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SU(2) Representation Varieties of 3-manifolds,
Gauge Theory Invariants, and Surgery on Knots

Paul Kirk*

ABSTRACT: Chern-Simons and spectral flow invariants of representations of 3-manifold groups

are investigated in the context of Dehn surgery on knots. Various formulae and computational

methods are explained, and examples are worked out. The guiding principle is that information

about these invariants can be obtained entirely from the representation varieties of the manifolds,

i.e. without using any analysis or Differential Geometry. These lectures outline the research in-

vestigations of E. Klassen and the author ([KK1]-[KK5]), as well as many others.**

LECTURE 1. Representation Varieties

LECTURE 2. Chern-Simons Invariants

LECTURE 3. Spectral Flow

1 Representation Varieties

1.1 Representation and Character Varieties

Given a compact manifold X, let

R(X) = hom(π1X,SU(2))

* Supported by the DaeWoo foundation, the Global Analysis Research Center at Seoul National

University, and the National Science Foundation.
** No serious attempt is made in these notes to be careful and/or consistent with signs and ori-

entation conventions. The reader should refer to the cited articles for precise formulae.
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and

χ(X) = hom(π1X,SU(2))/conjugation.

These are called the SU(2)−Representation Variety and the SU(2)-Character Variety of X. They

are real-algebraic varieties: if π1X has the presentation π1X =< x1, · · · , xn|r1(x1, · · · , xn), · · · , rl(x1, · · · , xn) >,

then the relations map

r : SU(2)n−→SU(2)l, r(g1, · · · , gn) = (r1(g1, · · · , gn), · · · , rl(g1, · · · , gn))

is polynomial, and the map

e : R(X)−→SU(2)n, e(α) = (α(x1), · · · , α(xn))

is an embedding with image r−1(1, · · · , 1). This gives the structure of an algebraic variety (over R

since SU(2) is a variety over R) to R(X) which is independent of the presentation. Then χ(X) is a

variety whose ring of functions is the functions on R(X) which are invariant under the conjugation

action α 7→ gαg−1 of SU(2) on R(X).

Notice that R and χ are contravariant functors. Thus a continuous map f : X−→Y induces

algebraic maps R(Y )−→R(X) and χ(Y )−→χ(X) by restricting representations.

One can make the same definition with any Lie group G replacing SU(2). This complicates

matters quite a bit; the resulting representation and character varieties have more singular strata.

In any case, SU(2) is complicated enough; it is the “simplest” non-abelian Lie group. Moreover,

there are no known examples of 3-manifolds with non-trivial fundamental group but with no non-

trivial representations to SU(2). We will therefore stick to SU(2).

1.2 An Important Example

Let X = T 2, the torus. Write π1T = Zµ⊕ Zλ. Then define a function:

Φ : R2−→χ(T )

by sending (α, β) ∈ R2 to the conjugacy class of representations defined by

µ 7→
(
e2πiα 0

0 e−2πiα

)
, λ 7→

(
e2πiβ 0

0 e−2πiβ

)
.

Then Φ : R2−→χ(T ) is a branched cover. In fact, conjugating(
a 0
0 a−1

)
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Φ

Pillowcase=χ(T )2

2
R

(1,0)

(0,1/2 )

by (
0 1
−1 0

)
interchanges the eigenvalues and so Φ(α, β) = Φ(α′, β′) if and only if

(α′, β′) = ±(α, β) + (m,n)

for some sign and some m,n ∈ Z. Thus (Z2 ×| Z/2) acts on R2 by (µ, n,±) · (α, β) = ±(α, β) +

(m,n) with quotient χ(T ). The Z/2 comes from the Weyl Group acting on the maximal torus of

diagonal matrices. Figure 1 shows a fundamental domain for the action and χ(T ). We call χ(T )

the “pillowcase”.

Figure 1.

One caveat about this example: the branched cover Φ : R2−→χ(X) does not induce the correct

analytic structure on χ(X) near the singular points. (This is seen by comparing the dimensions of

the Zariski tangent spaces of R2/(Z2 ×| Z/2) and χ(T ) at the singular points.) This fact will not

be important in these lectures, since we will always work away from the singular points of χ(T ).

Notice that SU(2) is the same as the unit quaternions; the identification is given by(
a b
−b̄ ā

)
⇔ a+ bj.

For convenience we will use quaternionic notation.

1.3 Some 3-Manifold Topology

We will consider only oriented 3-manifolds in these lectures.

Closed 3-Manifolds decompose into simpler pieces in the following way:
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1. Prime Decomposition. A 3-manifold has a unique decomposition along 2-spheres as a connected

sum M = M1#M2# · · ·#Mn where each Mi is either irreducible (every 2-sphere bounds a

ball) or diffeomorphic to S2 × S1. [M]

2. Torus Decomposition. If M is irreducible and contains an incompressible torus (i.e. a torus T so

that the induced map π1T−→π1M is injective), then M has a unique (up to isotopy) maximal

collection T1∪· · ·∪Tn ⊂M of embedded tori so that any other incompressible torus is parallel to

one of the Ti Moreover, each piece Xi in the decomposition of M , M = X1 ∪ · · · ∪Xk obtained

by cutting M along the Ti is either Seifert-Fibered or atoroidal. Atoroidal (and a-annular)

3-manifolds are hyperbolic (by Thurston’s Uniformization Theorem). [JS], [Jo].

3. If M contains no incompressible torus, but contains an incompressible surface of higher genus,

then by Thurston’s theorem M is Hyperbolic.

Those 3-manifolds containing an incompressible surface are called Haken manifolds, and are

relatively well understood by 3-manifold topologists. Less is known about non-Haken manifolds.

We will study the gauge theory invariants of 3-Manifolds with boundary, especially those with

torus boundary. These include the important class of knot complements.

Definition A Knot, K, in a 3-manifold M is a smoothly embedded circle K : S1 ↪→ M . The

tubular neighborhood of K is diffeomorphic to D2 × S1 and we denote it by N(K). We call the

complement in M of an open tubular neighborhood of K the Exterior of the knot K, and denote

it by XK . Thus N(K) and XK are manifolds with boundary a torus.

Dehn Surgery on a knot K in M is a manifold obtained by cutting out a tubular neighborhood

D2 × S1 of K in M and gluing it back using a self-homeomorphism, h, of the boundary torus.

Denote the resulting manifold by M(K,h). Note that M(K,h) = M(K,h′) if h′h−1 extends over

the solid torus D2 × S1. Thus the gluing parameters lie in

Homeo(S1 × S1)/Homeo(D2 × S1).

Given a knot K in a 3-manifold M , write M = XK ∪ N(K), XK and N(K) as above. So

the boundary torus is ∂XK = ∂N(K). Let µ be the isotopy class of simple closed curve in the

boundary torus which is the boundary of a disc in N(K) = D2 × S1. Let λ be an oriented simple

closed curve in the boundary torus which intersects µ geometrically (and algebraically) once. (So

µ · λ = 1.) Then µ, λ gives a coordinate system S1 × S1 on ∂XK .

Note: If M is a homology sphere there is a natural choice for λ determined up to isotopy by

the condition that λ generates the kernel of H1(∂XK)−→H1XK . If M is not a homology sphere
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there is no canonical choice of λ, and so some arbitrary choice should be made subject to µ ·λ = 1.

None of the results we give in these lectures will depend on the choice of λ.

If we form the manifold M(K,h) by cutting along the torus and gluing back using h, then

there exists a relatively prime pair of integers p, q so that the curve pµ + qλ is null homologous

in N(K). More precisely, think of h : ∂N(K)−→∂XK and so h(µ) = pµ + qλ homologically. A

simple exercise shows that the ratio p
q ∈ Q ∪∞ determines M(K,h) up to diffeomorphism and so

we write M(K, pq ) for M(K,h). Then M(K, pq ) is called “ p over q surgery on K”. If K is a knot

in a homology 3-sphere, then H1(M(K, pq )) = Z/p.

