, asymptotically flat,
four-dimensional stationary space-time. If E + is connected and either mean non-
degenerate or rotating, then 〈〈Mext〉〉 is isometric to the domain of outer commu-
nications of a Kerr space-time.

Theorem 3.2 finds its roots in work by Carter and Robinson [244, 63], with
further key steps due to Hawking [146] and Sudarsky and Wald [260]. It should be
emphasized that the hypotheses of analyticity, and non-degeneracy in the case of
non-rotating configurations, are highly unsatisfactory, and one believes that they
are not needed for the conclusion. Recent progress on the connectedness question
has been done by Hennig and Neugebauer [219], who excluded two-component
configurations under a non-degeneracy condition whose meaning remains to be
explored; see also [191, 274] for previous results.

The analyticity restriction has been removed by Alexakis, Ionescu and Klainer-
man in [1] for near-Kerrian configurations, but the general case remains open.

Partial results concerning uniqueness of higher dimensional black holes have been
obtained by Hollands and Yazadjiev [157, 155, 156], compare [143, 144, 217, 55].
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4. The Cauchy problem

The component version of the vacuum Einstein equations with cosmological con-
stant Λ (2.8) reads

(4.1) Gαβ + Λgαβ = 0 ,

where Gαβ is the Einstein tensor defined as

(4.2) Gαβ := Rαβ − 1

2
Rgαβ ,

while Rαβ is the Ricci tensor and R the scalar curvature. We will refer to those
equations as the vacuum Einstein equations, regardless of whether or not the cos-
mological constant vanishes, and in this work we will mostly assume Λ = 0. Taking
the trace of (4.1) one obtains

(4.3) R =
2(n+ 1)

n− 1
Λ ,

where, as elsewhere, n+1 is the dimension of space-time. This leads to the following
equivalent version of (4.1):

(4.4) Ric =
2Λ

n− 1
g .

Thus the Ricci tensor of the metric is proportional to the metric. Pseudo-Riemannian
manifolds with metrics satisfying Equation (4.4) are called Einstein manifolds in
the mathematical literature, see e.g. [40].

Given a manifold M , Equation (4.1) or, equivalently, Equation (4.4) forms a
system of second order partial differential equations for the metric, linear in the
second derivatives of the metric, with coefficients which are rational functions of
the gαβ ’s, quadratic in the first derivatives of g, again with coefficients rational in g.
Equations linear in the highest order derivatives are called quasi-linear, hence the
vacuum Einstein equations constitute a second order system of quasi-linear partial
differential equations for the metric g.

In the discussion above we assumed that the manifold M has been given. In the
evolutionary point of view, which we adapt in most of this work, all space-times
of main interest have topology R × M , where M is an n–dimensional manifold
carrying initial data. Thus, solutions of the Cauchy problem (as defined precisely
by Theorem 6.1 below) have topology and differential structure which are deter-
mined by the initial data. As will be discussed in more detail in Section 6.1, the
space-times obtained by evolution of the data are sometimes extendible; there is
then a lot of freedom in the topology of the extended space-time, and we are not
aware of conditions which would guarantee uniqueness of the extensions. So in the
evolutionary approach the manifold is best thought of as being given a priori —
namely M = R×M , but it should be kept in mind that there is no a priori known
natural time coordinate which can be constructed by evolutionary methods, and
which leads to the decomposition M = R ×M .

Now, there exist standard classes of partial differential equations which are
known to have good properties. They are determined by looking at the algebraic
properties of those terms in the equations which contain derivatives of highest or-
der, in our case of order two. Inspection of (4.1) shows that this equation does
not fall in any of the standard classes, such as hyperbolic, parabolic, or elliptic. In
retrospect this is not surprising, because equations in those classes typically lead
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to unique solutions. On the other hand, given any solution g of the Einstein equa-
tions (4.4) and any diffeomorphism Φ, the pull-back metric Φ∗g is also a solution of
(4.4), so whatever uniqueness there might be will hold only up to diffeomorphisms.
An alternative way of describing this, often found in the physics literature, is the
following: suppose that we have a matrix gµν(x) of functions satisfying (4.1) in
some coordinate system xµ. If we perform a coordinate change xµ → yα(xµ), then
the matrix of functions ḡαβ(y) defined as

(4.5) gµν(x) → ḡαβ(y) = gµν(x(y))
∂xµ

∂yα

∂xν

∂yβ

will also solve (4.1), if the x-derivatives there are replaced by y-derivatives. This
property is known under the name of diffeomorphism invariance, or coordinate
invariance, of the Einstein equations. Physicists say that “the diffeomorphism
group is the gauge group of Einstein’s theory of gravitation”.

Somewhat surprisingly, Choquet-Bruhat [134] proved in 1952 that there exists
a set of hyperbolic equations underlying (4.2). This proceeds by the introduction
of so-called “harmonic coordinates”, to which we turn our attention in the next
section.

4.1. The local evolution problem.

4.1.1. Wave coordinates. A set of coordinates {yµ} is called harmonic if each of
the functions yµ satisfies

(4.6) �gy
µ = 0 ,

where �g is the d’Alembertian associated with g acting on scalars:

(4.7) �gf := trgHess f =
1√

| det g|
∂µ

(√
| det g|gµν∂νf

)
.

One also refers to these as “wave coordinates”. Assuming that (4.6) holds, (4.4)
can be written as

0 = Êαβ := �gg
αβ − gǫφ

(
2gγδΓα

γǫΓ
β
δφ + (gαγΓβ

γδ + gβγΓα
γδ)Γ

δ
ǫφ

)
(4.8)

− 4Λ

n− 1
gαβ .

Here the Γα
βγ ’s should be calculated in terms of the gαβ ’s and their derivatives as in

(2.3), and the wave operator �g is as in (4.7). So, in wave coordinates, the Einstein
equation forms a second-order quasi-linear wave-type system of equations (4.8) for
the metric functions gαβ. (This can of course be rewritten as a set of quasi-linear
equations for the gαβ ’s by algebraic manipulations.)

Standard theory of hyperbolic PDEs [130] gives:6

Theorem 4.1. For any initial data

(4.9) gαβ(0, yi) ∈ Hk+1
loc

, ∂0g
αβ(0, yi) ∈ Hk

loc
, k > n/2 ,

6If k is an integer, then the Sobolev spaces Hk
loc

are defined as spaces of functions which are in

L2(K) for any compact set K,with their distributional derivatives up to order k also in L2(K). In
the results presented here one can actually allow non-integer k’s, the spaces Hk

loc
are then defined

rather similarly using the Fourier transformation.
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prescribed on an open subset O ⊂ {0}×R
n ⊂ R×R

n there exists a unique solution
gαβ of (4.8) defined on an open neighborhood U ⊂ R × R

n of O. The set U can
be chosen so that (U , g) is globally hyperbolic with Cauchy surface O.

Remark 4.2. The results in [185, 184, 183, 259] and references therein allow one to
reduce the differentiability threshold above.

Equation (4.8) would establish the hyperbolic, evolutionary character of the Ein-
stein equations, if not for the following problem: Given initial data for an equation
as in (4.8) there exists a unique solution, at least for some short time. But there is
a priori no reason to expect that the solution will satisfy (4.6); if it does not, then
a solution of (4.8) will not solve the Einstein equation. In fact, if we set

(4.10) λµ := �gy
µ ,

then

(4.11) Rαβ =
1

2
(Êαβ −∇αλβ −∇βλα) +

2Λ

n− 1
gαβ ,

so that it is precisely the vanishing – or not – of λ which decides whether or not a
solution of (4.8) is a solution of the vacuum Einstein equations.

This problem has been solved by Choquet-Bruhat [134]. The key observation is
that (4.11) and the Bianchi identity imply a wave equation for the λα’s. In order
to see that, recall the twice-contracted Bianchi identity (2.10):

∇α

(
Rαβ − R

2
gαβ
)

= 0 .

Assuming that (4.8) holds, one finds

0 = −∇α

(
∇αλβ + ∇βλα −∇γλ

γgαβ
)

= −
(
�gλ

β +Rβ
αλ

α
)
.

This shows that λα necessarily satisfies the second order hyperbolic system of equa-
tions

�gλ
β +Rβ

αλ
α = 0 .

Now, it is a standard fact in the theory of hyperbolic equations that we will have

λα ≡ 0

on the domain of dependence D(O), provided that both λα and its derivatives van-
ish at O. To see how these initial conditions on λα can be ensured, it is convenient
to assume that y0 is the coordinate along the R factor of R×R

n, so that the initial
data surface {0} × O is given by the equation y0 = 0. We have

�gy
α =

1√
| det g|

∂β

(√
| det g|gβγ∂γy

α
)

=
1√

| det g|
∂β

(√
| det g|gβα

)
.

Clearly a necessary condition for the vanishing of �gy
α is that it vanishes at y0 = 0,

and this allows us to calculate some time derivatives of the metric in terms of space
ones:

(4.12) ∂0

(√
| det g|g0α

)
= −∂i

(√
| det g|giα

)
.
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This implies that the initial data (4.9) for the equation (4.8) cannot be chosen
arbitrarily if we want both (4.8) and the Einstein equation to be simultaneously
satisfied.

Now, there is still freedom left in choosing the wave coordinates. Using this
freedom, one can show that there is no loss of generality in assuming that on the
initial hypersurface {y0 = 0} we have

(4.13) g00 = −1 , g0i = 0 ,

and this choice simplifies the algebra considerably. Equation (4.12) determines the
time derivatives ∂0g

0µ|{y0=0} needed in Theorem 4.1, once gij |{y0=0} and ∂0gij |{y0=0}

are given. So, from this point of view, the essential initial data for the evolution
problem are the space metric

h := gijdy
idyj ,

together with its time derivatives.
It turns out that further constraints arise from the requirement of the vanishing

of the derivatives of λ. Supposing that (4.12) holds at y0 = 0 — equivalently,
supposing that λ vanishes on {y0 = 0}, we then have

∂iλ
α = 0

on {y0 = 0}. To obtain the vanishing of all derivatives initially it remains to ensure
that some transverse derivative does. A convenient transverse direction is provided
by the field n of unit timelike normals to {y0 = 0}, and the vanishing of ∇nλ

α is
guaranteed by requiring that

(4.14)
(
Gµν + Λgµν

)
nµ = 0 .

This follows by simple algebra from the equation Êαβ = 0 and (4.11),

Gµν + Λgµν = −
(
∇µλν + ∇νλµ −∇αλαgµν

)
,

using that λµ|y0=0 = ∂iλµ|y0=0 = 0.
Equations (4.14) are called the Einstein constraint equations, and will be dis-

cussed in detail in Section 5.
Summarizing, we have proved:

Theorem 4.3. Under the hypotheses of Theorem 4.1, suppose that the initial data
(4.9) satisfy (4.12), (4.13) as well as the constraint equations (4.14). Then the
metric given by Theorem 4.1 satisfies the vacuum Einstein equations.

4.2. Cauchy data. In Theorem 4.1 we consider initial data given in a single coordi-
nate patch O ⊂ R

n. This suffices for applications such as the Lindblad-Rodnianski
stability theorem discussed in Section 6.4 below, where O = R

n. But a correct
geometric picture is to start with an n–dimensional hypersurface M , and prescribe
initial data there; the case where M is O is thus a special case of this construction.
At this stage there are two attitudes one may wish to adopt: the first is that M
is a subset of the space-time M — this is essentially what we assumed in Sec-
tion 4.1. The alternative is to consider M as a manifold of its own, equipped with
an embedding

i : M → M .

The most convenient approach is to go back and forth between those points of view,
and this is the strategy that we will follow.
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A vacuum initial data set (M,h,K) is a triple where M is an n–dimensional
manifold, h is a Riemannian metric on M , and K is a symmetric two-covariant
tensor field on M . Further (h,K) are supposed to satisfy the vacuum constraint
equations that result from (4.14), and which are written explicitly in terms of K
and h in Section 5.1. Here the tensor field K will eventually become the second
fundamental form of M in the resulting space-time M , obtained by evolving the
initial data. Recall that the second fundamental form of a spacelike hypersurface
M is defined as

(4.15) ∀X ∈ TM K(X,Y ) = g(∇Xn, Y ) ,

where n is the future pointing unit normal to M , and K is often referred to as
the extrinsic curvature tensor of M in the relativity literature. Specifying K is
equivalent to prescribing the time-derivatives of the space-part gij of the resulting
space-time metric g; this can be seen as follows: Suppose, indeed, that a space-
time (M , g) has been constructed (not necessarily vacuum) such that K is the
extrinsic curvature tensor of M in (M , g). Consider any domain of coordinates
O ⊂ M , and construct coordinates yµ in a space-time neighborhood U such that
M ∩U = O; those coordinates could be wave coordinates, obtained by solving the
wave equations (4.6), but this is not necessary at this stage. Since y0 is constant
on M the one-form dy0 annihilates TM ⊂ TM , as does the 1–form g(n, ·). Since
M has codimension one, it follows that dy0 must be proportional to g(n, ·):

nαdy
α = n0dy

0

on O. The normalization −1 = g(n, n) = gµνnµnν = g00(n0)
2 gives

nαdy
α =

1√
|g00|

dy0 .

We then have, by (4.15),

Kij = −1

2
g0σ
(
∂jgσi + ∂igσj − ∂σgij

)
n0 .(4.16)

This shows that the knowledge of gµν and ∂0gij at {y0 = 0} allows one to calculate
Kij . Reciprocally, (4.16) can be rewritten as

∂0gij =
2

g00n0
Kij + terms determined by the gµν ’s and their space–derivatives ,

so that the knowledge of the gµν ’s and of the Kij ’s at y0 = 0 allows one to calculate
∂0gij . Thus, Kij is the geometric counterpart of the ∂0gij ’s.

4.3. Solutions global in space. In order to globalize the existence Theorem 4.1
in space, the key point is to show that two solutions differing only by the values
g0α|{y0=0} are (locally) isometric: so suppose that g and g̃ both solve the vacuum
Einstein equations in a globally hyperbolic region U , with the same Cauchy data
(h,K) on O := U ∩M . One can then introduce wave coordinates in a globally
hyperbolic neighborhood of O both for g and g̃, satisfying (4.13), by solving

(4.17) �gy
µ = 0 , �g̃ỹ

µ = 0 ,

with the same initial data for yµ and ỹµ. Transforming both metrics to their
respective wave-coordinates, one obtains two solutions of the reduced equation (4.8)
with the same initial data.
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The question then arises whether the resulting metrics will be sufficiently differ-
entiable to apply the uniqueness part of Theorem 4.1. Now, the metrics obtained
so far are in a space C1([0, T ], Hs), where the Sobolev space Hs involves the space-
derivatives of the metric. The initial data for the solutions yµ or ỹµ of (4.17) may
be chosen to be in Hs+1 ×Hs. However, a rough inspection of (4.17) shows that
the resulting solutions will be only in C1([0, T ], Hs), because of the low regular-
ity of the metric. But then (4.5) implies that the transformed metrics will be in
C1([0, T ], Hs−1), and uniqueness can only be invoked provided that s−1 > n/2+1,
which is one degree of differentiability more than what was required for existence.
This was the state of affairs for some fifty-five years until the following simple argu-
ment of Planchon and Rodnianski [233]: To make it clear that the functions yµ are
considered to be scalars in (4.17), we shall write y for yµ. Commuting derivatives
with �g one finds, for metrics satisfying the vacuum Einstein equations,

�g∇αy = ∇µ∇µ∇αy = [∇µ∇µ,∇α]y = Rσµ
αµ︸ ︷︷ ︸

=Rσ
α=0

∇σy = 0 .