We will call µ the meridian and λ the longitude.

The surgered manifold M(K, pq ) contains a knot, namely the core 0× S1 ⊂ D2 × S1 = N(K).

However, the meridian in M(K, pq ) does not equal the meridian in M ; in fact the meridian in

M(K, pq ) is µ̄ = pµ+ qλ, where µ and λ refers to the meridian and longitude for M . We can take

as longitude λ̄ = rµ + sλ where ps − qr = 1. (Remark: we will often use additive notation when

working in π1T
2 = H1T

2.)

1.4 Gluing Representations

We use the following notation, if Y ⊂ X is a subspace and ρX : π1X−→SU(2) is a representa-

tion, then let ρX|Y : π1Y−→SU(2) denote the restriction, i.e. the image under the induced map

R(X)−→R(Y ). Similarly, if [ρX ] ∈ χ(X), let [ρX|Y ] denote its restriction to Y using the induced

map χ(X)−→χ(Y ). Here [ · ] means conjugacy class.

Suppose that M3 = X ∪Σ Y is a decomposition of a 3-manifold along a closed surface Σ. Let

[ρX ] ∈ χ(X), and [ρY ] ∈ χ(Y ). Then Van Kampen’s theorem says that ρX and ρY glue together

to give a representation of M if and only if [ρX|Σ] = [ρY |Σ].

More precisely, let [ρX ] ∈ χ(X), [ρY ] ∈ χ(Y ) and choose representatives ρX ∈ R(X), ρY ∈
R(Y ). If [ρX|Σ] = [ρY |Σ], then there exists a g ∈ SU(2) so that

ρX|Σ = gρY |Σg
−1.

Now

π1M =
π1X ∗ π1Y

N(iX(s)iY (s)−1|s ∈ π1Σ)
,

and therefore ρX∗gρY g−1 defines a representation ρM ∈ R(M). The conjugacy class of ρX∗gρY g−1

may in general depend on the choice of representatives of ρX and ρY chosen and the choice of g.

To understand this, we first consider centralizers of subgroups of SU(2). The center of SU(2)
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is {±Id}. If H ⊂ SU(2) is a subgroup, then the centralizer of H in SU(2) is

Z(H) =

 {±Id} if H is non-abelian,
S1
H if H is abelian, but H 6⊂ {±Id},
SU(2) if H ⊂ {±Id}.

Here S1
H denotes the unique maximal abelian subgroup containing H, which is a circle.

Suppose that [ρX ] ∈ χ(X), [ρY ] ∈ χ(Y ), and [ρX|Σ] = [ρY |Σ] in χ(Σ). Choose representatives

ρX and ρY so that ρX|Σ = ρY |Σ. Then if g ∈ Z(Image ρX|Σ), ρX|Σ = gρY |Σg
−1. Hence g 7→

[ρX ∗ (gρY g−1)] defines a function Z(Image ρX|Σ)−→χ(X). This function surjects to the fiber

F ([ρX ], [ρY ]) = {[ρM ] | [ρM |X ] = [ρX ], [ρM |Y ] = [ρY ]}.

Now if g, h ∈ Z(Image ρX|Σ), then [ρX ∗ (gρY g−1)] = [ρX ∗ (hρY h−1)] if and only if there exists

an l ∈ Z(Image ρX) so that g−1lh ∈ Z(Image ρY ). So, for example, if ρX and ρY are non-abelian

this happens only if g = ±h, and so in this case F ([ρX ], [ρY ]) ∼= Z(Image ρX|Σ)/± Id.
In the particular case when Σ is a torus T 2, then π1T is abelian, hence Z(Image ρX|T ) is either

a circle or SU(2) depending on whether the image of ρX|T is non-central or central.

Consider the special case of surgery on a knot K in a 3-manifold M . As before we decompose

M = XK∪N(K) and let µ, λ ∈ π1∂XK be the meridian and longitude. In this case the fundamental

group of M is just a quotient of the fundamental group of XK obtained by killing the meridian:

π1M = π1XK/N(µ).

Similarly for p/q Dehn surgery we have

π1(M(K,
p

q
)) = π1XK/N(µpλq).

Hence ρX : π1XK−→SU(2) extends to π1M if and only if ρX(µ) = 1. Similarly ρX : π1XK−→SU(2)

extends to π1(M(K, pq )) if and only if ρX(µ̄) = 1, where µ̄ = µpλq.

This can easily be understood in terms of the pillowcase: the subvariety

{[ρ] ∈ χ(T ) | ρ(µpλq) = 1}

is just the image of the line pα+ qβ = 0 under the branched cover Φ : R2−→χ(T ) of example 1.2.

Figure 2 shows the case p
q = 3

5 .
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β

Φ

χ (T)

Figure 2.

It turns out that understanding χ(XK) and the restriction χ(XK)−→χ(T ) is the key to com-

puting Chern-Simons and spectral flow invariants of 3-manifolds. There are a few papers which

calculate the character varieties of knot complements and other 3-manifolds; See [K1], [K2], [KK1],

[Bo], [B], [Fr], and [H].

Before we list a few examples, we collect a few facts which hold in general for knots in a

homology sphere.

1. If K ⊂M is a knot in a homology sphere, then H1XK = Z. Therefore, the representations

of π1XK with abelian image are independent of K. Now χ(Z) = SU(2)/conjugation ∼= [−2, 2], the

homeomorphism given by taking the trace. Also, µ generates H1XK and λ = 0 in H1XK . Thus

writing

χ(X) = χa(X) ∪ χ∗(X)

where χa(X) denotes the classes of abelian representations, we see that χa(X) is homeomorphic

to an interval and the restriction χa(X)−→χ(T ) has image the bottom horizontal edge of the

pillowcase. Notice that χa(X) is parameterized by the representations µ 7→ eit, t ∈ [0, π] and

the endpoints of the interval correspond the the trivial representation and the non-trivial central

representation. See Figure 3. The reader should use this picture to count the number of points in

χa(M(K, pq )).

In general H1XK depends only on the homology class of K in M , and so χa(XK) also depends

only on the homology class of K in M . To obtain more interesting information about the knot K

one must study the non-abelian representations χ∗(XK).
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Figure 3.

2. The image of χ(XK)−→χ(T ) is a 1-dimensional subvariety (in fact a Lagrangian subvariety

of the symplectic variety χ(T ), as we will see later). To explain this we first review the relevant

cohomology ideas:

LetX be a space with π1X =< x1, · · · , xn|r1, · · · , rl >. The Zariski Tangent Space of the variety

R(X) at a representation ρ : π1X−→SU(2) is isomorphic to ker dre(ρ), where r : SU(2)n−→SU(2)l

is the relations map (g1, · · · , gn) 7→ (r1(g1, · · · , gn), · · ·), and e : R(X) ⊂ SU(2)n is the embedding

ρ 7→ (ρ(x1), · · ·) as explained above.

Let su(2) denote the Lie algebra of SU(2), and adρ : π1X−→GL(su(2)) the composite of ρ

with the adjoint representation of SU(2). We identify the Zariski tangent space with the group

cohomology of π1X with coefficients in su(2): the p-cocycles are functions (π1X)p−→su(2), the

differential d : C0(π1X; adρ)−→C1(π1X; adρ) takes v ∈ su(2) = C0(π1X; adρ) to x 7→ v−adρ(x)·v,
and the differential d : C1(π1X; adρ)−→C2(π1X; adρ) takes c ∈ C1(π1X; adρ) to (x, y) 7→ c(x) +

adρ(x) · c(y)− c(xy). Thus the 1-cocycles are crossed homomorphisms, and the 1-coboundaries are

principal homomorphisms.

Any element of ker dre(ρ) can be written in the form

(v1ρ(x1), · · · , vnρ(xn))

for some (v1, · · · , vn) ∈ su(2)n. Then it is not hard to see that the assignment xi 7→ vi defines

a 1-cocycle v ∈ Z1(π1X; adρ). Conversely, if v is a 1-cocycle then (v(x1)ρ(x1), · · · , v(xn)ρ(xn)) ∈
ker dre(ρ). This identifies the tangent space of R(X) at ρ with Z1(π1X; adρ). Finally, a tangent

vector is tangent to the orbit of the conjugation action of SU(2) on R(X) if and only if the

corresponding cocycle is a coboundary. Therefore,

Tρχ(X) ∼= H1(X; adρ).
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Now suppose that ∂X = Σ. The differential of the restriction χ(X)−→χ(T ) is just the induced

map on cohomologyH1(X; adρ)−→H1(Σ; adρΣ). IfX is a 3-manifold then Poincaré duality implies

that this image is middle dimensional.

Now an easy computation shows that

Tρ χ(T ) =
{

R2 if ρ is not central,
R6 if ρ is central.

The pillowcase is a smooth 2-dimensional variety except at the 4 corners corresponding to the

central representations. Thus if ∂X = T 2 the image of χ(X)−→χ(T ) is generically 1-dimensional.

The computation of the Zariski tangent space at the corners of the pillowcase also show that

our branched cover Φ : R2−→χ(T ) is not analytic at the corners. Indeed, the Zariski tangent space

of R2/± 1 at 0 is 3 dimensional, not 6 dimensional.

3. For a knot in S3, the meridian µ normally generates π1XK . Therefore, if ρ ∈ R(XK) sends

the meridian to ±Id, then ρ must be central. Thus there are only 2 representations of π1XK which

map to a corner of the pillowcase, namely the trivial representation and the non-trivial central

representation. In particular, this implies that the restriction of every non-abelian representation

of π1XK to the pillowcase misses the corners. This is not true for knots in general 3-manifolds, or

even in homology spheres.

4. Another restriction on the image χ(XK)−→χ(T ) is that the image must be a Legendrian

subvariety [He]. See section 2.9 below.

5. If the dimension of χ(XK) is larger than 1, then XK contains a closed incompressible

surface. See [K1] for a proof. Usually, if XK contains a separating incompressible torus which is

not boundary parallel, then the dimension of χ(XK) is greater than 1; one sees this by using the

gluing construction described above to “bend” a representation along the separating torus

There are not too many more general facts which one can say about representation varieties of

knot complements. See [FK] for a theorem on deforming abelian representations of knot groups

into non-abelian representations.

1.5 Examples

We give a few examples for knots in S3. The arguments can be found in the citations given

above.

1. The Unknot. U has π1XU = Z, and so χ(XK) = χa(XK) which is an interval, as explained

above. The image of this interval in the pillowcase is the bottom edge of the pillowcase, i.e. the

image of the α-axis under the map Φ : R2−→χ(T ). Surgeries on the unknot yields lens spaces; in
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fact M(U, pq ) = L(p, q). Thus one can count the points in χ(L(p, q)) by counting the intersections

of Φ(β = 0) and Φ(pα+ qβ = 0) in the pillowcase; there are [p−1
2 ] such representations.

2. The Trefoil knot. Let K denote the trefoil. Then χ∗(XK) consists of an open arc, whose

endpoints are abelian representations. Its image in χ(T 2) coincides with the image of the arc

{(t,−6t+
1
2
) | 1

12
< t <

5
12
} ⊂ R2

under Φ : R2−→χ(T ). It starts and ends at the bottom of the pillowcase and winds twice around.

Figure 4.

Arbitrary torus knots can be treated in the same way. One uses the presentation π =<

x, y | xp = yq > for the (p, q) torus knot and µ = xmyn, λ = xp(xmyn)−pq where pn − qm = 1

to find the image in the pillowcase. With a bit of work one shows that each component of χ(XK)

is an open arc limiting on the abelian representations; in fact there are (p− 1)(q − 1)/2 such arcs

([K1]).

Any non-abelian representation must take xp = yq to ±1 since this element is central in π.

This implies that in any component of χ∗(XK), ρ(λ) = ±ρ(µ)−pq. Thus each arc in χ(XK) maps

into a line segments of slope − 1
pq starting and ending along the bottom edge (by “ line of slope m

” we mean the image of a line of slope m in R2 under Φ).

3. The Figure 8 Knot. If K denotes the Figure 8 knot then χ∗(XK) is a smooth circle. Its

image in the pillowcase wraps twice around. For an argument see [K1] or [B].
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Figure 5.

4. Two-Bridge Knots. See [B] for a parameterization of χ(XK) for K any two-bridge knot.

Burde shows that χ∗(XK) is 1-dimensional, consisting of smooth circles and open arcs limiting on

the abelian representations. See also [H].

There are some other papers which compute χ(XK) for various K and in some cases their

image in the pillowcase. [K2] shows how to understand the character varieties of twisted Whitehead

doubles of a knotK in terms of χ(XK) and χ(W ) whereW denotes the Whitehead link complement.

The knot polynomial of [CCGLP] cuts out the image χC(XK)−→χC(T ), where χC refers to the

SL(2,C) character varieties. The real points of these complex varieties are the union of SL(2,R)

and SU(2) character varieties, and one can sometimes use this polynomial and a computer to graph

the image of χ(XK) in the pillowcase.

1.6 Representations of Dehn Surgery on a Knot

We give some examples which illustrate how to understand the representations of M(K, pq ). As

we explained, this corresponds to the intersections of the image of χ(XK) in the pillowcase with

the line segment Φ(pα+ qβ = 0). Figure 6 shows 3 examples, − 3
5 surgery on the Trefoil, 1

3 surgery

on the Trefoil, and 1
4 surgery on the Figure 8.
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χ(X )K
χ(D xS )2 1

χ (M)
a

Figure 6.

Using the figure and the considerations of section 1.4, one see that − 3
5 surgery on the Trefoil

has 11 (conjugacy classes of) non-abelian representations, one non-trivial abelian representation,

and the trivial representation.

Similarly 1
3 surgery on the Trefoil has 6 non-abelian (conjugacy classes of) representations, and

only one abelian representation, namely the trivial representation. (Remark: Casson’s invariant is

3 = 6
2 .)

Finally we see that 1
4 surgery on the Figure 8 has 8 conjugacy classes of non-abelian represen-

tations, and only the trivial abelian representation. (Remark: Casson’s invariant is 4 = 8
2 .)

These pictures will be used to calculate the Chern-Simons and spectral flow invariants of surg-

eries on knots.

From a theoretical point of view, there is nothing special about knot complements, or even

manifolds with toral boundary. However, the torus distinguishes itself from the higher genus

surface because χ(T ) is 2-dimensional and has only 2 strata: the abelian non-central representations

and the central representations. Higher genus surfaces have, in addition, a strata of non-abelian

representations which is 6g − 6 dimensional. So the torus is the only 2-manifold whose character

variety I can draw. From the point of view of 3-manifold topology decompositions along tori

have already proven useful. It makes sense to separate the problem of describing χ(X) into two

cases, X a Seifert fibered or X hyperbolic. The Seifert-fibered case is well-understood; see [A],

[Bo], and [KK1] among others. Not too much is written about SU(2) representations of hyperbolic

manifolds, but SU(2) is a subgroup of SL(2,C) and the literature is replete with papers on SL(2,C)

representations of hyperbolic manifolds.
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Thinking as a knot theorist, one can view the image of χ(XK) in the pillowcase as a knot

invariant. It contains a lot of information, for example it can tell whether a knot has Property

P, or whether surgery yields a non-cyclic fundamental group. We will see what it tells us about

gauge theory invariants in the next lectures. In any case, describing χ(X) and its image in χ(T )

is a non-trivial and interesting problem which does not involve any analysis or geometry.