Commuting once more one obtains an evolution equation for the field ψαβ :=
∇α∇βy:

�gψαβ + ∇σRβ
λ

α
σ

︸ ︷︷ ︸
=0

∇λy + 2Rβ
λ

α
σψσλ = 0 ,

where the underbraced term vanishes, for vacuum metrics, by a contracted Bianchi
identity. So the most offending term in this equation for ψαβ , involving three
derivatives of the metric, disappears when the metric is vacuum. Standard theory
of hyperbolic PDEs shows now that the functions ∇α∇βy are in C1([0, T ], Hs−1),
hence y ∈ C1([0, T ], Hs+1), and the transformed metrics are regular enough to
invoke uniqueness without having to increase s.

Suppose, now, that an initial data set (M,h,K) as in Theorem 4.1 is given.
Covering M by coordinate neighborhoods Op, p ∈M , one can use Theorem 4.1 to
construct globally hyperbolic developments (Up, gp) of (Up, h,K). By the argument
just given the metrics so obtained will coincide, after performing a suitable coor-
dinate transformation, wherever simultaneously defined. This allows one to patch
the (Up, gp)’s together to a globally hyperbolic Lorentzian manifold, with Cauchy
surface M . Thus:

Theorem 4.4. Any vacuum initial data set (M,h,K) of differentiability class
Hs+1 ×Hs, s > n/2, admits a globally hyperbolic development.

The solutions are locally unique, in a sense made clear by the proof. The impor-
tant question of uniqueness in the large will be addressed in Section 6.1.

5. Initial data sets

We now turn our attention to an analysis of the constraint equations, returning
to the evolution problem in Section 6.

An essential part of the mathematical analysis of the Einstein field equations
of general relativity is the rigorous formulation of the Cauchy problem, which is
a means to describe solutions of a dynamical theory via the specification of initial
data and the evolution of that data. In this section we will be mainly concerned
with the initial data sets for the Cauchy problem. As explained in Section ??,
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those initial data sets have to satisfy the relativistic constraint equations (4.14).
This leads to the following questions: What are the sets of allowable initial data?
Is it possible to parameterize them in a useful way? What global properties of the
space-time can be seen in the initial data sets? How does one engineer initial data
so that the associated space-time has some specific properties?

5.1. The constraint equations. As explained in Section 4.2, an initial data set
for a vacuum space-time consists of an n-dimensional manifold M together with a
Riemannian metric h and a symmetric tensor K. In the non-vacuum case we also
have a collection of non-gravitational fields which we collectively label F (usually
these are sections of a bundle over M). We have already seen the relativistic
vacuum constraint equations expressed as the vanishing of the normal components
of the Einstein equations (4.14). Now, if h is the metric induced on a spacelike
hypersurface in a Lorentzian manifold, it has its own curvature tensor Ri

jkℓ. If we
denote byKij the second fundamental form ofM in M , and by Ri

jkℓ the space-time
curvature tensor, the Gauss-Codazzi equations provide the following relationships:

Ri
jkℓ = Ri

jkℓ +Ki
ℓKjk −Ki

kKjℓ ,(5.1)

DiKjk −DjKik = Rijkµn
µ .(5.2)

Here n is the timelike normal to the hypersurface, and we are using a coordinate
system in which the ∂i’s are tangent to the hypersurface M .

Contractions of (5.1)-(5.2) and simple algebra allow one to reexpress (4.14) in
the following form, where we have now allowed for the additional presence of non-
gravitational fields:

divK − d(trK) = J ,(5.3)

R(h) − 2Λ − |K|2h + (trK)2 = 2ρ ,(5.4)

C(F , h) = 0 ,(5.5)

where R(h) is the scalar curvature of the metric h, J is the momentum density
of the non-gravitational fields, ρ is the energy density,7 and C(F , h) denotes the
set of additional constraints that might come from the non-gravitational part of
the theory. The first of these equations is known as the momentum constraint and
is a vector field equation on M . The second, a scalar equation, is referred to as
the scalar, or Hamiltonian, constraint, while the last are collectively labeled the
non-gravitational constraints. These are what we shall henceforth call the Einstein
constraint equations, or simply the constraint equations if ambiguities are unlikely
to occur.

As an example, for the Einstein-Maxwell theory in 3+1 dimensions, the non-
gravitational fields consist of the electric and magnetic vector fields E and B. In
this case we have ρ = 1

2 (|E|2h + |B|2h), J = (E × B)h, and we have the extra
(non-gravitational) constraints divhE = 0 and divhB = 0.

Equations (5.3)-(5.5) form an underdetermined system of partial differential
equations. In the classical vacuum setting of n = 3 dimensions, these are locally
four equations for the twelve unknowns given by the components of the symmetric

7If T is the stress-energy tensor of the non-gravitational fields, and n denotes the unit timelike
normal to a hypersurface M embedded in a space-time, with induced data (M, h, K,F), then
J = −T (n, ·) and ρ = T (n, n). However, in terms of the initial data set itself we shall regard
(5.3)-(5.4) as the definitions of the quantities J and ρ.
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tensors h and K. This section will focus primarily on the vacuum case with a zero
cosmological constant. However, we will allow arbitrary values of Λ in Section ??.

The most successful approach so far for studying the existence and uniqueness
of solutions to (5.3)-(5.5) is through the conformal method of Lichnerowicz [192],
Choquet-Bruhat and York [78]. The idea is to introduce a set of unconstrained
“conformal data”, which are freely chosen, and find (h,K) by solving a system
of determined partial differential equations. In the vacuum case with vanishing
cosmological constant [78], the free conformal data consist of a manifold M , a Rie-

mannian metric h̃ on M , a trace-free symmetric tensor σ̃, and the mean curvature
function τ . The initial data (h,K) defined as

h = φqh̃ , q =
4

n− 2
,(5.6)

K = φ−2(σ̃ + D̃W ) +
τ

n
φqh ,(5.7)

where φ is positive, will then solve (5.3)-(5.4) if and only if the function φ and the
vector field W solve the equations

(5.8) divh̃(D̃W + σ̃) =
n− 1

n
φq+2D̃τ ,

(5.9) ∆h̃ φ− 1

q(n− 1)
R(h̃)φ+

1

q(n− 1)
|σ̃ + D̃W |2

h̃
φ−q−3 − 1

qn
τ2φq+1 = 0 .

We use the symbol D̃ to denote the covariant derivative of h̃; D̃ is the conformal
Killing operator:

(5.10) D̃Wab = D̃aWb + D̃bWa − 2

n
h̃abD̃cW

c .

Vector fields W annihilated by D are called conformal Killing vector fields, and are
characterized by the fact that they generate (perhaps local) conformal diffeomor-
phisms of (M,h). The semi-linear scalar equation (5.9) is often referred to as the
Lichnerowicz equation.

Equations (5.8)-(5.9) form a determined system of equations for the (n + 1)

functions (φ,W ). The operator divh̃(D̃ ·) is a linear, formally self-adjoint, elliptic
operator on vector fields. What makes the study of the system (5.8)-(5.9) difficult
in general is the nonlinear coupling between the two equations.

The explicit choice of (5.6)-(5.7) is motivated by the two identities (for h̃ = φqh)

(5.11) R(h̃) = −φ−q−1(q(n− 1)∆hφ−R(h)φ) ,

where q = 4
n−2 , which is the unique exponent that does not lead to supplementary

|Dφ|2 terms in (5.11), and

(5.12) Da
h̃
(φ−2Bab) = φ−q−2Da

hBab

which holds for any trace-free tensor B. Equation (5.11) is the well known identity
relating the scalar curvatures of two conformally related metrics.

In the space-time evolution (M , g) of the initial data set (M,h,K), the function
τ = trhK is the mean curvature of the hypersurface M ⊂ M . The assumption that
the mean curvature function τ is constant on M significantly simplifies the analysis
of the vacuum constraint equations because it decouples equations (5.8) and (5.9).
One can then attempt to solve (5.8) forW , and then solve the Lichnerowicz equation
(5.9).
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Existence and uniqueness of solutions of this problem for constant mean curva-
ture (“CMC”) data has been studied extensively. For compact manifolds this was
exhaustively analysed by Isenberg [163], building upon a large amount of previous
work [192, 224, 279, 78]; the proof was simplified by Maxwell in [206]. If we let
Y([h]) denote the Yamabe invariant of the conformal class [h] of metrics determined
by h (see [188]), the result reads as follows:

Theorem 5.1 ([163]). Consider a smooth conformal initial data set (h̃, σ̃, τ) on a
compact manifold M , with constant τ . Then there always exists a solution W of

(5.8). Setting σ = D̃W + σ̃, the existence, or not, of a positive solution φ of the
Lichnerowicz equation is shown in Table 5.1.

σ ≡ 0, τ = 0 σ ≡ 0, τ 6= 0 σ 6≡ 0, τ = 0 σ 6≡ 0, τ 6= 0

Y([h]) < 0 No Yes No Yes
Y([h]) = 0 Yes No No Yes
Y([h]) > 0 No No Yes Yes

Table 5.1. Existence of solutions in the conformal method for
CMC data on compact manifolds.

More recently, work has been done on analysing these equations for metrics of
low differentiability [66, 206]; this was motivated in part by recent work on the
evolution problem for “rough initial data” [185, 184, 183, 259]. Exterior boundary
value problems for the constraint equations, with nonlinear boundary conditions
motivated by black holes, were considered in [207, 117].

The conformal method easily extends to CMC constraint equations for some
non-vacuum initial data, e.g. the Einstein-Maxwell system [163] where one obtains
results very similar to those of Theorem 5.1. However, other important examples,
such as the Einstein-scalar field system [74, 76, 75, 149], require more effort and
are not as fully understood.

Conformal data close to being CMC (e.g. via a smallness assumption on |∇τ |) are
usually referred to as “near-CMC”. Classes of near-CMC conformal data solutions
have been constructed [168, 73, 2, 169] and there is at least one example of a
non-existence theorem [172] for a class of near-CMC conformal data. However,
due to the non-linear coupling in the system (5.8)-(5.9), the question of existence
for unrestricted choices of the mean curvature τ appears to be significantly more
difficult, and until recently all results assumed strong restrictions on the gradient of
τ . The first general result in this context is due to Holst, Nagy, and Tsogtgerel [158,
159], who construct solutions with freely specified mean curvature in the presence
of matter. In [205], Maxwell provides a sufficient condition, with no restrictions
on the mean curvature, for the conformal method to generate solutions to the
vacuum constraint equations on compact manifolds. As an application, Maxwell
demonstrates the existence of a large class of solutions to the vacuum constraint
equations with freely specified mean curvature. These results together represent a
significant advance in our understanding of how the conformal method may be used
to generate solutions of the vacuum constraint equations. However the existence
question for generic classes of large conformal data remains wide open.
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The analysis of the conformal constraint equations (5.8)-(5.9) discussed above
proceeds either via the method of sub- and super-solutions (which is a barrier
argument exploiting the maximum principle), or a perturbation or fixed point
method. In [149] Hebey, Pacard and Pollack used the mountain pass lemma to
analyse Lichnerowicz-type equations arising in certain cases of the Einstein-scalar
field system. Such arguments may conceivably prove useful in studying (5.8)-(5.9)
for general τ ’s.

A natural question is whether the set of solutions to the constraint equations
forms a manifold. This was first considered by Fisher and Marsden [133], who pro-
vided a Fréchet manifold structure; Banach manifold structures have been obtained
in [98], and a Hilbert manifold structure (for asymptotically flat initial data sets)
in [22].

In [24] the reader will find a presentation of alternative approaches to construct-
ing solutions of the constraints, covering work done up to 2003.

5.2. Mass inequalities. Among the deepest results in mathematical general rela-
tivity are the global mass inequalities for asymptotically flat manifolds. Those have
been discussed extensively in the existing literature [188, 47, 48, 53, 245, 247], and
therefore will only be given the minimum amount of attention, as needed for the
remaining purposes of this work.

5.2.1. The Positive Mass Theorem. Using the coordinate system of (3.18), one
defines the Arnowitt-Deser-Misner [13] mass of (M,h) of an asymptotically flat
end as

(5.13) m =
1

16π
lim

r→∞

∫

Sr

∑

i,j

(
∂hij

∂xi
− ∂hii

∂xj

)
dSi .

Here Sr is the coordinate sphere at radius r and dSi = ∂i⌋dµ, and dµ is the
Riemannian volume form of h. The factor 16π is a matter of convention and is
natural in space-dimension three. The integral converges to a finite, coordinate-
independent limit if, for some α > n−2

2 ,

(5.14) |hij − δij | ≤ cr−α, |∂h| ≤ cr−α−1 and R(h) ∈ L1(Mext),

with those conditions being essentially optimal [18, 89].
For time-symmetric initial data the vacuum constraint equations (5.3)-(5.4) re-

duce to the condition that the metric h be scalar-flat, i.e. R(h) = 0. On the other
hand, if one considers time-symmetric data for a non-vacuum space-time, then from
(5.4) we see that the scalar curvature is twice the energy density of the matter fields.
The non-negativity of R, assuming a vanishing cosmological constant Λ, is then a
consequence of the dominant energy condition for initial data (which follows from
(3.15)),

(5.15) ρ ≥ |J |h ,
where ρ and J are defined in (5.3)-(5.4); see also Section 7.5. One checks that the
dominant energy condition (3.15) holds on M if and only if (5.15) holds relative
to each spacelike hypersurface in M .

Now, the ADM mass is thought to represent the total mass of the system as
viewed on M , which contains contributions from the matter fields, the gravitational
field, as well as their binding energy. The long-standing question of its positivity
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was resolved by Schoen and Yau [249] in dimension three, and is now known as the
Positive Mass Theorem:

Theorem 5.2. Let (M,h) be an asymptotically flat Riemannian manifold with
nonnegative scalar curvature. Suppose that either M is spin, or the dimension
n ≤ 7, or that h is conformally flat. Then the total ADM mass m satisfies m ≥ 0,
with equality if and only if (M,h) is isometric to Euclidean space (Rn, δ).

As remarked in the introduction, this theorem, and its generalizations, stands
as one of the cornerstones of mathematical relativity. Accessible introductions to
the positive mass theorem may be found in [188, 48, 93, 245]. The restriction on
the dimension arises from the use of area minimizing hypersurfaces [245], which are
known to sometimes possess singularities in higher dimensions, and it is expected
that positivity is true in all dimensions. The Positive Mass Theorem was proven
in all dimensions for conformally flat manifolds by Schoen and Yau [254] by a
different argument, and in all dimensions for spin manifolds by Witten [277] (see
also [229, 18, 65]). The result was generalized in [251, 252] (compare [247]) to
asymptotically flat initial data sets (M,h,K,F) satisfying the dominant energy
condition (5.15).

5.2.2. Riemannian Penrose Inequality. An important generalization of the Positive
Mass Theorem is given by the Riemannian Penrose Inequality.