2 Chern-Simons Invariants of 3-Manifolds and Decompo-
sitions Along Tori.

2.1 Connections

Let P−→X be a principal SU(2) bundle over a manifold X; we assume that X has dimension

2 or 3. Since πiSU(2) = 0 for i = 1 and 2, P is trivializable. For convenience fix a trivialization

P ∼= X × SU(2). There are many definitions of connections on P . Pick your favorite definition

and let AP denote the space of all connections on P . Then:

1. If A ∈ A and r : SU(2)−→GL(V ) is any representation, then A defines a covariant derivative

dA : Ωp(E)−→Ωp+1(E)

where E is the associated vector bundle E = P ×r V , and Ωp(E) denotes the differential

p−forms on X with values in the bundle E. Of course E is itself trivial, since P is, and so

Ωp(E) ∼= Ωp ⊗ V . The covariant derivative satisfies the Leibnitz rule

dA(a ∧ b) = dAa ∧ b+ (−1)|a|a ∧ dAb.

2. The trivial bundle has a distinguished connection, namely the product connection, which we

denote by Θ and call the product connection. Its associated covariant derivative is just the

usual exterior derivative with vector values which we denote by d:

d : Ωp ⊗ V−→Ωp+1 ⊗ V.

3. If A,B ∈ A, then the difference dA − dB is a 0th order operator, i.e. (dA − dB)(fα) =

f(dA − dB)(α) for f ∈ C∞(X), and α ∈ Ωp(E). Thus dA − dB ∈ Ω1(Hom(E,E)). Using

the given trivialization and taking the standard representation SU(2)−→GL(C2) a simple

computation shows that dA − dB ∈ Ω1 ⊗ su(2). Moreover, the map A−→Ω1 ⊗ su(2) taking A

to dA−d is an isomorphism. Thus a trivialization of P induces an identification of A with su(2)-

valued 1-forms. Given a connection A (which we think of as a 1-form) and a representation
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r : SU(2)−→GL(V ) the induced covariant derivative

dA : ΩP ⊗ V−→Ωp+1 ⊗ V

is given by the formula

dAα = (d+ r∗(A))α

where r∗ : su(2)−→gl(V ) is the derivative of r, acting on V . We will abuse notation whenever

it is convenient and use A to denote both 1-forms and connections, with the understanding

that it is only a 1-form with respect to the fixed trivialization.

4. Different trivializations are related by the gauge group, also called the group of gauge transfor-

mations. It is the group

G = C∞(X,SU(2)) = Aut(P )

of automorphisms of the bundle. Precomposing the fixed trivialization SU(2) × X ∼= P with

g : X−→SU(2) gives a new trivialization. If A ∈ Ω1 ⊗ su(2) denotes the connection 1-form in

our fixed trivialization, then in the new trivialization A is replaced by gAg−1− dgg−1. (Notice

that dgg−1 ∈ Ω1⊗su(2).) This action of G on A corresponds on the level of covariant derivatives

to dg·Aα = g(dA(g−1(α))), where g acts on E = X × V via r.

The orbit space A /G of gauge-equivalence classes of connections is denoted by B. In a certain

technical sense B is (or more precisely can be completed to be) an infinite dimensional singular

Banach manifold.

2.2 Holonomy and Curvature

Given a connection A ∈ A consider the linear map dAdA : Ωp ⊗C2−→ΩP+1 ⊗C2. Using the

fact that dA(fω) = df ∧ ω + fdAω for f ∈ C∞(X), ω ∈ Ωp ⊗C2 one computes

dAdAfω = fdAdAω.

Thus dAdA ∈ Ω2(hom(C2,C2)). It is called the curvature of A and denoted by F (A) and is easily

seen to lie in Ω2⊗ su(2). In terms of our trivialization the curvature of the connection 1-form A is

F (A) = dA+
1
2
[A,A].

Given a loop γ : I−→X, then γ∗(A) is a connection on I × SU(2). The ODE:

dg

dt
= γ∗(A)g, g(0) = Id
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for g : I−→SU(2) has a solution, and g(1) is called the Holonomy of A around the loop γ, denoted

by holA(γ). Thus A ∈ A defines a function

holA : Loops(X,x0)−→SU(2).

This function factors through π1(X,x0) (i.e. depends only on the homotopy class of γ) if and only

if F (A) = 0, i.e. if A is Flat .

Let F ⊂ A denote the flat connections. Then the holonomy induces a map

hol : F −→R(X).

The gauge group G leaves F invariant, and the holonomy induces a homeomorphism

hol : F /G ∼= χ(X).

This is the basic relationship between the algebraic investigations of the first lecture and the

analytic objects we are studying now.

2.3 Chern-Simons Invariants

Let A be a connection on a principal SU(2) bundle Q over a closed 4-manifold M . Chern-Weil

Theory implies that the integral

1
8π2

∫
M

tr(F (A) ∧ F (A)),

although a priori a real number depending on A, is in fact equal to the integer c2(Q)[M ] and in

particular is independent of A.

This immediately suggests defining an invariant for connections on 3-manifolds with values in

R/Z: if A is a connection on a principal SU(2) bundle P over a closed 3-manifold X, let X bound

the 4-manifold M , extend the bundle P to Q and A to A. Then define

csX(A) =
1

8π2

∫
M

tr(F (A) ∧ F (A)) ∈ R/Z.

This gives us a function, the Chern-Simons Invariant

csX : B−→R/Z.

One can also give a direct definition in terms of the connection 1-forms: if A ∈ A then using

Stokes’ theorem one can show:

(2.1) csX(A) =
1

8π2

∫
X

tr(dA ∧A+
2
3
A ∧A ∧A).
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This function has has many nice properties and has been the subject of much investigation

recently. Taubes ([T]) introduced the idea of viewing csX as a Morse function, and by (carefully)

mimicking Morse theory, Floer ([F]) has used it to define the “Instanton Homology” groups of X.

The critical points of csX are the flat connections F /G = χ(X). These instanton homology groups

provide a “relative” theory for Donaldson’s 4-manifold theory [DK]. Some of this will be outlined

in the next lecture.

One nice use for the restriction of cs to χ(X) is the proof of Fintushel and Stern that the collec-

tion {Σ(2, 3, 6r − 1)} of Seifert-fibered homology spheres are linearly independent in the homology

cobordism group Θ3
H . [FS]

A recent development is the “topological quantum field theory” which Witten [W] “defines”

using the functional integral

Zk(X) =
∫
A
e2πik cs

for any k ∈ Z . Although this expression does not make mathematical sense, Witten outlines

two methods to interpret this integral. The first leads to an Axiomatic definition of 3-manifold

invariants which have been rigorously constructed by Reshetikin-Turaev [RT], Walker [Wa], and

others. The alternative interpretation is to pretend that the the stationary phase expansion of

integrals like this in Rn works for this integral over A. This method leads to an asymptotic

expansion (as k−→∞) of Zk(X) whose leading term is a sum over the critical points of cs, i.e.

over the points in χ(X), of expressions involving the value of the Chern-Simons invariant at A,

the spectral flow of the Hessian of the Chern-Simons invariant from A to Θ, and the Ray-Singer(=

Reidemeister) torsion of the chain complex with local coefficients ad holA. One can ask whether

these two interpretations are consistent, and we will see an example in the next lecture.

2.4 Surgery and the Chern-Simons Invariants of Flat Connections

Let us now consider csM as a function on χ(M) for a closed 3-manifold M by restricting csM

to χ(M) ∼= F /G ⊂ B. It has several nice properties.

First, csM is an oriented flat cobordism invariant. In other words, suppose that ρ0 ∈ χ(M0),

ρ1 ∈ χ(M1) and there exists a 4-manifold Y such that ∂Y = X1

∐
−X0 and a ρ ∈ χ(Y ) so that

ρ|M0 = ρ0, and ρ|X1 = ρ1. Then csM0(ρ0) = csM1(ρ1). The reason for this is that the difference

of Chern-Simons invariants is the integral of tr(F (A) ∧ F (A)) where A is a flat connection on Y

with holonomy ρ. But A is flat, so F (A) = 0.

A fancy way to say this is that cs defines a homomorphism

H3(BSU(2)δ)−→R/Z,
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where SU(2)δ means SU(2) with the discrete topology, so BSU(2)δ = K(SU(2), 1), the CW

complex with fundamental group equal to SU(2) and all other homotopy groups equal to 0. One

conjecture which has been around is that the image of this homomorphism lies in the rationals,

i.e. in Q/Z, so that the Chern-Simons invariant of a flat connection on a closed 3-manifold should

be rational. Many computations have been made, for example Seifert-Fibered spaces and torus

bundles over S1, [KK2], [A], and these have rational Chern-Simons invariants.

Another property of csM is that it is locally constant, i.e. csM (ρ) depends only on the path

component of χ(M) containing ρ. To see this, suppose that ρt, t ∈ [0, 1] is a path of representations

of M , and At a corresponding path of flat connections so that holAt = ρt. We can view the path

At as a single connection A on the 4-manifold M × [0, 1]; then

F (A) = dA +
1
2
[A,A] =

∂A
∂t
∧ dt.

Thus F (A) ∧ F (A) = 0, and so

csM (ρ1)− csM (ρ0) =
1

8π2

∫
M×I

tr(F (A) ∧ F (A)) = 0.

This leads to the following idea. Suppose M3 = X ∪Σ Y is a decomposition of a closed 3-

manifold along a surface, and suppose ρ0, ρ1 ∈ χ(M). We know that if these representations lie

on the same path component of χ(M) then their Chern-Simons invariants are the same, but what

about if the restrictions to X or Y (or both) lie in the same path component? In other words, can

we obtain a formula for the difference csM (ρ1) − csM (ρ1) if ρ0|X and ρ1|X lie in the same path

component of χ(X) and/or ρ0|Y and ρ1|Y lie in the same path component of χ(Y )?

The easiest case to consider is Dehn Surgery. In [KK2] we proved the following theorem.

2.5 Theorem. Let K ⊂ M be a knot in a 3-manifold. Let ρ0, ρ1 ∈ χ(M) and suppose there

exists a path ρt : I−→R(XK) from ρ0|X to ρ1|X . Let (α(t), β(t)), t ∈ I be a path in R2 such that

ρt(µ) = e2πi α(t), ρt(λ) = e2πi β(t)

(in other words the restriction of ρt to the pillowcase is Φ(α(t), β(t))).

Then:

csM (ρ1)− csM (ρ0) = −2
∫ 1

0

βα′dt ∈ R/Z.

What this means is that if we know the image of the path ρt : π1XK−→SU(2) in the pillowcase

then we can compute the difference in Chern-Simons invariants. Thus the difference is determined
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by this image. This theorem illustrates the basic philosophy which says that a Gauge theory

invariant (namely the difference of Chern-Simons invariants) can be computed entirely from the

algebraic data of the map χ(XK)−→χ(T ) for Dehn surgery on a knot.

The fundamental principle which underlies the proof is that one can find a path of connections

on M which are flat on XK and non-flat (excepts at the endpoints) on N(K) ∼= D2 × S1. Thus

the easy part of the connection, i.e. the flat part, lives on the complicated part of the 3-manifold,

the exterior of the knot. However, the difficult part of the connection (the non-flat part) lives on

an easy space, D2 × S1.

2.6 Let us try a computation to illustrate this theorem. Let M = 1
2 surgery on the trefoil. The

following figure shows that χ(M) has 4 (conjugacy classes of) representations:

Figure 7.

The picture on the left is given in the coordinates µ, λ of K ⊂ S3. To apply the Theorem, we

need to use a meridian and longitude for M = S3(K, 1
2 ). In particular we need a meridian which

bounds a disc in M . This is achieved by using the coordinates µ̄, λ̄ defined by:

µ̄ = µ+ 2λ, λ̄ = λ.

Thus the right side of Figure 7 is the image of χ(XK) in these new coordinates. This just corre-

sponds to using the new coordinates ᾱ, β̄ for R2, where

ᾱ = α+ 2β, β̄ = β.

We learned in the first section that the image of χ∗(XK)−→χ(T ) (in the α, β coordinates) is

the arc Φ(t,−6t+ 1
2 ), 1

12 < t < 5
12 . In the new coordinates we therefore have

ᾱ(t) = t+ 2(−6t+
1
2
) = −11t+ 1
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and

β̄(t) = −6t+
1
2
.

This gives the arc of slope 6
11 in the right side of Figure 7. Since the ρi, i = 1, 2, 3, 4 correspond

to the representations of M = S3(K, 1
2 ), they must send µ̄ to Id. This is seen in the right side of

Figure 7 by the fact that the ρi are aligned on the left edge of the pillowcase, which corresponds

to ρ ∈ χ(T ) such that ρ(µ̄) = Id. Thus the ρi correspond to ᾱ(t) ∈ Z, and this happens when

t = 1
11 (for ρ1), t = 2

11 (for ρ2), t = 3
11 (for ρ3), t = 4

11 (for ρ4). So for example,

cs(ρ3)− cs(ρ2) = −2
∫ 3/11

2/11

β̄(t)ᾱ′(t)dt

= −2
∫ 3/11

2/11

(−6t+ 1/2)(−11)dt = −30/11 ≡ 8
11

(mod Z)

Some other computations possible using this theorem include an easy proof that the set of

Chern-Simons invariants of the lens space L(p, q) is

{−n
2r

p
| n = 0, 1, · · · , [p

2
]}

where r ∈ Z satisfies qr ≡ −1 (mod p). The proof is to apply the theorem to surgeries on

the unknot. We remark that the collection of Chern-Simons invariants distinguishes homotopy

inequivalent lens spaces, although it cannot distinguish homotopy equivalent non-homeomorphic

lens spaces (since csX is a homotopy invariant).

LettingK be a regular fiber in a Seifert Fibered homology sphere, one quickly reproves Fintushel

and Stern’s [FS] computation of the Chern-Simons invariants of these 3-manifolds. The argument

is basically identical to the computation for 1
2 surgery on the Trefoil carried out above.

A slightly trickier computation is the Chern-Simons invariant of surgeries on the figure 8 knot.

Although one can compute the difference between the Chern-Simons invariants of irreducible repre-

sentations in the same way, there is no path from an irreducible representation of the figure 8 knot

exterior to the trivial representation since χ(XK) is not connected (see example 1.5, Figure 5). This

is overcome by passing to the complex character variety, i.e. by considering hom(π1XK , SL(2,C))

which turns out to be connected in this case. As a sample application one can compute the Chern-

Simons invariants of surgeries on the Figure 8 knot numerically (i.e. by computer). Applying

Fintushel and Stern’s argument one can then show that − 1
3 and − 1

4 surgery on the Figure 8 knot

are each linearly independent of the set {Σ(p, q, pqk − 1)} in the homology cobordism group Θ3
H

except possibly that − 1
4 might be homology cobordant to nΣ(2, 3, 5) for some n ≥ 0. For the

proofs of the preceding facts see [KK2].
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2.7 The S1 bundle over χ(Σ)

What about general decompositions along tori? In [KKR] we needed a computation of Chern-

Simons invariants for graph manifolds obtained by gluing together the complements of regular

fibers in Seifert Fibered homology spheres in order to compute their Instanton Homology.

What is needed is a definition of Chern-Simons invariants for manifolds with boundary. At first

sight this seems problematic since the integral

1
8π2

∫
X

tr(dA ∧A+
2
3
A ∧A ∧A) ∈ R/Z

is not gauge invariant on a manifold with boundary; that is, it can change by a non-integer if A ∈ A
is replaced by g · A. Thus one cannot use this integral to define an R/Z = S1-valued function on

χ(X).

However, there is a simple solution to this problem which I first saw in [RSW], which shows

csX is a cross section of a non-trivial S1 bundle over χ(∂X). The bundle is constructed as follows.