Theorem 5.3. Let (M,h) be a complete, smooth, asymptotically flat 3-manifold
with nonnegative scalar curvature with total mass m and which has an outermost
minimal surface Σ0 of area A0. Then

(5.16) m ≥
√

A0

16π
,

with equality if and only if (M,h) is isometric to the Schwarzschild metric (R3 \
{0}, (1 + m

2|x|)
4δ) outside their respective outermost minimal surfaces.

Theorem 5.3 was first proved by Huisken and Ilmanen [161] under the restric-
tion that A0 is connected, or assuming instead that A0 is the area of the largest
connected component of Σ0. The version above, with a proof that uses completely
different methods, is due to Bray [45]. The proofs are beautiful applications of
geometric flows to a fundamental problem in relativity. A number of accessible re-
views has been written on these important results, to which we refer the interested
reader [47, 46, 48, 53, 202]. A generalization of Theorem 5.3 to dimensions n ≤ 7
has been established in [51].

One expects that some form of (5.16) holds for general relativistic initial data sets
(h,K) satisfying the dominant energy condition. A suggestion how one could prove
this has been put forward by Bray and Khuri in [50, 49], compare [135, 203, 54, 61].
An inequality in the spirit of (5.16), but involving some further geometric constants,
has been proved by Herzlich [151] in the Riemannian case, and by Khuri in [176]
in general.

5.2.3. Quasi-local mass. In the context of asymptotically flat space-times, there are
well defined global notions of mass and energy, and these are central to the cele-
brated positive mass theorem discussed in Section 5.2.1. One would, however, like
to have a well-defined useful local notion of mass or energy, with natural properties
– e.g., monotonicity – that one has in other physical theories. Such a definition
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has been elusive despite a great deal of effort by many people and this remains
an important open problem. We refer the reader to the Living Reviews article
by Szabados [261] for a survey, and note that there have been interesting recent
mathematical developments in the area [270, 271, 272, 258, 52, 211], not described
in the currently available version of [261].

5.3. Applications of gluing techniques. Over the past 25 years, “gluing tech-
niques” have become a standard tool in geometric analysis. Since the construc-
tion by Taubes of self-dual Yang-Mills connections on four-manifolds [266], which
played a crucial role in Donaldson’s construction of exotic smooth structures in
four-dimensions [122], gluing has been applied in important ways across a very
wide range of areas. What gluing typically refers to is a construction in which
solutions of a nonlinear partial differential equation or system, which correspond to
some geometric quantity of interest, e.g. self-dual connections, are fused together
to create new solutions. This is done by a mix of geometry and analysis in which
one ultimately studies the linearization of the relevant PDEs, and in most cases
one has to overcome analytic degeneracy introduced in the gluing procedure. Thus,
from an analytic point of view, gluing should be regarded as a singular perturbation
method. Part of the usefulness of the technique lies in the fact that, away from the
small set about which one fuses the two solutions, the new solution is very close
to the original ones. The fact that the original solutions are usually not exactly
preserved is a reflection of the fact that the relevant equations satisfy a unique
continuation property: any two solutions which agree on an open set must agree
everywhere. This is a well known property for, say, a scalar semi-linear elliptic
equation.

5.3.1. The linearized constraint equations and KIDs. The starting point of gluing
constructions for the constraint equations is the linearization of these equations
about a given solution (M,h,K). We let P∗

(h,K) denote the L2 adjoint of the

linearization of the constraint equations at this solution. Viewed as an operator
acting on a scalar functionN and a vector field Y , P∗

(h,K) takes the explicit form [97]

(5.17) P∗
(h,K)(N,Y ) =




2(∇(iYj) −∇lYlgij −KijN + trK Ngij)

∇lYlKij − 2K l
(i∇j)Yl +Kq

l∇qY
lgij

−∆Ngij + ∇i∇jN + (∇pKlpgij −∇lKij)Y
l

−NRic (g)ij + 2NK l
iKjl − 2N(tr K)Kij




.

Now this operator does not, on first inspection, appear to be very “user friendly”.
However, our immediate concern is solely with its kernel, and the pairs (N,Y ) which
lie in its kernel have a very straightforward geometric and physical characterization.
In particular, let Ω be an open subset of M . By definition, the set of “KIDs” on
Ω, denoted K (Ω), is the set of all solutions of the equation

(5.18) P∗
(γ,K)|Ω

(N,Y ) = 0 .

Such a solution (N,Y ), if nontrivial, generates a space-time Killing vector field in
the domain of dependence of (Ω, h|Ω,K|Ω) [212]; compare Section 3.4.

From a geometric point of view one expects that solutions with symmetries
should be rare. This was made rigorous in [30], where it is shown that the generic
behaviour among solutions of the constraint equations is the absence of KIDs on
any open set. On the other hand, one should note that essentially every explicit
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solution has symmetries. In particular, both the flat initial data for Minkowski
space, and the initial data representing the constant time slices of Schwarzschild
have KIDs.

5.3.2. Corvino’s result. As we have already pointed out, the Einstein constraint
equations form an underdetermined system of equations, and as such, it is unrea-
sonable to expect that they (or their linearizations) should satisfy the unique contin-
uation property. In 2000, Corvino established a gluing result for asymptotically flat
metrics with zero scalar curvature which dramatically illustrated this point [108].
In the special case when one considers initial data with vanishing second funda-
mental form K ≡ 0, the momentum constraint equation (5.3) becomes trivial and
the Hamiltonian constraint equation (5.3) reduces to simply R(h) = 0, i.e. a scalar
flat metric. Such initial data sets are referred to as “time-symmetric” because the
space-time obtained by evolving them possesses a time-reversing isometry which
leaves the initial data surface fixed. Beyond Euclidean space itself, the constant
time slices of the Schwarzschild space-time form the most basic examples of asymp-
totically flat, scalar flat manifolds. One long-standing open problem [255, 21] in the
field had been whether there exist scalar flat metrics on R

n which are not globally
spherically symmetric but which are spherically symmetric in a neighborhood of
infinity and hence, by Birkhoff’s theorem, Schwarzschild there.

Corvino resolved this by showing that he could deform any asymptotically flat,
scalar flat metric to one which is exactly Schwarzschild outside of a compact set.

Theorem 5.4 ([108]). Let (M,h) be a smooth Riemannian manifold with zero
scalar curvature containing an asymptotically flat end Mext = {|x| > r > 0}. Then
there is a R > r and a smooth metric h̄ on M with zero scalar curvature such that h̄
is equal to h in M \Mext and h̄ coincides on {|x| > R} with the metric induced on
a standard time-symmetric slice in the Schwarzschild solution. Moreover the mass
of h̄ can be made arbitrarily close to that of h by choosing R sufficiently large.

Underlying this result is a gluing construction where the deformation has com-
pact support. The ability to do this is a reflection of the underdetermined nature
of the constraint equations. In this setting, since K ≡ 0, the operator takes a much
simpler form, as a two-covariant tensor valued operator acting on a scalar function
u by

P∗u = −(∆hu)h+ Hess hu− uRic(h) .

An elementary illustration of how an underdetermined system can lead to compactly
supported solutions is given by the construction of compactly supported transverse-
traceless tensors on R

3 in Appendix B of [109] (see also [26, 118]).
An additional challenge in proving Theorem 5.4 is the presence of KIDs on the

standard slice of the Schwarzschild solution. If the original metric had ADM mass
m(h), a naive guess could be that the best fitting Schwarzschild solution would
be the one with precisely the same mass. However the mass, and the coordinates
of the center of mass, are in one-to-one correspondence with obstructions arising
from KIDs. To compensate for this co-kernel in the linearized problem, Corvino
uses these (n+ 1 in dimension n) degrees of freedom as effective parameters in the
geometric construction. The final solution can be chosen to have its ADM mass
arbitrarily close to the initial one.
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The method uncovered in Corvino’s thesis has been applied and extended in a
number of important ways. The “asymptotic simplicity” model for isolated gravi-
tational systems proposed by Penrose [230] has been very influential. This model
assumes existence of smooth conformal completions to study global properties of
asymptotically flat space-times. The question of existence of such vacuum space-
times was open until Chruściel and Delay [96], and subsequently Corvino [109], used
this type of gluing construction to demonstrate the existence of infinite dimensional
families of vacuum initial data sets which evolve to asymptotically simple space-
times. The extension of the gluing method to non-time-symmetric data was done
in [97, 110]. This allowed for the construction of space-times which are exactly
Kerr outside of a compact set, as well as showing that one can specify other types
of useful asymptotic behavior.

5.3.3. Conformal gluing. In [165], Isenberg, Mazzeo and Pollack developed a gluing
construction for initial data sets satisfying certain natural non-degeneracy assump-
tions. The perspective taken there was to work within the conformal method, and
thereby establish a gluing theorem for solutions of the determined system of PDEs
given by (5.8) and (5.9). This was initially done only within the setting of constant
mean curvature initial data sets and in dimension n = 3 (the method was extended
to all higher dimensions in [164]). The construction of [165] allowed one to combine
initial data sets by taking a connected sum of their underlying manifolds, to add
wormholes (by performing codimension 3 surgery on the underlying, connected, 3-
manifold) to a given initial data set, and to replace arbitrary small neighborhoods
of points in an initial data set with asymptotically hyperbolic ends.

In [166] this gluing construction was extended to only require that the mean
curvature be constant in a small neighborhood of the point about which one wanted
to perform a connected sum. This extension enabled the authors to show that one
can replace an arbitrary small neighborhood of a generic point in any initial data
set with an asymptotically flat end. Since it is easy to see that CMC solutions of
the vacuum constraint equations exist on any compact manifold [276], this leads
to the following result which asserts that there are no topological obstructions to
asymptotically flat solutions of the constraint equations.

Theorem 5.5 ([166]). Let M be any closed n-dimensional manifold, and p ∈ M .
Then M \ {p} admits an asymptotically flat initial data set satisfying the vacuum
constraint equations.

5.3.4. Initial data engineering. The gluing constructions of [165] and [166] are per-
formed using a determined elliptic system provided by the conformal method, which
necessarily leads to a global deformation of the initial data set, small away from the
gluing site. Now, the ability of the Corvino gluing technique to establish compactly
supported deformations invited the question of whether these conformal gluings
could be localized. This was answered in the affirmative in [97] for CMC initial
data under the additional, generically satisfied [30], assumption that there are no
KIDs in a neighborhood of the gluing site.

In [102, 101], this was substantially improved upon by combining the gluing
construction of [165] together with the Corvino gluing technique of [108, 96], to
obtain a localized gluing construction in which the only assumption is the absence of
KIDs near points. For a given n-manifold M (which may or may not be connected)

and two points pa ∈ M , a = 1, 2, we let M̃ denote the manifold obtained by
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replacing small geodesic balls around these points by a neck Sn−1 × I. When M is
connected this corresponds to performing codimension n surgery on the manifold.
When the points pa lie in different connected components of M , this corresponds
to taking the connected sum of those components.

Theorem 5.6 ([102, 101]). Let (M,h,K) be a smooth vacuum initial data set, with
M not necessarily connected, and consider two open sets Ωa ⊂ M , a = 1, 2, with
compact closure and smooth boundary such that

the set of KIDs, K (Ωa), is trivial.

Then for all pa ∈ Ωa, ǫ > 0, and k ∈ N there exists a smooth vacuum initial data
set (M̃, h(ǫ),K(ǫ)) on the glued manifold M̃ such that (h(ǫ),K(ǫ)) is ǫ-close to
(h,K) in a Ck ×Ck topology away from B(p1, ǫ)∪B(p2, ǫ). Moreover (h(ǫ),K(ǫ))
coincides with (h,K) away from Ω1 ∪ Ω2.

This result is sharp in the following sense: first note that, by the positive mass
theorem, initial data for Minkowski space-time cannot locally be glued to anything
which is non-singular and vacuum. This meshes with the fact that for Minkowskian
initial data, we have K (Ω) 6= {0} for any open set Ω. Next, recall that by the results
in [30], the no-KID hypothesis in Theorem 5.6 is generically satisfied. Thus, the
result can be interpreted as the statement that for generic vacuum initial data sets
the local gluing can be performed around arbitrarily chosen points pa. In particular
the collection of initial data with generic regions Ωa satisfying the hypotheses of
Theorem 5.6 is not empty.

The proof of Theorem 5.6 is a mixture of gluing techniques developed in [164, 165]
and those of [110, 108, 97]. In fact, the proof proceeds initially via a generalization
of the analysis in [165] to compact manifolds with boundary. In order to have CMC
initial data near the gluing points, which the analysis based on [165] requires, one
makes use of the work of Bartnik [19] on the plateau problem for prescribed mean
curvature spacelike hypersurfaces in a Lorentzian manifold.

An application of the gluing techniques concerns the question of the existence of
CMC slices in space-times with compact Cauchy surfaces. In [20], Bartnik showed
that there exist maximally extended, globally hyperbolic solutions of the Einstein
equations with dust which admit no CMC slices. Later, Eardley and Witt (un-
published) proposed a scheme for showing that similar vacuum solutions exist, but
their argument was incomplete. It turns out that these ideas can be implemented
using Theorem 5.6, which leads to:

Corollary 5.7. [102, 101] There exist maximal globally hyperbolic vacuum space-
times with compact Cauchy surfaces which contain no compact, spacelike hypersur-
faces with constant mean curvature.

6. Evolution

In Section 4 we have seen that solutions of the vacuum Einstein equations can
be constructed by solving a Cauchy problem. It is then of interest to inquire about
the global properties of the resulting space-times. A key example to keep in mind in
this context is provided by the Taub–NUT metrics [265, 221], which exhibit incom-
plete geodesics within compact sets, closed causal curves, inequivalent extensions of
maximal globally hyperbolic regions (to be defined shortly) and inequivalent con-
formal boundary completions at infinity. In particular they provide an example of
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non-uniqueness of solutions of the Cauchy problem, a problem that we address in
the next section.

6.1. Strong cosmic censorship. The strong cosmic censorship (SCC) problem
concerns predictability: Indeed, a fundamental requirement of physically relevant
equations is that solutions should be uniquely determined by initial data. So it is
important to inquire about predictability in general relativity.

In other words, we would like to know whether or not the solutions provided by
Theorem 4.4 are unique. Now, it is easy to see that there can be no uniqueness
unless some restrictions on the development are imposed: consider for example
(−∞, 1)×R

n, R×R
n and (R×R

n)\{(1,~0)} equipped with the obvious flat metric.
All three space-times contain the spacelike surface ({0} × R

n, δ, 0), where δ is the
Euclidean metric on R

n. The first two are globally hyperbolic developments of
the given initial data, but the third is not, as it is not globally hyperbolic. And
obviously these are not isometric: e.g,. the second is geodesically complete, while
the other two are not. So to guarantee uniqueness some further conditions are
needed.

The key existence and uniqueness theorem in this context is due to Choquet-
Bruhat and Geroch [72] (compare [78, 148, 92]). Some terminology is needed: a
space-time (M , g) is said to be a development of an initial data set (M,h,K) if
there exists an embedding i : M → M such that i(M) is a Cauchy surface for
(M , g), with

i∗g = h ,

and with K being the pull-back to M of the extrinsic curvature tensor (second
fundamental form) of i(M). We will say that a development (M , g) is maximal
globally hyperbolic if the following implication holds: if ψ : M → M ′ is an isomet-
ric embedding of M into (M ′, g′), and if ψ(M ) 6= M ′, then M ′ is not globally
hyperbolic.

Note that we are not imposing any field equations on (M ′, g′). One could simi-
larly define a notion of maximality within the class of vacuum space-times, but this
would lead to a weaker statement of the Choquet-Bruhat – Geroch theorem, which
for simplicity is presented in the smooth case:

Theorem 6.1 (Existence of maximal globally hyperbolic developments [72]). For
any smooth vacuum initial data (M,h,K) there exists a unique, up to isometric
diffeomorphism, vacuum development (M , g), which is inextendible in the class of
smooth globally hyperbolic Lorentzian manifolds.

This theorem can be thought of as the equivalent of the usual ODE theorem of
existence of maximal solutions. The generalization is, however, highly non-trivial
because while the proof for ODEs deals with subsets of R, Theorem 6.1 deals with
manifolds which are dynamically obtained by patching together local solutions. The
main difficulty is to prove that the patching leads to a Hausdorff topological space.
The argument makes use of Lorentzian causality theory, which in turn relies heavily
on C2 differentiability of the metric. To obtain a version of Theorem 6.1 with lower
differentiability, as in Theorem 4.4 or in Remark 4.2, one would need to show that
the relevant parts of causal theory can be repeated in the wider setting.

While Theorem 6.1 is highly satisfactory, it does not quite prove what one wants,
because uniqueness is claimed in the globally hyperbolic class only. But we have seen
in Theorem ?? that there exist vacuum space-times with non-unique extensions of
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a maximal globally hyperbolic region. In such examples the space-time (M , g) of
Theorem 6.1 is unique in the class of globally hyperbolic space-times, but it can be
extended in more than one way to strictly larger vacuum solutions. In such cases the
extension always takes places across a Cauchy horizon, as defined in Section 2.3.3

So one cannot expect uniqueness in general. However, it has been suggested by
Penrose [232] that non-uniqueness happens only in very special circumstances. The
following result of Isenberg and Moncrief [216, 167, 171] (compare [154]) indicates
that this might indeed be the case:

Theorem 6.2. Let (M , g) be a vacuum analytic space-time containing an analytic
compact Cauchy horizon H . If the null geodesics threading H are closed, then the
Cauchy horizon is a Killing horizon; in particular the isometry group of (M , g) is
at least one-dimensional.

The hypotheses of analyticity, compactness, and closed generators are of course
highly restrictive. In any case it is conceivable that some kind of local isometries
need to occur in space-times with Cauchy horizons when those conditions are not
imposed; indeed, all known examples have this property. But of course existence
of local isometries is a highly non-generic property, even when vacuum equations
are imposed [30], so a version of Theorem 6.2 without those undesirable hypotheses
would indeed establish SCC.

Whether or not Cauchy horizons require Killing vector fields, a loose mathemati-
cal formulation of strong cosmic censorship, as formulated in [91] following Moncrief
and Eardley [215] and Penrose [232], is the following:

Consider the collection of initial data for, say, vacuum or electro–vacuum

space-times, with the initial data surface M being compact, or with

asymptotically flat initial data (M,h,K) . For generic such data the

maximal globally hyperbolic development is inextendible.

Because of the difficulty of the strong cosmic censorship problem, a full under-
standing of the issues which arise in this context seems to be completely out of
reach at this stage. There is therefore some interest in trying to understand that
question under various restrictive hypotheses, e.g., symmetry. The simplest case, of
spatially homogeneous space-times, has turned out to be surprisingly difficult, be-
cause of the intricacies of the dynamics of some of the Bianchi models discussed in
Section 6.6, and has been settled in the affirmative in [106] (compare Theorem 6.8
below).

6.1.1. Gowdy toroidal metrics. The next simplest case is that of Gowdy metrics on
T

3 := S1 × S1 × S1: by definition,

(6.1) g = e(τ−λ)/2(−e−2τdτ2 +dθ2)+e−τ [ePdσ2 +2ePQdσdδ+(ePQ2 +e−P )dδ2],

where τ ∈ R and (θ, σ, δ) are coordinates on T
3, with the functions P,Q and λ de-

pending only on τ and θ. The metric of a maximal globally hyperbolic U(1)×U(1)–
symmetric vacuum space-time with T

3–Cauchy surfaces can be globally written [90]
in the form (6.1) provided that the twist constants vanish:

(6.2) ca := ǫαβγδX
α
1 X

β
2 ∇γXδ

a = 0 , a = 1, 2 ,
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where the Xa’s are the Killing vectors generating the U(1) × U(1) action. The
condition c1 = c2 = 0 is equivalent to the requirement that the family of planes
span{X1, X2}⊥ is integrable.

For metrics of the form (6.1), the Einstein vacuum equations become a set of
wave-map equations

Pττ − e−2τPθθ − e2P (Q2
τ − e−2τQ2

θ) = 0,(6.3)

Qττ − e−2τQθθ + 2(PτQτ − e−2τPθQθ) = 0,(6.4)

which are supplemented by ODE’s for the function λ:

λτ = P 2
τ + e−2τP 2

θ + e2P (Q2
τ + e−2τQ2

θ),(6.5)

λθ = 2(PθPτ + e2PQθQτ ).(6.6)

Here we write Pτ for ∂τP , etc.
Initial data on T

3 for P and Q have to satisfy an integral constaint,

(6.7)

∫

S1

(PθPτ + e2PQθQτ )dθ = 0 ,

which is a consequence of (6.6) and of periodicity in θ. The metric function λ is
obtained by integrating (6.5)-(6.6). Global existence of solutions to (6.3)-(6.4) was
proved in [213] when the initial data are given on a hypersurface {τ = const}, and
in [90] for general U(1) × U(1)–symmetric Cauchy surfaces.

The question of SCC in this class of metrics has been settled by Ringström, who
proved that the set of smooth initial data for Gowdy models on T

3 that do not
lead to the formation of Cauchy horizons contains a set which is open and dense
within the set of all smooth initial data. More precisely, Ringström’s main result
(see [242, 243] and references therein) is the following:

Theorem 6.3. Let τ0 ∈ R and let S = {(Q(τ0), P (τ0), Qτ (τ0), Pτ (τ0))} be the set
of smooth initial data for (6.3)-(6.4) satisfying (6.7). There is a subset G of S
which is open with respect to the C2 × C1 topology, and dense with respect to the
C∞ topology, such that the space-times of the form (6.1) corresponding to initial
data in G are causally geodesically complete in one time direction, incomplete in the
other time direction, and the Kretschmann scalar, RαβγδR

αβγδ, becomes unbounded
in the incomplete direction of causal geodesics.

This result does indeed establish SCC in this class of metrics: to see that the
resulting space-times are inextendible in the category of C3 manifolds with C2

Lorentzian metrics, note that the existence of any such extension would imply
existence of geodesics which are incomplete in the original space-time, and along
which every curvature scalar is bounded.

Theorem 6.3 is complemented by the results in [64, 214, 100], where infinite
dimensional families of (nongeneric) solutions which are extendible across a Cauchy
horizon are constructed.

The key to the understanding of the global structure of the Gowdy space-times
is the analysis of the behavior of the functions P and Q as τ → ±∞. The asymp-
totic behavior of those functions, established by Ringström, can then be translated
into statements about the behavior of the space-time geometry as those limits are
approached. A central element of the proof is the existence of a velocity function

v(θ) := lim
τ→∞

√
P 2

τ + e2PQ2
τ .
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Essential steps in Ringström’s analysis are provided by the work on Fuchsian PDEs
of Kichenassamy and Rendall [177, 238], as well as the study of the action of Geroch
transformations by Rendall and Weaver [239] (compare [64]). See also [103] for the
related problem of an exhaustive description of Cauchy horizons in those models.

6.1.2. Other U(1)×U(1) symmetric models. The existence of two Killing vectors is
also compatible with S3, L(p, q) (“lens” spaces), and S1 × S2 topologies. Thus, to
achieve a complete understanding of the set of spatially compact initial data with
precisely two Killing vectors one needs to extend Ringström’s analysis to those cases.
There is an additional difficulty that arises because of the occurrence of axes of
symmetry, where the (1+1)–reduced equations have the usual singularity associated
with polar coordinates. Nevertheless, in view of the analysis by Christodoulou and
Tahvildar-Zadeh [88, 87] (see also [90]), the global geometry of generic maximal
globally hyperbolic solutions with those topologies is reasonably well understood.
This leads one to expect that one should be able to achieve a proof of SCC in those
models using simple abstract arguments, but this remains to be seen.

Recall, finally, that general models with two Killing vectors X1 and X2 on T
3

have non-vanishing twist constants (6.2). The Gowdy metrics are actually “zero
measure” in the set of all U(1)×U(1) symmetric metrics on T

3 because ca ≡ 0 for
the Gowdy models. The equations for the resulting metrics are considerably more
complicated when the ca’s do not vanish, and only scant rigorous information is
available on the global properties of the associated solutions [33, 173, 235]. It seems
urgent to study the dynamics of those models, as they are expected to display [34]
“oscillatory behavior” as the singularity is approached, in the sense of Section 6.7.
Thus, they should provide the simplest model in which to study this behavior.

6.1.3. Spherical symmetry. One could think that the simplest possible asymptoti-
cally flat model for studying the dynamics of the gravitational field will be obtained
by requiring spherical symmetry, since then the equations should reduce to wave
equations in only two variables, t and r. Unfortunately, for vacuum space-times this
turns out to be useless for this purpose because of Birkhoff’s theorem [42], which
asserts that spherically symmetric vacuum metrics are static. So, if one wishes to
maintain spherical symmetry, supplementary fields are needed. The case of a scalar
field was studied in a series of intricate papers over 13 years by Christodoulou, be-
ginning with [80], and culminating in [82] with the verification of the strong cosmic
censorship conjecture within the model. Christodoulou further established “weak
cosmic censorship” in this class, an issue to which we return in the next section,
and exhibited non-generic examples for which the conclusions of these conjectures
fail [81].

The situation changes when electromagnetic fields are introduced. The analysis
by Dafermos [111, 112] of the spherically symmetric Einstein-Maxwell-scalar field
equations yields a detailed picture of the interior of the black hole for this model,
in terms of initial data specified on the event horizon and on an ingoing null hy-
persurface. When combined with the work by Dafermos and Rodnianski [113] on
Price’s law, one obtains the following global picture: initial data with a compactly
supported scalar field, and containing a trapped surface (see Section 7.2 below),
lead to space-times which either contain a degenerate (extremal) black hole, or de-
velop a Cauchy horizon, with a space-time metric that can be continued past this
horizon in a C0, but not C1 manner. It seems that not much is known about the
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properties of the degenerate solutions, which are presumably non-generic; it would
be of interest to clarify that. In any case, the work shows that strong cosmic cen-
sorship holds within the class of nondegenerate solutions with trapped surfaces, at
the C1 level, leaving behind the perplexing possibility of continuous extendability
of the metric.

The reader is referred to [3, 91, 237] and references therein for further reading
on SCC.

6.2. Weak cosmic censorship. The strong cosmic censorship conjecture is an
attempt to salvage predictability of Einstein’s theory of gravitation. There exists
a variant thereof which addresses the fact that we do not seem to observe any of
the singularities that are believed to accompany gravitational collapse. The hope is
then that, generically, in asymptotically flat space-times, any singular behavior that
might form as a result of gravitational collapse, such as causality violations, lack of
predictability, or curvature singularities, will be clothed by an event horizon. For
this, one introduces the notion of future null infinity, which is an idealized boundary
attached to space-time that represents, loosely speaking, the end points of null
geodesics escaping to infinity. (In stationary situations this is closely related to the
region Mext of (3.24).) The black hole event horizon is then the boundary of the past
of null infinity; compare (3.25) and (3.26). One then wishes the part of the space-
time that lies outside the black hole region to be well-behaved and “sufficiently
large”. This is the content of the weak cosmic censorship conjecture, originally due
to Penrose [232], as made precise by Christodoulou [83]: for generic asymptotically
flat initial data, the maximal globally hyperbolic development has a complete future
null infinity. Heuristically this means that, disregarding exceptional sets of initial
data, no singularities are observed at large distances, even when the observations are
continued indefinitely. One should remark that, despite the names, the strong and
weak cosmic censorship conjectures are logically independent; neither follows from
the other. Note also that some predictability of Einstein’s theory would be salvaged
if strong cosmic censorship failed with weak cosmic censorship being verified, since
then the failure of predictability would be invisible to outside observers.

Both cosmic censorship conjectures are intimately related to the issue of grav-
itational collapse, the dynamical formation of black holes and singularities, first
observed for a homogeneous dust model by Oppenheimer and Snyder in 1939 [227],
visualized in Figure 6.1.

So far the only complete analysis of weak cosmic censorship in a field theo-
retical model is that of the spherically symmetric scalar field model studied by
Christodoulou [82, 81], already mentioned in Section 6.1.3.

6.3. Stability of vacuum cosmological models. Not being able to understand
the dynamics of all solutions, one can ask whether some features of certain par-
ticularly important solutions persist under small perturbations of initial data. For
example, will geodesic completeness still hold for space-times arising from small
perturbations of Minkowskian initial data? Or, will a global, all encompassing,
singularity persist under perturbations of Bianchi IX initial data (see Section 6.6).
Such questions are the object of stability studies.

6.3.1. U(1) symmetry. Our understanding of models with exactly one Killing vector
is dramatically poorer than that of U(1) × U(1) symmetric space-times. Here one
only has stability results, for small perturbations within the U(1) isometry class
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Figure 6.1. Light-cones in the Oppenheimer-Snyder collapse.??

in the expanding direction (“away from the singularity”): In [67] Choquet-Bruhat
considers U(1) symmetric initial data (h,K) for the vacuum Einstein equations on
a manifold of the form M × S1, where M is a compact surface of genus g > 1. It
is assumed that trhK is constant, and that (h,K) are sufficiently close to (h0,K0),
where h0 is a product metric

h0 = γ + dx2 ,

with γ being a metric of constant Gauss curvature on M , and with K0 proportional
to h0. The sign of the trace of K0 determines an expanding time direction and a
contracting one. Under those conditions, Choquet-Bruhat proves that the solution
exists for an infinite proper time in the expanding direction. The analysis builds
upon previous work by Choquet-Bruhat and Moncrief [77], where a supplementary
polarization condition has been imposed. Not much is known in the contracting
direction in the U(1)-symmetric models (see, however, [170]), where “mixmaster
behavior”8 is expected [32, 36]; compare [37].

6.3.2. Future stability of hyperbolic models. The proof of the above result bears
some similarity to the future stability theorem of Andersson and Moncrief [11], as
generalized in [9], for spatially compact hyperbolic models without any symmetries.
Those authors consider initial data near a negatively curved compact space form,
with the extrinsic curvature being close to a multiple of the metric, obtaining future
geodesic completeness in the expanding direction. The control of the solution is
obtained by studying the Bel-Robinson tensor and its higher-derivatives analogues.
A striking ingredient of the proof is an elliptic-hyperbolic system of equations, used
to obtain local existence in time [10].