Let Σ be a closed oriented surface and let Q−→Σ be a principal SU(2) bundle over Σ. Then

define θ : AQ×GQ−→S1 by

θ(A, g) = exp(2πi(cs(Ã)− cs(g̃ · Ã)))

where Ã is some extension of A to a connection over a 3-manifold X with boundary Σ, and g̃ is

an extension of g to the corresponding bundle over X. The fact that csM is well-defined in R/Z

if M is closed implies that θ(A, g) is independent of the choice of extensions.

Thus θ defines an action of GQ on AQ×S1 covering the GQ action on AQ by the formula

g · (A, z) = (g ·A, θ(A, g)z).

One checks that if g ·A = A, then θ(A, g) = Id, and so the GQ-equivariant bundle AQ×S1−→AQ
has a quotient S1-bundle

LΣ−→BΣ .

(Note that Q is necessarily trivial and so LΣ depends only on Σ.)

It is now a tautology that if ∂X = Σ, then cX = e2πicsX is a cross section of LΣ−→BΣ over

the restriction BX −→BΣ.

LΣ

↗ ↓
BX −→ BΣ
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We can restrict to character varieties since χ = F /G ⊂ B, thereby obtaining a bundle

LΣ−→χ(Σ) such that for any 3-manifold X with boundary Σ, cX = e2πicsX defines a lift of

the restriction map χ(X)−→χ(Σ) as indicated in the next diagram.

LΣ

↗ ↓
χX −→ χΣ

This line bundle has extra structure. First of all, χ(Σ) has a symplectic structure induced by

the cup product on cohomology. To see this, recall that Tρχ(Σ) ∼= H1(Σ; adρ). The cup product

· : H1(Σ; adρ)×H1(Σ; adρ)−→H2(Σ,R) ∼= R

induced by the non-degenerate form (a, b) 7→ tr(ab) on su(2) is skew symmetric and non-degenerate,

and induces a symplectic structure on χ(Σ). (Strictly speaking, since χ(Σ) is not a manifold, we

should think of χ(Σ) either as a stratified object or just restrict to the top stratum.) In [RSW]

a connection on the bundle LΣ is constructed whose curvature is this symplectic form. Moreover

they show that if X is a 3-manifold with boundary Σ the image χ(X)−→χ(Σ) is Lagrangian.

In [KK3] we construct the bundle LΣ directly when Σ is a torus. From our construction the

connection on LT and the symplectic structure on (the top stratum of) χ(T ) is obvious. Moreover,

Theorem 2.5 above can be succinctly stated by saying that the lift cX of χ(X)−→χ(T ) to LT is

parallel. We describe this now.

The construction is similar to the one given above, but with a smaller group. Let G be the

semi-direct product of Z and Z/2, acting on R2 by (m,n,±) · (α, β) = ±(α, β) + (m,n). We saw

in example 1.2 that R2/G is a good model for χ(X). Now extend the action of G to R2 × S1 by

the formula

(m,n,±) · (α, β, z) = (±α+m,±β + n, ze2πi(mβ−nα)).

Then the trivial bundle descends to give a quotient bundle L−→χ(T ).

Moreover, the inner product < , >: S1×S1−→S1 given by < z,w >= zw induces a (fiberwise)

inner product LT ×LT −→S1. Then [KK3]:
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2.8 Theorem.

1. LT = LT , and so if X is a 3-manifold with boundary a torus, cX = exp(2πicsX) defines a lift

of the restriction χ(X)−→χ(T ) to LT .

2. Let M = X ∪T Y be a closed 3-manifold obtained by cutting M along a torus. If ρM ∈ χ(M),

and ρX = ρM |X ∈ χ(X), ρY = ρM |Y ∈ χ(Y ), then

e2πicsM (ρM ) =< cX(ρX), cY (ρY ) > .

3. The euler class of LT is −1.

(Remark: It seems that several people knew this type of fact before we did. Moreover it is not

hard to prove once one has seen the idea of [RSW].)

2.9 The Connection and Symplectic Form on LT .

The previous theorem says that if we can compute cX for manifolds with boundary a torus, part

2 of this theorem together with the gluing results of section 1.4 shows how to compute Chern-Simons

invariants of manifolds glued along tori. A more general result holds for manifolds decomposed

along a union of tori.

To take advantage of this, we need a theorem like 2.5 to compute cX for manifolds with toral

boundary.

We use the following notation for points in LT : since LT is a quotient of R2 × S1 we write

[α, β; z] for equivalence classes, so for example

[α, β; z] = [α+m,β + n; ze2πi(mβ−nα)]

if m,n ∈ Z.

The main computational tool for Chern-Simons invariants in [KK3] is the following theorem.

2.10 Theorem. Let X be a 3-manifold with ∂X = T 2. Let ρt : I−→χ(X) be a path of

representations. Let (α(t), β(t)), t ∈ I be a path in R2 so that ρt(µ) = e2πiα(t) and ρt(λ) = e2πiβ(t).

If

cX(ρ0) = [α(0), β(0), z0]

and

cX(ρ1) = [α(1), β(1), z1],

then

z1z
−1
0 = exp(2πi

∫ 1

0

αdβ − βdα).
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Again this theorem says that for a manifold X with torus boundary, the “difference” in Chern-

Simons invariants of 2 representations can be calculated solely by knowing the map χ(X)−→χ(T ).

We will give an example below which shows how easy it is to compute Chern-Simons invariants

with this theorem. It contains Theorem 2.5 as a special case. Before we compute, however, we

would like to point out a more theoretical interpretation of this result and draw some (perhaps

surprising) conclusions about the subvariety Image(χ(X)−→χ(T )).

The following is essentially a restatement of the previous theorem.

2.11 Corollary.

1.The connection 1-form

−2πi(αdβ − βdα)

on the trivial principal S1 bundle R2×S1−→R2 descends to give an orbifold connection 1-form ω

on LT−→χ(T ). Given any 3-manifold with boundary T , the lift cX : χ(X)−→LT of the restriction

χ(X)−→χ(T ) is parallel with respect to this connection.

2. The symplectic form on R2,

−4πi(dα ∧ dβ)

pushes down to give the curvature F (ω) of ω.

The proof of this corollary is just an application of the fact that if ω is a connection in an S1

bundle, and γ is a loop, then

holω(γ) = exp(2πi
∫ 1

0

γ∗(ω)).

The statement of this corollary gives strong restrictions to what the image of χ(X)−→χ(T ) can

be, and we illustrate this fact now. The following argument was shown to me by Chris Herald.

Suppose that χ(X) contains a loop. (For example, if X is the exterior of the trefoil knot, then

there is a loop consisting of the arc of non-abelian representations together with part of the arc of

abelian representations, see figure 4. Likewise, if X is the exterior of the figure 8 knot, then χ∗(X)

contains a smooth circle; see figure 5.) Let γ : I−→χ(X) be a loop and consider its image in χ(T ).

By Stoke’s theorem the symplectic area which γ bounds in χ(T ) is equal to
∫ 1

0
γ∗(ω), since dω

is the push forward of the area form in R2. But since the loop lies in χ(X), the Chern-Simons

function cX gives a parallel lift of γ to LT . Hence the holonomy holω(γ) is trivial, i.e. is equal to
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Id in SU(2). Recall that the formula for the holonomy is just e2πi
∫
γ∗(ω). Hence we conclude that

the image of γ in χ(T ) must bound zero area mod Z.

This puts constraints on the the map χ(X)−→χ(T ). Figure 8 shows some forbidden examples.

(conjugacy classes of) representations:

Figure 8.

Symplectic subvarieties like χ(X)−→χ(Σ) which have this extra structure, namely a parallel

lift to LΣ, are called Legendrian. In [He] Herald carries out a detailed analysis of perturbations

of the maps χ(X)−→χ(Σ) and cX similar to Taubes’ [T] and Floer’s [F] perturbations of the

Chern-Simons function for closed manifolds. Among other things he shows that the image of

χ(X)−→χ(Σ) varies by a Legendrian cobordism.