6.4. Stability of Minkowski space-time.

8See the discussion after Theorem 6.7, and Section 6.7.
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6.4.1. The Christodoulou-Klainerman proof. One of the flagship results in mathe-
matical general relativity is nonlinear stability of Minkowski space-time, first proved
by Christodoulou and Klainerman [85]. One starts with an asymptotically flat vac-
uum initial data set (h,K) on R

3. Under standard asymptotic flatness conditions,
for (h,K) sufficiently close to Minkowskian data, the maximal globally hyperbolic
development (M , g) of the data contains a maximal hypersurface, i.e., a hypersur-
face satisfying trhK = 0; this follows from the results in [23, 86, 17]. So without
loss of generality one can, in the small data context, assume that the initial data
set is maximal.

The precise notion of smallness needed for the Christodoulou-Klainerman theo-
rem is defined as follows: For p ∈ Σ ≈ R

3, a > 0, consider the quantity

(6.8) Q(a, p) = a−1

∫

Σ

{
1∑

ℓ=0

(d2
p + a2)ℓ+1|∇ℓRic|2 +

2∑

ℓ=1

(d2
p + a2)ℓ|∇ℓK|2}dµg ,

where dp is the geodesic distance function from p, Ric is the Ricci tensor of the
metric g, dµg is the Riemannian measure of the metric g and ∇ is the Riemannian
connection of g. Let

Q∗ = inf
a>0, p∈Σ

Q(a, p) .

Christodoulou and Klainerman prove causal geodesic completeness of (M , g) pro-
vided that Q∗ is sufficiently small. The proof proceeds via an extremely involved
bootstrap argument involving a foliation by maximal hypersurfaces Σt together
with an analysis of the properties of an optical function u. In the context here this
is a solution of the eikonal equation

gαβ∂au∂βu = 0 ,

the level sets Cu of which intersect Σt in spheres which expand as t increases. We
have:

Theorem 6.4 (Global Stability of Minkowski space-time). Assume that (M,h,K)
is maximal, with9

(6.9) hij = δij + o3(r
−1/2), Kij = o2(r

−3/2) .

There is an ǫ > 0 such that if Q∗ < ǫ, then the maximal globally hyperbolic devel-
opment (M , g) of (M,h,K) is geodesically complete.

The above version of Theorem 6.4 is due to Bieri [41]. The original formulation
in [85] assumes moreover that

(6.10) h = (1 + 2M/r)δ + o4(r
−3/2), K = o3(r

−5/2) ,

and in the definition (6.8) a term involving K with ℓ = 0 is added.
By definition, asymptotically flat initial data sets approach the Minkowskian

ones as one recedes to infinity. One therefore expects that at sufficiently large dis-
tances one should obtain “global existence”, in the sense that the maximal globally
hyperbolic development contains complete outgoing null geodesics. This question
has been addressed by Klainerman and Nicolò [181, 182, 180]; the reader is referred
to those references for precise statements of the hypotheses made:

9A function f on M is ok(r−λ) if rλ+i∇if → 0 as r → ∞ for all i = 0, . . . k.
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Theorem 6.5. Consider an asymptotically flat initial data set (M,h,K), with
maximal globally hyperbolic development (M , g). Let Ωr denote a conditionally
compact domain bounded by a coordinate sphere Sr ⊂ Mext. There exists R > 0
such that for all r ≥ R the generators of the boundary ∂J+(Ωr) of the domain of
influence J+(Ωr) of Ωr are future-complete.

Both in [85] and in [181] one can find detailed information concerning the be-
havior of null hypersurfaces as well as the rate at which various components of the
Riemann curvature tensor approach zero along timelike and null geodesics.

6.4.2. The Lindblad-Rodnianski proof. A completely new proof of stability of Minkowski
space-time has been given by Lindblad and Rodnianski [195, 194]. The method pro-
vides less detailed asymptotic information than [85] and [181] on various quantities
of interest but is much simpler. The argument is flexible enough to allow the
inclusion of a scalar field, or of a Maxwell field [200, 201] (compare [280] for an
analysis along the lines of the Christodoulou-Klainerman approach), and general-
izes to higher dimensions [70]. Further it allows the following, less restrictive than
that in [85, 181], asymptotic behavior of the initial data, for some α > 0:

(6.11) h = (1 + 2m/r)δ +O(r−1−α) , K = O(r−2−α) .

Lindblad and Rodnianski consider the Einstein-Maxwell equations with a neutral
scalar field:

(6.12) Rµν − R

2
gµν = Tµν + T̂µν ,

with

T̂µν = ∂µψ ∂νψ − 1

2
gµν

(
gαβ∂αψ ∂βψ

)
, Tµν = 2(FµλF

λ
ν − 1

4
gµνF

λρFλρ) .

The initial data are prescribed on R
n, so that the Maxwell field F has a global

potential A, Fµν = ∂µAν − ∂νAµ. The matter field equations read

(6.13) DµF
µν = 0 , �gψ = 0 .

The initial data, denoted by (̊h, K̊, Å, E̊, ψ0, ψ1) (where, roughly speaking, Å is the

initial value for the Maxwell potential and E̊ is the initial value for the electric
field), satisfy the following asymptotic conditions, for r = |x| → ∞, with some
α > 0:

(6.14)

h̊ij =

{
(1 + 2m

r )δij +O(r−1−α) , for n = 3 ,

δij +O(r
1−n

2
−α) , for n ≥ 4 ,

Å = O(r
1−n

2
−α) , K̊ij = O(r−

n+1

2
−α) , E̊ = O(r−

n+1

2
−α) ,

ψ0 := ψ|t=0 = O(r
1−n

2
−α) , ψ1 := ∂tψ|t=0 = O(r−

n+1
2

−α)

The strategy is to impose globally the wave coordinates condition

(6.15) ∂µ

(
gµν
√
|det g|

)
= 0 ∀ν = 0, ..., n,

as well as the Lorenz gauge for the electromagnetic potential Aµ,

∂µ

(√
|det g|Aµ

)
= 0 .(6.16)
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The initial data are decomposed as

(6.17) h1
µν = hµν − h0

µν , with h0
µν(t) =

{
χ(r/t)χ(r)2m

r δµν for n = 3 ,

0 for n ≥ 4 ,

where χ ∈ C∞ is any function such that χ(s) equals 1 for s ≥ 3/4 and 0 for s ≤ 1/2.
The proof relies heavily on the structure of the nonlinear terms in wave coordinates.

Recall that there exists an extensive literature on wave equations in 3+1 dimen-
sions with nonlinearities satisfying the null condition [178, 179], but the nonlinear-
ities that arise do not satisfy that condition. The argument works only because
different components of h can be treated on a different footing. Indeed, for solu-
tions of the wave equation on Minkowski space-time, the derivatives in directions
tangent to the light cones decay faster than the transverse ones. But the wave
coordinates condition (6.15) can be used to express the transverse derivatives of
some components of gµν in terms of tangential derivatives of the remaining ones.
This provides control of the nonlinearities.

We also note the small data global existence results of [190, 160] on R
n+1, n ≥ 4,,

and of [79] for odd n ≥ 5. The structure conditions there are general enough to
cover the Einstein equations in wave coordinates, but the assumptions on the fall-off
of initial data exclude non-trivial solutions of the vacuum constraint equations10

We have:

Theorem 6.6. Consider smooth initial data (̊h, K̊, Å, E̊, ψ0, ψ1) on R
n, n ≥ 3,

satisfying (6.14) together with the Einstein-Maxwell constraint equations. Let N ∈
N, suppose that Nn := N + [n+2

2 ] − 2 ≥ 6 + 2[n+2
2 ], and set

ENn,γ(0) =
∑

0≤|I|≤Nn

(
||(1 + r)1/2+γ+|I|∇∇Ih1

0||2L2 + ||(1 + r)1/2+γ+|I|∇IK̊||2L2

(6.18)

+||(1 + r)1/2+γ+|I|∇∇IÅ||2L2 + ||(1 + r)1/2+γ+|I|∇IE̊||2L2

+‖(1 + r)1/2+γ+|I|∇∇Iψ0‖L2 + ‖(1 + r)1/2+γ+|I|∇Iψ1‖L2

)
.

Let m be the ADM mass of h̊. For every γ0 > 0 there exists ε0 > 0, with γ0(ε0) → 0
as ε0 → 0, such that if

(6.19)
√
ENn,γ(0) +m ≤ ε0,

for some γ > γ0, then the maximal globally hyperbolic development of the initial
data is geodesically complete.

6.5. Towards stability of Kerr: wave equations on black hole backgrounds.

Since the pioneering work of Christodoulou and Klainerman on stability of Minkowski
space-time, many researchers have been looking into ways to address the question
of stability of Kerr black holes. The first naive guess would be to study stability
of Schwarzschild black holes, but those cannot be stable since a generic small per-
turbation will introduce angular momentum. The current strategy is to study, as
a first step, linear wave equations on black hole backgrounds, with the hope that

10In [190, 160] compactly supported data are considered. In the theorem for general quasi-
linear systems given in [79] the initial data are in a Sobolev space which requires fall-off at infinity

faster than r−n−3/2. In both cases the positive energy theorem implies that such initial data lead
to Minkowski space-time.
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Table 6.1. Lie groups of Bianchi class A.

Bianchi type n1 n2 n3 Simply connected group
I 0 0 0 Abelian R

3

II + 0 0 Heisenberg
VI0 0 + − Sol (isometries of the Minkowski plane R

1,1)
VII0 0 + + universal cover of Euclid (isometries of R

2)
VIII − + + universal cover of SL(2,R)
IX + + + SU(2)

sufficiently robust linear decay estimates can be bootstrapped to produce a nonlin-
ear stability proof. Due to limited space we will not review those results, referring
the reader to recent important papers on the subject [114, 116, 115, 204, 43, 4, 44,
263, 264], see also [132] and references therein.

6.6. Bianchi A metrics. Another important example of the intricate dynamical
behavior of solutions of the Einstein equations is provided by the “Bianchi A”
vacuum metrics. The key insight provided by these space-times is the supposedly
chaotic behavior of large families of metrics in this class when a singularity is
approached. This dynamics has been conjectured to be generic; we will return
to this issue in Section 6.7. As will be seen shortly, in Bianchi A space-times
the Einstein evolution equations reduce to a polynomial dynamical system on an
algebraic four-dimensional submanifold of R

5. The spatial parts of the Bianchi
geometries provide a realization of six, out of eight, homogeneous geometries in
three dimensions which form the basis of Thurston’s geometrization program.

For our purposes here we define the Bianchi space-times as maximal globally
hyperbolic vacuum developments of initial data which are invariant under a simply
transitive group of isometries. Here the transitivity of the isometry group is meant
at the level of initial data, and not for the space-time. The name is a tribute
to Bianchi, who gave the classification of three dimensional Lie algebras which
underline the geometry here. These metrics split into two classes, Bianchi A and
Bianchi B, as follows: Let G be a 3-dimensional Lie group, and let Zi, i = 1, 2, 3
denote a basis of left-invariant vector fields on G. Define the structure constants
γk

ij by the formula

[Zi, Zj] = γij
kZk .

The Lie algebra and Lie group are said to be of class A if γik
k = 0; class B are the

remaining ones. The classes A and B correspond in mathematical terminology to
the unimodular and non-unimodular Lie algebras. A convenient parameterization
of the structure constants is provided by the symmetric matrix nij defined as

(6.20) nij =
1

2
γkl

(iǫj)kl.

This implies γij
k = ǫijmn

km. The Bianchi A metrics are then divided into six
classes, according to the eigenvalues of the matrix nij , as described in Table 6.1.
For the Bianchi IX metrics, of particular interest to us here, the group G is SU(2).
Thus, the Taub metrics discussed in Section ?? are members of the Bianchi IX
family, distinguished by the existence of a further U(1) factor in the isometry group.

Let G be any three-dimensional Lie group, the Lie algebra of which belongs
to the Bianchi A class. (The G’s are closely related to the Thurston geometries,
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see Table 6.1; compare [3, Table 2]). Denote by {σi} the basis dual to {Zi}. It is
not too difficult to show that both A and B Bianchi metrics can be globally written
as

(6.21) g = −dt2 + hij(t)σ
iσj , t ∈ I ,

with a maximal time interval I.
There are various ways to write the Einstein equations for a metric of the form

(6.21). We use the formalism introduced by Wainwright and Hsu [268], which has
proven to be most useful for analytical purposes [236, 240, 241], and we follow the
presentation in [240]. Let

σij = Kij −
1

3
trhKhij , θ := trhK ,

be the trace-free part of the extrinsic curvature tensor of the level sets of t. Away
from the (isolated) points at which θ vanishes, one can introduce

Σij = σij/θ ,

Nij = nij/θ ,

Bij = 2N k
i Nkj −Nk

kNij ,

Sij = Bij −
1

3
Bk

kδij .

Set Σ+ = 3
2 (Σ22 +Σ33) and Σ− =

√
3(Σ22−Σ33)/2. If we let Ni be the eigenvalues

of Nij , the vacuum Einstein equations (a detailed derivation of which can be found
in [240]) lead to the following autonomous, polynomial dynamical system

N ′
1 = (q − 4Σ+)N1 ,

N ′
2 = (q + 2Σ+ + 2

√
3Σ−)N2 ,

N ′
3 = (q + 2Σ+ − 2

√
3Σ−)N3 ,(6.22)

Σ′
+ = −(2 − q)Σ+ − 3S+ ,

Σ′
− = −(2 − q)Σ− − 3S− ,

where a prime denotes derivation with respect to a new time coordinate τ defined
by

(6.23)
dt

dτ
=

3

θ
.

Further,

q = 2(Σ2
+ + Σ2

−) ,

S+ =
1

2
[(N2 −N3)

2 −N1(2N1 −N2 −N3)] ,(6.24)

S− =

√
3

2
(N3 −N2)(N1 −N2 −N3) .

The vacuum constraint equations reduce to one equation,

(6.25) Σ2
+ + Σ2

− +
3

4
[N2

1 +N2
2 +N2

3 − 2(N1N2 +N2N3 +N3N1)] = 1 .

The points (N1, N2, N3,Σ+,Σ−) can be classified according to the values ofN1, N2, N3

in the same way as the ni’s in Table 6.1. The sets Ni > 0, Ni < 0 and Ni = 0 are in-
variant under the flow determined by (6.22), and one can therefore classify solutions
to (6.22)-(6.25) accordingly. Bianchi IX solutions correspond, up to symmetries of



46 PIOTR T. CHRUŚCIEL, GREGORY J. GALLOWAY, AND DANIEL POLLACK

the system, to points with all Ni’s positive, while for Bianchi V III solutions one
can assume that two Ni’s are positive and the third is negative.

Points with N1 = N2 = N3 = 0 correspond to Bianchi I models. The associated
vacuum metrics were first derived by Kasner, and take the form

(6.26) ds2 = −dt2 +
3∑

i=1

t2pidxi ⊗ dxi , p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1 .

An important role in the analysis of (6.22) is played by the Kasner circle, defined
as the set {q = 2}. These points belong to the configuration space, as determined
by (6.25), for Bianchi I models, but the equation q = 2 is incompatible with (6.25)
for Bianchi IX metrics. Nevertheless, we shall see shortly that the Kasner circle
plays an essential role in the analysis of the Bianchi IX dynamics.