Both Theorems 2.8 and 2.10 generalize to other Lie groups. An especially interesting case is to

take G = SL(2,C). For the special case when X is a cusped hyperbolic manifold, these theorems

(for SL(2,C)) can be reinterpreted as a result of Yoshida’s [Y1] constructing an analytic function

on χSL(2,C)(X) near the complete hyperbolic representation (see [KK3]) whose real and complex

parts correspond to the hyperbolic volume and the Chern-Simons invariant of the Levi-Civita

connection. The theorems also work just as well for links as for knots.

2.12 A Computation

We finish this section with a piece of the computation of the Chern-Simons invariant of a graph

manifold obtained by gluingX = Σ(a1, · · · , am)−N(regular fiber) to Y = Σ(c1, · · · , cn)−N(regular

fiber) along their boundary torus. Here Σ(a1, · · · , am) denotes the Seifert Fibered homology sphere

with singular fibers of multiplicity ai. We will not carry out the entire computation, but only one

part to illustrate using the inner product < , >: LT × LT−→S1.
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Consider first X. Let a = a1 · · · am be the products of the multiplicities. Now

π1X =< x1, · · · , xM , h | h central , xaihbi = 1 >

for some integers bi satisfying

a
m∑
i=1

bi
ai

= 1.

Moreover the meridian and longitude are given by µ = x1 · · ·xm, λ = h

Suppose that ρX : π1X−→SU(2) is a non-abelian representation. Then from the presentation

of π1X we see that each xi must go to a 2athi root of unity in SU(2) (since h must be sent to ±Id).
Let li be the integer between 0 and ai so that xi is sent to a conjugate of exp2πili

2ai
, and let

eX = a

n∑
i=1

li
ai
.

Then, using Theorem 2.10 and using the simple description of χ(X) in terms of linkages as in

[KK1] one computes cX(ρX) to be

[α, β; e−2πi(e2X/4a+βα)]

where ρX(µ) = e2πiα and ρX(λ) = e2πiβ . (notice that β ∈ Z[ 1
2 ] since h is central.)

Likewise,

π1Y =< y1, · · · , yM , k | k central , ycihdi = 1 > .

If ρY−→SU(2) is a representation we have rotation numbers for Y and define eY similarly. This

time we use the meridian and longitude µ̄ = y1 · · · yn and λ̄ = k. Letting ρY (µ̄) = e2πiᾱ and

ρY (λ̄) = e2πiβ̄ we get

cY (ρY ) = [ᾱ, β̄; e−2πi(e2X/4a+β̄ᾱ)].

Now suppose that we are given a gluing map φ : ∂X−→∂Y , expressed in terms of the bases

µ, λ and µ̄, λ̄ by φ(µ) = uµ̄+ wλ̄ and φ(λ) = vµ̄+ zλ̄ (so uz − vw = −1).

Let T = ∂X. Suppose that ρX|T equals ρY |T . Then these two representations glue together to

give a representation ρM of M , where M = X ∪φ Y . Theorem 2.8 now implies that

cM (ρM ) =< cX(ρX), cY (ρY ) >=< [α, β; e−2πi(e2X/4a+βα)], [ᾱ, β̄; e−2πi(e2X/4a+β̄ᾱ)] > .

We must be careful since cX and cY are expressed in terms of different bases, namely bases

differing by the linear map φ. We will express everything in terms of the bases µ̄ and λ̄.
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Write α = uᾱ+ wβ̄ and β = vᾱ+ zβ̄. Substituting, we obtain:

cX(ρX) = [α, β; e−2πi(
e2
X

4a +αβ)]

= [uᾱ+ wβ̄, vᾱ+ zβ̄; e−2πi(
e2
X

4a +(uᾱ+wβ̄)(vᾱ+zβ̄))].

Since β and β̄ are half integers it follows that α and ᾱ are rational with denominator 2v.

Write

ᾱ =
p

2v
, β̄ =

κ

2

for some integers p and κ. Then

cY (ρ) = [
p

2v
,
κ

2
; e−2πi(

e2
Y
4c + p

2v
κ
2 )]

and

cY (ρ) = [
p

2v
,
κ

2
; e−2πi(

e2
X

4a +(uᾱ+wβ̄)(vᾱ+zβ̄))].

We can now take the inner product:

cM = −(
e2
X

4a
+ (uᾱ+ wβ̄)(vᾱ+ zβ̄))− (

e2
Y

4c
+ ᾱβ̄)

= −e
2
X

4a
− e2

Y

4c
− ᾱβ̄((1 + uz + vw))− ᾱ2uv − β2wz

= −e
2
X

4a
− e2

Y

4c
− p2u

4v
− wκ2

4
(2p+ z).

You will notice the similarities of the first two terms with Fintushel and Stern’s formula for

Seifert Fibered homology spheres; the last two terms are “interaction” terms defined solely in terms

of the gluing map and the restriction of the representation to the separating torus.

3 Spectral Flow

3.1 The Hessian of the Chern-Simons Function

In this last lecture we investigate the spectral flow of the Hessian of the Chern-Simons function

(and the related Atiyah-Patodi-Singer odd signature operator) along a path of connections on a

3-manifold. We will describe a method which allows us to compute the spectral flow for Dehn

surgery on knots in terms of χ(XK) and its image in χ(T ).

We begin by defining the Hessian of the Chern-Simons function, following Taubes [T]. Consider

the space B = A /G of gauge equivalence classes of connections on a closed 3-manifold M . By
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completing A,G in appropriate Sobolev norms we can give B the structure of a (singular) infinite-

dimensional Banach manifold. (We will ignore all technicalities about completions here; the reader

can look up any one of many good references, e.g. [DK]. Our only intention is to display the

analogy with Morse theory). Since A is an affine space modeled on Ω1
M ⊗ su(2), the tangent space

to A at A is TAA = Ω1
M ⊗ su(2). We wish to describe the tangent space to B. Since B = A /G,

the pull back of the tangent space of B to A can be identified with the orthogonal complement to

the tangent space of the G-orbits.

Now G = Maps(M,SU(2)) and so T1 G = Maps(M, su(2)) = Ω0
M ⊗ su(2). The function

G −→A taking g to g · A maps G onto the orbit of A and its differential at 1 ∈ G is just the

covariant derivative dA : Ω0
M ⊗ su(2)−→Ω1

M ⊗ su(2). Now A has a Riemannian metric induced by

the L2 inner product

< a, b >= −
∫
M

tr(a ∧ ∗b), a, b ∈ TAA = Ω1
M ⊗ su(2).

Therefore the pullback of T∗ B to A is the G-equivariant subbundle whose fiber over A ∈ A is

(Im dA : Ω0
M ⊗ su(2)−→Ω1

M ⊗ su(2))⊥ = ker d∗A : Ω1
M ⊗ su(2)−→Ω0

M ⊗ su(2).

(This is not quite a bundle, since it “jumps up” along the reducibles, i.e. along the set of connections

A in A for which kerdA : Ω0
M ⊗ su(2)−→Ω1

M ⊗ su(2) is non-zero. However we can think of B as

being stratified by the dimension of the centralizer of the holonomy of a connection, and then along

each open stratum this gives the pullback of the tangent space to B.)

The Chern-Simons function cs : B−→S1 lifts to cs : A−→R (in a given trivialization) using

the equation (2.1). Now if A ∈ A, B ∈ TAA = Ω1
M ⊗ su(2), then

dcsA(B) = lim
t−→0

1
t
(cs(A+ tB)− cs(A))

=
1

8π2

∫
M

tr(dA ∧B + dB ∧A+
2
3
(A ∧A ∧B +A ∧B ∧A+B ∧A ∧A))

=
1

8π2

∫
M

tr(dA ∧B + dB ∧A+ 2A ∧A ∧B)

=
1

4π2

∫
M

tr((dA+A ∧A) ∧B)

=
1

4π2
< ∗F (A), B > .