The set Σ− = 0, N2 = N3, together with its permutations, is invariant under
the flow of (6.22)-(6.25). In the Bianchi IX case these are the Taub solutions.
In the Bianchi V III case the corresponding explicit solutions, known as the NUT
metrics, have been found by Newman, Tamburino and Unti [221], and they exhibit
properties similar to the Bianchi IX Taub solutions discussed in Section ??.

The ω-limit of an orbit γ of a dynamical system is defined as the set of accumu-
lation points of that orbit. In [240, 241], Ringström proves the following:

Theorem 6.7. The ω-limit set of each non-NUT Bianchi V III orbit contains at
least two distinct points on the Kasner circle. Similarly, non-Taub–NUT Bianchi
IX orbits have at least three distinct ω-limit points on the Kasner circle.

The picture which emerges from a numerical analysis of (6.22) (see [35, 107]
and references therein) is the following: Every non-Taub–NUT Bianchi IX orbit
approaches some point on the Kasner circle; there it performs a “bounce”, after
which it eventually approaches another point on the Kasner circle, and so on.
Theorem 6.7 establishes the validity of this picture. The numerical analysis further
suggests that generic orbits will have a dense ω-limit set on the Kasner circle;
this is compatible with, but does not follow from, Ringström’s analysis. It has
been argued that the map which associates to each bounce the nearest point on
the Kasner circle possesses chaotic features; this is at the origin of the “mixmaster
behavior” terminology, sometimes used in this context. Whether or not this is true,
and in which sense, remains to be seen.

The following result of Ringström [240] provides further insight into the geometry
of Bianchi IX space-times:

Theorem 6.8. In all maximal globally hyperbolic developments (M , g) of non-
Taub–NUT Bianchi IX vacuum initial data or of non-NUT Bianchi V III vacuum
initial data the Kretschmann scalar

RαβγδR
αβγδ

is unbounded along inextendible causal geodesics.

Note that the observation of curvature blow-up provides a proof, alternative to
that of [106], of the non-existence of Cauchy horizons in generic Bianchi IX models.

We close this section by mentioning that no similar rigorous results are known
concerning the global dynamical properties of Bianchi models of class B; com-
pare [153].



MATHEMATICAL GENERAL RELATIVITY 47

Figure 6.2. A few “bounces” in a typical Bianchi IX orbit; fig-
ures and numerics by Woei-Chet Lim. The vertical axis represents
N1 (red), N2 (green), N3 (blue), with only the biggest of the Ni’s
plotted. The Kasner circle and the triangle for the Kasner billiard
in the (Σ+,Σ−)–plane are shown. The projected trajectories can
be seen to approach the billiard ones.

6.7. The mixmaster conjecture. The most important question in the study of
the Cauchy problem is that of the global properties of the resulting space-times. So
far we have seen examples of geodesically complete solutions (e.g., small pertur-
bations of Minkowski space-time), or all-encompassing singularities (e.g., generic
Bianchi models), or of Cauchy horizons (e.g., Taub–NUT metrics). The geodesi-
cally complete solutions are satisfying but dynamically uninteresting, while the
strong cosmic censorship conjecture expresses the hope that Cauchy horizons will
almost never occur. So it appears essential to have a good understanding of the
remaining cases, presumably corresponding to singularities. Belinski, Khalatnikov
and Lifschitz [32] suggested that, near singularities, at each space point the dynam-
ics of the gravitational field resembles that of generic Bianchi metrics, as described
in Section 6.6. Whether or not this is true, and in which sense, remains to be
seen; in any case the idea, known as the BKL conjecture, provided guidance —
and still does — to a significant body of research on general relativistic singulari-
ties; see [16, 123, 119] and references therein. This then leads to the mathematical
challenge of making sense of the associated slogan, namely that the singularity in
generic gravitational collapse is spacelike, local, and oscillatory. Here spacelike is
supposed to mean that strong cosmic censorship holds. The term local refers to the
idea that, near generic singularities, there should exist coordinate systems in which
the metric asymptotes to a solution of equations in which spatial derivatives of
appropriately chosen fields have been neglected.11 Finally, oscillatory is supposed
to convey the idea that the approximate solutions will actually be provided by the
Bianchi IX metrics.

11The resulting truncated equations should then presumably resemble the equations satisfied
by spatially homogeneous metrics. However, different choices of quantities which are expected
to be time-independent will lead to different choices of the associated notion of homogeneity; for

instance, in [32] the types Bianchi VIII and IX are singled out; the notion of genericity of those
types within the Bianchi A class is read from Table 6.1 as follows: “something that can be non-
zero is more generic than something that is”. On the other hand, the analysis in [150] seems to
lead to Bianchi V I−1/9 metrics.
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The main rigorous evidence for a relatively large class of vacuum12 space-times
with singularities which are spacelike and local in the sense described above is
Ringström’s Theorem 6.3, describing generic Gowdy metrics, but the resulting sin-
gularities are not oscillatory. This is not in contradiction with the conjecture, since
the Gowdy metrics are certainly not generic, whether in the space of all metrics, or
in the space of U(1)×U(1) symmetric ones: As mentioned in Section 6.3.1, generic
U(1)×U(1) metrics have non-vanishing twist constants ca as defined by (6.2). The
numerical studies of [34] suggest that the switching-on of the twist constants will
indeed generically lead to some kind of oscillatory behavior.

In fact, BKL put emphasis on Bianchi IX models, while some other authors
seem to favor Bianchi V I−1/9, or not-necessarily Bianchi, oscillations [32, 150, 267,
36, 119]. It has moreover been suggested that the oscillatory behavior disappears
in space-time dimensions higher than ten [121, 119], and large families of non-
oscillatory solutions with singularities have indeed been constructed in [120]. This
leads naturally to the following, somewhat loose, conjecture:

Conjecture 6.9 (Mixmaster conjecture). Let n+ 1 ≤ 10. There exist open sets of
vacuum metrics for which some natural geometric variables undergo oscillations of
increasing complexity along inextendible geodesics of unbounded curvature.

The BKL conjecture would thus be a more precise version of the above, claiming
moreover genericity of the behavior, and pointing out to the Bianchi dynamics as
the right model. Those properties are so speculative that we decided not to include
them in Conjecture 6.9.

The only examples so far of oscillatory singularities which are not spatially ho-
mogeneous have been constructed by Berger and Moncrief [37]. There, a solution-
generating transformation is applied to Bianchi IX metrics, resulting in non-ho-
mogeneous solutions governed by the “oscillatory” functions arising from a non-
Taub Bianchi IX metric. The resulting metrics have at least one but not more
than two Killing vectors. The analysis complements the numerical evidence for
oscillatory behavior in U(1) symmetric models presented in [38].

7. Marginally trapped surfaces

There have been some interesting recent developments at the interface of space-
time geometry and the theory of black holes associated with the notion of marginally
outer trapped surfaces. Let Σ be a co-dimension two spacelike submanifold of a
space-time M . Under suitable orientation assumptions, there exist two families of
future directed null geodesics issuing orthogonally from Σ. If one of the families has
vanishing expansion along Σ, then Σ is called a marginally outer trapped surface
(or an apparent horizon). The notion of a marginally outer trapped surface was in-
troduced early on in the development of the theory of black holes, as the occurrence
of the former signals the presence of the latter. More recently, marginally outer
trapped surfaces have played a fundamental role in quasi-local descriptions of black
holes, and have been useful in numerical simulations of black hole space-times; see
e.g. [15]. Marginally outer trapped surfaces arose in a more purely mathematical
context in the work of Schoen and Yau [252] concerning the existence of solutions
to the Jang equation, in connection with their proof of the positivity of mass.

12See, however, [12, 120] for a class of space-times with sources; [120] also covers vacuum in
space dimensions n ≥ 10.
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Mathematically, marginally outer trapped surfaces may be viewed as space-time
analogues of minimal surfaces in Riemannian manifolds. Despite the absence of
a variational characterization like that for minimal surfaces,13 marginally trapped
surfaces have recently been shown to satisfy a number of analogous properties, cf.,
in particular, [5, 6, 7, 8, 14, 125, 139]. The aim of this section is to describe some
of these mathematical developments.

7.1. Null hypersurfaces. Each family of null geodesics issuing orthogonally from
Σ, as described above, forms a smooth null hypersurface near Σ. It would be
useful at this stage to discuss some general aspects of such hypersurfaces. Null
hypersurfaces have an interesting geometry, and play an important role in general
relativity. In particular, as we have seen, they represent horizons of various sorts,
such as the event horizons discussed in Section 3.

Let (M n+1, g) be a space-time, with n ≥ 2. A smooth null hypersurface in M is
a smooth co-dimension one submanifold N = N n of M such that the restriction of
g to each tangent space TpN of N is degenerate. This, together with the Lorentz
signature, implies that there is a unique direction of degeneracy in each tangent
space TpN . Thus, every null hypersurface N comes equipped with a smooth
future directed null vector field K (g(K,K) = 0) defined on, and tangent to N ,
such that the normal space of K at each p ∈ N coincides with the tangent space of
N at p, i.e., K⊥

p = TpN for all p ∈ N . Tangent vectors to N , transverse to K,
are then necessarily spacelike. The null vector field K associated to N is unique
up to positive pointwise rescaling. However, there is, in general, no canonical way
to set the scaling.

Two simple examples arise in Minkowski space R
1,n. The past and future cones

∂I−(p) and ∂I+(p) are smooth null hypersurfaces away from the vertex p. Each
nonzero null vector v ∈ TpR

1,n determines a null hyperplane Π = {q ∈ R
1,n :

η( #�pq, v) = 0}, where η is the Minkowski metric, and #�pq is the tangent vector at p
representing the displacement from p to q.

It is a fundamental fact that the integral curves of K are null geodesics, though
perhaps not affinely parameterized - this will depend on the scaling of K. Thus N

is ruled by null geodesics, called the null generators of N . For example the future
cone N = ∂I+(p) \ {p} in Minkowski space is ruled by future directed null rays
emanating from p.

The null expansion scalar θ of N with respect to K is a smooth function on N

that gives a measure of the average expansion of the null generators of N towards
the future. In essence, θ is defined as the divergence of the vector field K along N .
To be precise, given p ∈ N , let Πn−1 be a co-dimension one subspace of TpN

n

transverse to Kp. The metric g, restricted to Πn−1, will be positive definite. Let
{e1, e2, ..., en−1} be an orthonormal basis for Πn−1 with respect to g. Then θ at p
is defined as,

(7.1) θ(p) =

n−1∑

i=1

g(∇ei
K, ei) .

Interestingly, due to the fact that K is null, this value is independent of the choice
of transverse subspace Πn−1, as well as of the choice of an orthonormal basis for
Πn−1, and so the expansion scalar θ is well defined.

13There seems to be no analogue of the area functional.
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While θ depends on the choice of K, it does so in a simple way. As easily
follows from Equation (7.1), a positive rescaling of K rescales θ in the same way:

If K̃ = fK then θ̃ = fθ. Thus the sign of the null expansion θ does not depend
on the scaling of K: θ > 0 means expansion on average of the null generators,
and θ < 0 means contraction on average. In Minkowski space, the future null cone
N = ∂I+(p) \ {p} has θ > 0, and the past cone, N = ∂I−(p) \ {p}) has θ < 0.

It is useful to understand how the null expansion varies as one moves along a
null generator of N . Let s→ η(s) be a null geodesic generator of N , and assume
K is scaled so that η is affinely parameterized. Then it can be shown that the null
expansion scalar θ = θ(s) along η satisfies the propagation equation,

(7.2)
dθ

ds
= −Ric(η′, η′) − σ2 − 1

n− 1
θ2 ,

where σ ≥ 0, the shear scalar, measures the deviation from perfect isotropic ex-
pansion. Equation (7.2) is known in the relativity community as the Raychaud-
huri equation (for a null geodesic congruence) [148], and, together with a timelike
version, plays an important role in the proofs of the classical Hawking-Penrose sin-
gularity theorems [148]. There are well-known Riemannian counterparts to this
equation, going back to work of Calabi [60].

Equation (7.2) shows how the curvature of space-time influences the expansion
of the null generators. We consider here a simple application of the Raychaudhuri
equation.

Proposition 7.1. Let M be a space-time which obeys the null energy condition,
Ric (X,X) = RαβX

αXβ ≥ 0 for all null vectors X, and let N be a smooth null
hypersurface in M . If the null generators of N are future geodesically complete
then the null generators of N have nonnegative expansion, θ ≥ 0.

Proof. Suppose θ < 0 at p ∈ N . Let η : [0,∞) → N , s → η(s), be the null
geodesic generator of N passing through p = η(0); by rescaling K if necessary,
we can assume η is affinely parameterized. Let θ = θ(s), s ∈ [0,∞), be the null
expansion of N along η; hence θ(0) < 0. Raychaudhuri’s equation and the null
energy condition imply that θ = θ(s) obeys the inequality,

(7.3)
dθ

ds
≤ − 1

n− 1
θ2 ,

and hence θ < 0 for all s > 0. Dividing through by θ2 then gives,

(7.4)
d

ds

(
1

θ

)
≥ 1

n− 1
,

which implies 1/θ → 0, i.e., θ → −∞ in finite affine parameter time, contradicting
the smoothness of θ. �

We wish to indicate the connection of Proposition 7.1 with the theory of black
holes. In fact, this proposition is the most rudimentary form of Hawking’s famous
area theorem [148]. Let M be a standard black hole space-time, as defined for
example in [148]. It is not necessary to go into the technical details of the definition.
It suffices to say that in M there exists a region B, the black hole region, from
which signals (future directed causal curves) cannot “escape to infinity” (recall the
example of the Schwarzschild solution discussed in Section 3.1). The boundary of
this region is the event horizon E , which, in general, is a Lipschitz hypersurface
ruled by future inextendible null geodesics, called its null generators. If E is smooth
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and if its generators are future complete then Proposition 7.1 implies that E has
nonnegative null expansion. This in turn implies that “cross-sections” of E are
nondecreasing in area as one moves towards the future, as asserted by the area
theorem. In the context of black hole thermodynamics, the area theorem is referred
to as the second law of black mechanics, and provides a link between gravity and
quantum physics. As it turns out, the area theorem remains valid without imposing
any smoothness assumptions; for a recent study of the area theorem, which focuses
on these issues of regularity, see [99].

7.2. Trapped and marginally trapped surfaces. We begin with some defini-
tions. Let Σ = Σn−1, n ≥ 3, be a spacelike submanifold of co-dimension two in a
space-time (M n+1, g). Regardless of the dimension of space-time, we shall refer to
Σ as a surface, which it actually is in the 3 + 1 case. We are primarily interested
in the case where Σ is compact (without boundary), and so we simply assume this
from the outset.

Each normal space of Σ, [TpΣ]⊥, p ∈ Σ, is timelike and 2-dimensional, and
hence admits two future directed null directions orthogonal to Σ. Thus, if the
normal bundle is trivial, Σ admits two smooth nonvanishing future directed null
normal vector fields l+ and l−, which are unique up to positive pointwise scaling,
see Figure 7.1. By convention, we refer to l+ as outward pointing and l− as inward
pointing.14 In relativity it is standard to decompose the second fundamental form

l− l+

Figure 7.1. The null future normals l± to Σ.

of Σ into two scalar valued null second forms χ+ and χ−, associated to l+ and l−,
respectively. For each p ∈ Σ, χ± : TpΣ × TpΣ → R is the bilinear form defined by,

χ±(X,Y ) = g(∇X l±, Y ) for all X,Y ∈ TpΣ .(7.5)

A standard argument shows that χ± is symmetric. Hence, χ+ and χ− can be traced
with respect to the induced metric γ on Σ to obtain the null mean curvatures (or
null expansion scalars),

(7.6) θ± = trγ χ± = γij(χ±)ij = divΣl± .

θ± depends on the scaling of l± in a simple way. As follows from Equation (7.5),
multiplying l± by a positive function f simply scales θ± by the same function.
Thus, the sign of θ± does not depend on the scaling of l±. Physically, θ+ (resp.,
θ−) measures the divergence of the outgoing (resp., ingoing) light rays emanating
from Σ.

It is useful to note the connection between the null expansion scalars θ± and the
expansion of the generators of a null hypersurface, as discussed in Section 7.1. Let
N+ be the null hypersurface, defined and smooth near Σ, generated by the null

14In many situations, there is a natural choice of “inward” and “outward”.
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geodesics passing through Σ with initial tangents l+. Then θ+ is the null expansion
of N+ restricted to Σ; θ− may be described similarly.

Let M be a spacelike hypersurface in a space-time (M , g), with induced metric
h and second fundamental form K, and suppose Σ is embedded as a 2-sided hyper-
surface in M . Then the null expansions θ± can be expressed in terms of the initial
data (M,h,K) as follows. Since Σ is 2-sided in M , it admits a smooth unit normal
field ν in M , unique up to sign. By convention, we refer to such a choice as outward
pointing. Letting u denote the future directed unit normal to M , l+ = u+ν (resp.,
l− = u − ν) is a future directed outward (resp., future directed inward) pointing
null normal vector field along Σ. Let θ± be the null expansion with respect to the
null normal l±. Then,

(7.7) θ± = trΣK ±H ,

where trΣK is the trace of the projection of K into Σ with respect to the induced
metric on Σ, and H is the mean curvature of Σ in M .

For round spheres in Euclidean slices of Minkowski space, with the obvious choice
of inside and outside, one has θ− < 0 and θ+ > 0. In fact, this is the case in general
for large “radial” spheres in asymptotically flat spacelike hypersurfaces. However,
in regions of space-time where the gravitational field is strong, one may have both
θ− < 0 and θ+ < 0, in which case Σ is called a trapped surface. For example
the black hole region, 0 < r < 2m, in (n + 1)-dimensional Schwarzschild space-
time (see Section 3.1) is foliated by spherically symmetric (n − 1)-spheres, all of
which are trapped surfaces. Under appropriate energy and causality conditions,
the occurrence of a trapped surface signals the onset of gravitational collapse. This
is the implication of the Penrose singularity theorem [231], the first of the famous
singularity theorems, which we take a momentary detour to discuss.

Theorem 7.2 (Penrose [231]). Let M be a globally hyperbolic space-time with
noncompact Cauchy surfaces satisfying the null energy condition. If M contains a
trapped surface Σ then M is future null geodesically incomplete.

Recall from Section 7.1 that the null energy condition is the curvature require-
ment, Ric (X,X) = RαβX

αXβ ≥ 0 for all null vectors X . If a space-time M obeys
the Einstein equation (2.8), then one can express the null energy condition in terms
of the energy momentum tensor: M obeys the null energy condition if and only if
T (X,X) = TijX

iXj ≥ 0 for all null vectors X .
In studying an isolated gravitating system, such as the gravitational collapse of a

star, it is customary to model the situation by a space-time which is asymptotically
flat. In this context, the assumption of Theorem 7.2 that the space-time admits
a noncompact Cauchy surface is natural. The conclusion in the theorem of future
null geodesic incompleteness is an indication that space-time “comes to an end” or
develops a singularity somewhere in the causal future. However, the theorem gives
no information about the nature of the singularity.

Existence of vacuum asymptotically flat initial data sets, with one asymptotic
region and containing compact trapped surfaces, has been established by Beig and
Ó Murchadha [31].

An intriguing question that arises in this context is whether a trapped surface
can develop dynamically from initial data that did not contain any. This has been
addressed by Christodoulou in [84], where a formidable analysis of the focusing
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effect of sufficiently strong incoming gravitational waves is presented. Some further
developments can be found in [186].

To continue our discussion, consider again the general setting of a spacelike
surface Σn−1 in a space-time M n+1, with future directed null normal fields l± and
associated null expansion scalars θ±. Focusing attention on just the outward null
normal l+, we say that Σ is an outer trapped surface (resp., weakly outer trapped
surface) if θ+ < 0 (resp., θ+ ≤ 0). If θ+ vanishes, we say that Σ is a marginally
outer trapped surface, or MOTS for short. In what follows we will be primarily
concerned with properties of MOTSs.

MOTSs arise naturally in a number of situations. As an outgrowth of their
work on the positive energy theorem, Schoen and Yau [253] showed that suitable
conditions on the energy density and momentum density of an asymptotically flat
initial data set insure the presence of a MOTS; see also [278]. Next, as follows
from our comments about the area theorem in Section 7.1, cross-sections of the
event horizon in black hole space-times have nonnegative expansion θ ≥ 0. (By a
cross-section, we mean a smooth intersection of the event horizon with a spacelike
hypersurface.) In the steady state limit this expansion goes to zero. Thus, it is a
basic fact that cross-sections of the event horizon in stationary black hole space-
times are MOTSs. For dynamical black hole space-times, MOTSs typically occur
in the black hole region, i.e., the region inside the event horizon. While there are
heuristic arguments for the existence of MOTSs in this situation, based on looking
at the boundary of the ‘trapped region’ [148, 269] within a given spacelike slice,
a result described by Schoen [246], recently proved by Andersson and Metzger [8]
in dimension three, and subsequently proved by Eichmair [125] up to dimension
seven, rigorously establishes their existence under physically natural conditions;
see Section 7.5.

As noted earlier, MOTSs may be viewed as space-time analogues of minimal
surfaces in Riemannian geometry. In fact, as follows from Equation (7.7), in the
time-symmetric case (K = 0) a MOTS is simply a minimal surface in M . Of
importance for certain applications is the fact, first discussed in [5], that MOTS
admit a notion of stability analogous to that for minimal surfaces.

7.3. Stability of MOTSs. In Riemannian geometry, a minimal surface (surface
with vanishing mean curvature) is stable provided, for a suitable class of variations,
the second variation of area is nonnegative, δ2A ≥ 0. Stability of minimal surfaces
can also be characterized in terms of the associated stability operator. This latter
approach extends to MOTSs, as we now describe.

Let Σ be a MOTS inM with outward unit normal ν. Consider a normal variation
of Σ in M , i.e. a map F : (−ǫ, ǫ) × Σ → M , such that (i) F (0, ·) = idΣ and
(ii) ∂F

∂t

∣∣
t=0

= φν, φ ∈ C∞(Σ). Let θ(t) denote the null expansion of Σt := F (t,Σ)
with respect to lt = u + νt, where u is the future directed timelike unit normal to
M and νt is the outer unit normal to Σt in M . A computation shows,

(7.8)
∂θ

∂t

∣∣∣∣
t=0

= L(φ) ,

where L : C∞(Σ) → C∞(Σ) is the operator [139, 6],

(7.9) L(φ) = −△φ+ 2〈X,∇φ〉 +

(
1

2
S − (ρ+ J(ν)) − 1

2
|χ|2 + divX − |X |2

)
φ .
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In the above, △, ∇ and div are the Laplacian, gradient and divergence operator,
respectively, on Σ, S is the scalar curvature of Σ, ρ and J are the energy density
and momentum density, respectively, as defined in Equations (5.3), (5.4), X is the
vector field on Σ defined by taking the tangential part of ∇νu along Σ, and 〈 , 〉
denotes the induced metric on Σ.

In the time-symmetric case, θ in (7.8) becomes the mean curvature H , the vector
field X vanishes and L reduces to the classical stability operator (linearization
of the mean curvature operator) of minimal surface theory. In analogy with the
minimal surface case, we refer to L in (7.9) as the stability operator associated
with variations in the null expansion θ. Although in general L is not self-adjoint,
its principal eigenvalue (eigenvalue with smallest real part) λ1(L) is real. Moreover
there exists an associated eigenfunction φ which is positive on Σ. Continuing the
analogy with the minimal surface case, we say that a MOTS is stable provided
λ1(L) ≥ 0. (In the minimal surface case this is equivalent to the second variation
of area being nonnegative.) It follows from basic properties of L that a MOTS Σ
is stable if and only if there exists a normal variation of Σ, with φ > 0, such that
∂θ
∂t

∣∣
t=0

≥ 0.
Stable MOTSs arise naturally in physical situations, for example, as outermost

MOTSs. We say Σ is an outermost MOTS in M provided there are no weakly
outer trapped (θ+ ≤ 0) surfaces outside of, and homologous to, Σ. We say Σ is
a weakly outermost MOTS in M provided there are no outer trapped (θ+ < 0)
surfaces outside of, and homologous to, Σ. Clearly, “outermost” implies “weakly
outermost”. Moreover we have the following [5, 6]:

Proposition 7.3. Weakly outermost MOTSs are stable.

To see this consider a variation {Σt} of a weakly outermost MOTS Σ with
variation vector field V = φν, where φ is a positive eigenfunction associated to the
principal eigenvalue λ1 = λ1(L). If λ1 < 0, then Equation (7.8) implies ∂θ

∂t

∣∣
t=0

=

λ1φ < 0. Since θ(0) = 0, this implies that, for small t > 0, Σt is outer trapped,
contrary to Σ being weakly outermost.

A standard fact in the theory of black holes is that, for black hole space-times
obeying the null energy condition, there can be no weakly outer trapped surfaces
contained in the domain of outer communications (the region outside of all black
holes and white holes). It follows that compact cross-sections of the event horizon
in stationary black hole space-times obeying the null energy condition are stable
MOTSs. Moreover, results of Andersson and Metzger [7, 8] provide natural criteria
for the existence of outermost MOTSs in initial data sets containing trapped regions;
see Section 7.5.

Stable MOTSs share a number of properties in common with stable minimal sur-
faces. This sometimes depends on the following fact. Consider the “symmetrized”
operator L0 : C∞(Σ) → C∞(Σ),

(7.10) L0(φ) = −△φ+

(
1

2
S − (ρ+ J(ν)) − 1

2
|χ|2

)
φ .

formally obtained by setting X = 0 in (7.9). The key argument in [139] shows the
following (see also [6, 138]).

Proposition 7.4. λ1(L0) ≥ λ1(L).
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We will say that a MOTS is symmetric-stable if λ1(L0) ≥ 0; hence “stable”
implies “symmetric-stable”. In the next subsection we consider an application of
stable MOTS to the topology of black holes.

7.4. On the topology of black holes. A useful step in the proof of black hole
uniqueness (see Section 3.7) is Hawking’s theorem on the topology of black holes [148]
which asserts that compact cross-sections of the event horizon in 3+1-dimensional,
appropriately regular, asymptotically flat stationary black hole space-times obeying
the dominant energy condition are topologically 2-spheres. As shown by Hawk-
ing [147], this conclusion also holds for outermost MOTSs in space-times that are
not necessarily stationary. The proof in both cases is variational in nature, and relies
on the classical Gauss-Bonnet theorem. Developments in physics related to string
theory have lead to an increased interest in the study of gravity, and in particular
black holes, in higher dimensions; see e.g. [128] for a recent review. The remark-
able example of Emparan and Reall [127] of a 4 + 1 asymptotically flat stationary
vacuum black space-time with horizon topology S1×S2, the so-called “black ring”,
shows that horizon topology need not be spherical in higher dimensions. This
example naturally led to the question of what are the allowable horizon topologies
in higher dimensional black hole space-times. This question was addressed in the
papers of [139, 138], resulting in a natural generalization of Hawking’s topology
theorem to higher dimensions, which we now discuss.

Consider a space-time (M n+1, g), n ≥ 3, satisfying the Einstein equations (not
necessarily vacuum), and for simplicity assume that the cosmological constant van-
ishes, Λ = 0. Let M be a spacelike hypersurface in M , which gives rise to the initial
data set (M,h,K), as in Section 7.3. Recall from Equation (5.15) that the dominant
energy condition holds with respect to this initial data set provided ρ ≥ |J | along
M , where ρ and J are the energy density and momentum density, respectively, as
defined in Section 5.1 (but with Λ set to zero).

The following result, obtained in [139], gives a natural extension of Hawking’s
black hole topology theorem to higher dimensions. Recall, a Riemannian manifold
Σ is of positive Yamabe type if it admits a metric of positive scalar curvature.

Theorem 7.5. Let Σn−1 be a stable MOTS in an initial data set (Mn, h,K),
n ≥ 3.

(1) If ρ > |J | along Σ then Σ is of positive Yamabe type.
(2) If ρ ≥ |J | along Σ then Σ is of positive Yamabe type unless Σ is Ricci flat

(flat if n = 2, 3), χ = 0 and ρ+ J(ν) = 0 along Σ.

In the time-symmetric case, Theorem 7.5 reduces to the classical result of Schoen
and Yau [250], critical to their study of manifolds of positive scalar curvature, that
a compact stable minimal hypersurface in a Riemannian manifold of positive scalar
curvature is of positive Yamabe type.

The key to the proof of Theorem 7.5 is Proposition 7.4, which, since Σ is assumed
stable, implies that λ1(L0) ≥ 0, where L0 is the operator given in (7.10). Now,
in effect, the proof has been reduced to the Riemannian case. Consider Σ in the

conformally related metric, γ̃ = φ
2

n−2 γ, where γ is the induced metric on Σ and φ
is a positive eigenfunction corresponding to λ1(L0). The scalar curvatures S̃ and
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S of the metrics γ̃ and γ, respectively, are related by (compare (5.11))

S̃ = φ−
n

n−2

(
−2△φ+ Sφ+

n− 1

n− 2

|∇φ|2
φ

)

= φ−
2

n−2

(
2λ1(L0) + 2(ρ+ J(ν)) + |χ|2 +

n− 1

n− 2

|∇φ|2
φ2

)
,

where for the second equation we have used (7.10). Since ρ + J(ν) ≥ ρ − |J | ≥ 0,

we have that S̃ ≥ 0. By further standard metric deformations, the scalar curvature
of Σ can be made strictly positive, unless various quantities vanish identically.

According to Theorem 7.5, apart from certain exceptional circumstances, a stable
marginally outer trapped surface Σ in a space-time M obeying the dominant energy
condition is of positive Yamabe type. Assume for the following discussion that Σ
is orientable. Then, in the standard case: dimM = 3 + 1 (and hence dimΣ = 2),
Gauss-Bonnet tells us that if Σ is positive Yamabe then Σ is topologically a two-
sphere, and we recover Hawking’s theorem. In higher dimensions, much is now
known about topological obstructions to the existence of metrics of positive scalar
curvature. While the first major result along these lines is the famous theorem

of Lichnerowicz [193] concerning the vanishing of the Â genus, a key advance in
our understanding was made in the late 1970s and early 1980s by Schoen and
Yau [248, 250], and Gromov and Lawson [141, 142]. Let us focus on the case:
dim M = 4 + 1, and hence dim Σ = 3. Then by results of Schoen-Yau and
Gromov-Lawson, in light of the resolution of the Poincaré conjecture, Σ must be
diffeomorphic to a finite connected sum of spherical spaces (spaces with universal
cover the 3-sphere) and S2 × S1’s. Indeed, by the prime decomposition theorem,
Σ can be expressed as a connected sum of spherical spaces, S2 × S1’s, and K(π, 1)
manifolds (manifolds whose universal covers are contractible). But as Σ admits
a metric of positive scalar curvature, it cannot have any K(π, 1)’s in its prime
decomposition. Hence the basic horizon topologies in dim M = 4 + 1 are S3

and S2 × S1 (in the sense that Σ is “built up” from such spaces), both of which
are realized by nontrivial black hole space-times. It remains an interesting open
question which topologies of positive Yamabe type can be realized as outermost
MOTSs; see [256] for examples involving products of spheres.

A drawback of Theorem 7.5 is that it allows certain possibilities that one would
like to rule out: for example, the theorem does not rule out the possibility of a
vacuum black hole space-time with toroidal horizon topology. (This borderline
case also arises in the proof of Hawking’s theorem). In fact, one can construct
examples of stable toroidal MOTSs in space-times obeying the dominant energy
condition. Such MOTSs cannot, however, be outermost, as the following theorem
asserts.

Theorem 7.6 ([138]). Let Σ be an outermost MOTS in the spacelike hypersur-
face M , and assume the dominant energy condition (3.15) holds in a space-time
neighborhood of Σ.15 Then Σ is of positive Yamabe type.

15Note that since we are assuming Λ = 0 here, the dominant energy condition is equivalent
to the condition, GρνXρY ν ≥ 0 for all future directed causal vectors X, Y , where Gµν is the

Einstein tensor.
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As an immediate corollary, we have that compact cross-sections of event horizons
in regular stationary black hole space-times obeying the dominant energy condition
are of positive Yamabe type. In particular, there can be no toroidal horizons.

Theorem 7.6 is an immediate consequence of the following rigidity result.

Theorem 7.7 ([138]). Let Σ be a weakly outermost MOTS in the spacelike hy-
persurface M , and assume the dominant energy condition holds in a space-time
neighborhood of Σ. If Σ is not of positive Yamabe type then there exists an outer
neighborhood U ≈ [0, ǫ) × Σ of Σ in M such that each slice Σt = {t} × Σ, t ∈ [0, ǫ)
is a MOTS.

Theorem 7.7 is proved in two stages. The first stage, and the main effort, is to
establish Theorem 7.7 subject to the additional assumption that M has nonpositive
mean curvature, τ ≤ 0. This is a purely initial data result, and the proof is carried
out in two steps. The first step involves an inverse function theorem argument to
show that an outer neighborhood of Σ can be foliated by surfaces Σt of constant
null expansion, θ(t) = ct. This uses the stability of Σ in a critical way. In the
second step it is shown that all of these constants are zero, ct = 0. It is here where
the sign of the mean curvature of M needs to be controlled. Once having proved
Theorem 7.7, subject to the condition, τ ≤ 0, the next stage, which is actually easy,
is a deformation argument (specifically, a deformation of M near Σ) that reduces
the problem to the case τ ≤ 0.

We remark that Riemannian versions of Theorem 7.7 had previously been con-
sidered in [59, 58].

7.5. Existence of MOTSs. As mentioned earlier, compact cross-sections of the
event horizon in regular stationary black hole space-times are necessarily MOTSs.
In dynamical black hole space-times, it is typical for trapped or outer trapped
surfaces to form in the black hole region. But the occurrence of an outer trapped
surface in a spacelike hypersurface that obeys a mild asymptotic flatness condition
leads to the existence of a MOTS, as follows from the existence result alluded to
near the end of Section 7.2, and which we now discuss [8, 125, 246].

Let Ω be a relatively compact domain in a spacelike hypersurfaceM , with smooth
boundary ∂Ω. We assume that ∂Ω decomposes as a disjoint union of components,
∂Ω = Σinn ∪Σout, where we think of Σinn as the “inner” boundary and Σout as the
“outer” boundary of Ω in M . We choose the normal along Σinn that points into Ω,
and the normal along Σout that points out of Ω, so that both normals point towards
the region exterior to Σout. Thus, Σinn is outer trapped if θ < 0 with respect to the
future directed null normal field along Σinn that projects into Ω. We say that Σout

is outer untrapped if θ > 0 with respect to the future directed null normal along
Σout that projects out of Ω. Heuristically, if Σout is lying in a region where M is
“flattening out” then we expect Σout to be outer untrapped.

With this notation and terminology we have the following existence result for
MOTS.

Theorem 7.8 ([125]). LetMn be a spacelike hypersurface in a space-time (M n+1, g),
with n ≤ 7. Let Ω be a relatively compact domain in M , with smooth boundary
∂Ω = Σinn∪Σout, such that the inner boundary Σinn is outer trapped and the outer
boundary Σout is outer untrapped, as described above. Then there exists a smooth
compact MOTS in Ω homologous to Σinn. Moreover, Σ is symmetric stable.
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In fact, by arguments in [7], the MOTS constructed in Theorem 7.8 will actually
be stable.

In the time-symmetric case, Theorem 7.8 reduces to a well-known existence result
for stable minimal surfaces. In the time-symmetric case the barrier conditions in
Theorem 7.8 simply say that Ω is a mean convex domain. One can then minimize
area in the homology class of a surface in Ω parallel to Σinn and apply standard
compactness and regularity results of geometric measure theory [131] to obtain a
smooth (provided dimM ≤ 7) stable minimal surface in Ω homologous to Σinn.
However, since MOTS do not arise as stationary points of some elliptic functional,
such a procedure does not work for general initial data. A completely different
approach must be taken.

In fact, the proof of Theorem 7.8 is based on Jang’s equation [174] which is
closely related to the MOTS condition θ+ = 0. Given an initial data set (M, g,K),

consider the Riemannian product manifold, M̂ = R ×M , ĝ = dt2 + g, and extend
K to M̂ by taking it to be constant along the t-lines. Given a function f on M ,
consider its graph, Nf = graph f = {(t, x) ∈ M̂ : t = f(x), x ∈ M}, equipped with
the induced metric. Then Jang’s equation is the equation,

(7.11) (H + P )(f) = H(f) + P (f) = 0 ,

where H(f) = the mean curvature of Nf and P = tr Nf
K (compare with Equation

(7.7)).
Schoen and Yau [252] established existence and regularity for Jang’s equation

with respect to asymptotically flat initial sets as part of their approach to proving
the positive mass theorem for general, nonmaximal, initial data sets. In the process
they discovered an obstruction to global existence: Solutions to Jang’s equation
tend to blow-up in the presence of MOTS in the initial data (M, g,K). This
problematic blow-up behavior that Schoen and Yau had to contend with has now
been turned on its head to become a feature of Jang’s equation: In order to establish
the existence of MOTS, one induces blow-up of the Jang equation. This is the
approach taken in [125, 8] in a somewhat different situation.

In order to obtain solutions to Jang’s equation one considers the regularized
equation,

(7.12) (H + P )(ft) = tft .

In [125] Eichmair uses a Perron method to obtain solutions ft to (7.12) for t suf-
ficiently small, with values that tend to infinity in a small collared neighborhood
of Σout, and that tend to minus infinity in a small collared neighborhood of Σinn,
as t → 0. The construction of Perron sub and super solutions makes use of the
barrier conditions. Using the “almost minimizing” property [125] of the graphs
Nt := graph ft, one is able to pass to a smooth subsequential limit manifold N ,
bounded away from ∂Ω, each component of which is either a cylinder or a graph
that asymptotes to a cylinder. The projection into M of such a cylinder produces
the desired MOTS.

Under the barrier conditions of Theorem 7.8, Andersson and Metzger [7] were
able to make use of this basic existence result, to establish for 3-dimensional initial
data sets, the existence of an outermost MOTS, thereby providing a rigorous proof
of a long held “folk belief” in the theory of black holes that the boundary of the
so-called outer trapped region in a time slice of space-time is a smooth MOTS.
The key to proving the existence of an outermost MOTS is a compactness result
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for stable MOTS which follows from the extrinsic curvature estimates obtained
by Andersson and Metzger in [7], together with an area bound obtained in [8].
This area bound follows from an outer injectivity radius estimate for a certain
class of MOTS, established by an interesting surgery procedure. The powerful
methods developed by Eichmair in [125, 124] can be used to extend this result to
n-dimensional initial data sets, 3 ≤ n ≤ 7.

Consider, now, a foliation {Mt}, a < t < b of a region of a space-time (M n+1, g)
by spacelike hypersurfaces Mt. If each slice Mt admits an outermost MOTS Σt,
then the family of MOTSs {Σt} may form a hypersurface in space-time. A smooth
spacelike hypersurface H in a space-time (M n+1, g) foliated by MOTS is called a
marginally outer trapped tube (MOTT). In [5, 6], Andersson, Mars and Simon have
obtained a rigorous existence result for MOTTs. Consider a spacelike foliation
{Mt}, a < t < b, and suppose Σt0 is a MOTS in Mt0 . They prove that if Σt0 is
strictly stable, i.e. if the principal eigenvalue of the associated stability operator
(7.9) is strictly positive, then there exists a MOTT H such that for t close to t0,
Σt := H ∩Mt is a MOTS.

Many challenging questions concerning the global existence and behavior of
MOTTs remain open. Building on the analysis of Dafermos [112], Williams [275]
gave sufficient conditions on spherically symmetric black hole space-times satisfying
the dominant energy condition, insuring that a spherically symmetric MOTT ex-
ists, is achronal, and is asymptotic to the event horizon. Understanding the generic
asymptotic behavior of MOTTs in the nonspherically symmetric case remains an
interesting open problem.

A MOTT satisfying certain supplementary conditions gives rise to the notion
of a dynamical horizon, which provides an alternative, quasi-local description of a
black hole. For an extensive review of dynamical horizons and related concepts,
including physical applications, see [15].

Appendix A. Open problems

We compile here a list of interesting open problems discussed in the paper. They all
appear to be difficult, of varying degrees of difficulty, with some most likely intractable in
the foreseeable future.

(1) Remove the hypotheses of analyticity, non-degeneracy, and connectedness in the
black-hole uniqueness Theorem 3.2, p. 19.

(2) Show that five dimensional, stationary, I+–regular vacuum black holes have to
have three Killing vectors, or construct a counterexample. More generally, classify
such black holes. Compare p. 19.

(3) Prove that the positive energy theorem holds in all dimensions without the spin
assumption. Compare p. 30.

(4) Find the optimal differentiability conditions for Theorem 4.1. More generally,
construct a coherent local well posedness theory for the evolution and constraint
equations for metrics with low differentiability; compare Remark 4.2, p. 22.

(5) Describe in a constructive way the set of solutions of the vacuum constraint equa-
tions on compact, asymptotically flat, and asymptotically hyperbolic manifolds,
with arbitrary smooth initial data. Compare p. 28.

(6) Formulate, and prove, a precise version of Conjecture 6.9, p. 48. More generally,
formulate and prove a precise version of the BKL conjecture, or find an open set
of metrics developing a singularity which do not exhibit a BKL-type behavior.

(7) Show that generic Bianchi IX orbits have a dense ω–limit set on the Kasner circle;
compare p. 46.
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(8) Show that uniqueness and existence of maximal globally hyperbolic developments,
Theorem 6.1, p. 35, holds in an optimal weak differentiability class. This requires
revisiting the whole causality theory for metrics of low differentiability.

(9) Remove the condition of closed generators in Theorem 6.2, p. 36. More generally,
show that existence of Cauchy horizons, not necessarily compact or analytic,
implies existence of local isometries, or construct a counterexample.

(10) Generalize Ringström’s Theorem 6.3, p. 37, to Gowdy models on S2
×S1, on S3,

and on lens spaces L(p, q).
(11) Show that some twisting U(1) × U(1) symmetric vacuum models on T

3 have
mixmaster behavior. More generally, find an open set of such models with mix-
master behavior. Even better, analyze exhaustively the asymptotic behavior of
those models; see Section 6.1.2, p. 38.

(12) Show that degenerate asymptotically flat spherically symmetric Einstein-Maxwell-
scalar field solutions are non-generic; compare Section 6.1.3, p. 39. Analyze what
happens in solutions in which trapped surfaces do not form. More generally, prove
weak and strong cosmic censorship within this class of space-times.

(13) Find an open set of U(1) symmetric metrics where the dynamics can be analyzed
in the contracting direction. More generally, analyze exhaustively the dynamics
of those models, see Section 6.3.1, p. 40.

(14) Show that polyhomogeneous initial data in Theorem 6.6, p. 43, lead to solutions
with polyhomogeneous behavior at null infinity.

(15) Show that the Kerr solution is stable against small vacuum perturbations, com-
pare Section 6.5, p. 43.

(16) Determine what topologies of positive Yamabe type can be realized as outermost
MOTSs in space-times satisfying the dominant energy condition, compare p. 56.

(17) Prove initial data equivalents of Theorems 7.6 and 7.7, p. 57.
(18) Describe the generic behavior near the event horizon of marginally trapped tubes

in black hole space-times, see p. 59.
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27. R. Beig and P.T. Chruściel, Killing Initial Data, Class. Quantum. Grav. 14 (1996), A83–
A92, A special issue in honour of Andrzej Trautman on the occasion of his 64th Birthday,
J.Tafel, editor.

28. , Killing vectors in asymptotically flat space-times: I. Asymptotically translational
Killing vectors and the rigid positive energy theorem, Jour. Math. Phys. 37 (1996), 1939–
1961, arXiv:gr-qc/9510015.

29. , The asymptotics of stationary electro-vacuum metrics in odd space-time dimensions,
Class. Quantum Grav. 24 (2007), 867–874. MR MR2297271
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62 PIOTR T. CHRUŚCIEL, GREGORY J. GALLOWAY, AND DANIEL POLLACK
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86. D. Christodoulou and N.Ó Murchadha, The boost problem in general relativity, Commun.
Math. Phys. 80 (1981), 271–300.

87. D. Christodoulou and A. Shadi Tahvildar-Zadeh, On the asymptotic behavior of spherically
symmetric wave maps, Duke Math. Jour. 71 (1993), 31–69. MR 94j:58044

88. , On the regularity of spherically symmetric wave maps, Commun. Pure Appl. Math
46 (1993), 1041–1091.
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(2008), 195–265, arXiv:0806.0016v2 [gr-qc].
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104. P.T. Chruściel and D. Maerten, Killing vectors in asymptotically flat space-times: II. Asymp-
totically translational Killing vectors and the rigid positive energy theorem in higher dimen-
sions, Jour. Math. Phys. 47 (2006), 022502, 10, arXiv:gr-qc/0512042. MR MR2208148
(2007b:83054)
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