(Stokes’ theorem is used to show that
∫
tr(dB ∧ A) =

∫
tr(B ∧ dA).) Thus the gradient of the

Chern-Simons function is grad cs(A) = 1
4π2 ∗ F (A).

This is also the pullback of the gradient of cs : B−→S1 to A since the Bianchi identity implies

that d∗A(∗F (A)) = − ∗ dAF (A) = 0 and so ∗F (A) lies in the subbundle whose fiber over A is

ker d∗A. Thus the set of critical points of cs : B−→S1 is just F /G = χ(M).
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Continuing the Morse theory analogy we need a notion of index of a critical point. In finite

dimensions this is defined to be the signature of the Hessian at a critical point. Let us first calculate

the Hessian of cs.

The Hessian is the linearization of the gradient. Since grad cs : A−→T∗A is given by A 7→
1

4π2 ∗ F (A), and F (A+ tB) = F (A) + tdAB + t2B ∧B for B ∈ Ω1
M ⊗ su(2), we compute that the

Hessian of cs at A is given by

HA : TAA−→TAA, B 7→ ∗dAB.

This is the Hessian if we view cs as a function from A to R. To compute the Hessian if we consider

cs as an S1-valued function on B, we can use the connection ∇ on π∗(T∗ B) obtained from the

trivial connection on T∗A = A×Ω1
M ⊗ su(2). Thus

HA = ∇grad csA = projker d∗
A
∗ dA : ker d∗A−→ ker d∗A

where π∗(TA B) = ker d∗A, and projker d∗
A

is the orthogonal projection in the fiber TAA, (which

is just the L2 projection Ω1
M ⊗ su(2)−→ ker d∗A). At a critical point, F (A) = dAdA = 0, and so

d∗A(∗dA) = 0. Thus the Hessian at a critical point A ∈ χ(X) is just ∗dA. It is easy to compute

that HA is self-adjoint with respect to the L2 inner product.

3.2 Spectral Flow

What distinguishes HA from the Hessian of a function on a finite-dimensional manifold is

that HA has infinitely many positive and negative eigenvalues. However, what is relevant in Morse

theory is not so much the signature of the Hessian at a critical point, but the difference in signatures

of the Hessian at two different critical points.

Consider the finite dimensional case. If Z is a finite dimensional manifold and f : Z−→R is

a Morse function, let grad f denote its gradient vector field. If ∇ is a connection in the tangent

bundle then ∇(grad f)z : TzZ−→TzZ gives a family of self-adjoint endomorphisms parameterized

by the points of Z. In particular, if z0, z1 are non-degenerate critical points, (so ∇(grad f)zi is

invertible, i = 0, 1), and zt is a path in Z from z0 to z1, then the eigenvalues of ∇(grad f)zt vary

continuously with t. If λi(t), i = 1, · · · , dimZ denotes the eigenvalues, then the quantity

#{i | λi(0) < 0, λi(1) > 0} −#{i | λi(0) > 0, λi(1) < 0}

is equal to the difference in the Morse index of f at z1 and z0 and is called the Spectral Flow of

the family of self-adjoint operators ∇(grad f)zt .
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This same quantity makes sense for a continuous family of self-adjoint operators with discrete

spectrum (with each eigenvalue of finite multiplicity). We will show below that HA has such a

spectrum, and so if ρ0, ρ1 ∈ χ(M), we define the spectral flow from ρ0 to ρ1 to be the spectral flow

of the family HAt where At is a path of connections with Ai flat with holonomy ρi for i = 0, 1. It

is an integer.

There are several technicalities which we have ignored. Firstly, we have assumed that the

path At lies in a single stratum of B, so that T∗ B does not jump up along the path. Second,

we have not shown that HA has a discrete and continuously varying spectrum. We are also

blurring the distinction between representations and characters (and between connections and

gauge-equivalence classes of connections) and, in particular, we should know what changing A to

g · A does to the spectral flow. Finally, we would like to know how the choice of path At affects

the spectral flow.

Taubes [T] introduces the following trick to deal with all these problems. If A ∈ A is a

connection, decompose Ω0 ⊗ su(2) ⊕ Ω1 ⊗ su(2) into

Ω0 ⊗ su(2)⊕ Image dA ⊕ ker d∗A.

Let BA : Ω0 ⊗ su(2) ⊕ Image dA ⊕ ker d∗A−→Ω0 ⊗ su(2) ⊕ Image dA ⊕ ker d∗A be the self-adjoint

operator given by the matrix:

BA =

 0 dA 0
d∗A 0 0
0 0 HA

 .

Then

1. The spectrum of the top left block
(

0 dA
d∗A 0

)
is symmetric since if

(
φ
τ

)
is a λ-eigenvector

then
(
φ
−τ

)
is a −λ-eigenvector.

2. If A is flat, then HAτ = ∗dAτ , and so

BA(φ, τ) = (d∗A(projImdAτ), dAφ+HA(projker d∗
A
τ))

= (d∗Aτ, dAφ+ ∗dAτ).

For a general connection A, let DA(φ, τ) = (d∗Aτ, dAφ+∗dAτ) acting on Ω0⊗su(2) ⊕ Ω1⊗su(2).

Then DA = BA if A is flat. Moreover, DA is elliptic, and DA −BA is compact.

Therefore, the spectrum of BA is discrete, and so also of HA. The spectral flow of HAt equals

the spectral flow of BAt along any path in A∗. If A0, A1 ∈ A∗ are flat then SF (BAt) = SF (DAt).

However, the domain of the operator DAt is independent of t; it is just the image of L2
1 in L2. In

particular, the spectral flow of DAt makes sense for any path At between any two connections A0
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and A1. Thus we lose nothing by taking the spectral flow of the family DAt instead of the family

HAt , in fact we gain since DAt makes sense even when At does not lie in one stratum of B.

This leaves only the question of the dependence on the path and the choice of gauge equivalence

class of connections. This is done by showing that DA is the tangential operator (in the sense of

[APS]) of the self-duality operator on a 4-manifold. What we must compute is the spectral flow

of a family around a loop in B, or equivalently, along a path At in A from A to g · A. Applying

the index theorem of [APS] we conclude that the spectral flow along any such loop is equal to the

index of the self-duality operator on a bundle over M × S1, and this index is divisible by 8. Thus

the spectral flow of the family DAt is well-defined mod 8 as a function on the pairs ρ0, ρ1 ∈ χ(X).

(see the appendix to [KKR] for details.)

Note that the operator Dt is a disguised form of the Atiyah-Patodi-Singer odd signature oper-

ator, i.e. half of the tangential operator of the signature operator [APS].

Finally let us mention the definition of Floer’s instanton homology. First, the chain complex is

generated by the points of χ(M), and is Z/8 graded by taking the grading of ρ to be the spectral

flow from ρ to some fixed ρ0. The differentials in the chain complex are more difficult to explain,

and as of yet I do not know of a rigorous way to obtain the differentials from the “pillowcase”

picture, although several people have told me this should be possible, ostensibly by identifying the

instanton Chain complex with Floer’s “symplectic” homology. I will have nothing to say about

these differentials in what follows (except to point out when they must be zero!)

Among the earliest computations of spectral flow were Fintushel and Stern’s computations for

Seifert fibered homology spheres [FS]. Their computations were carried out by showing that given

any Seifert fibered homology spheres M and ρ ∈ χ(M), there exists a 4-manifold Z such that the

boundary of Z equals −M∪L where L is a union of lens spaces, and ρ extends to a representation of

π1Z. Applying the Atiyah-Patodi-Singer index theorem (and the relationship between the spectral

flow and the η invariant of [APS]) the computation reduces to a computation of the Atiyah-Patodi-

Singer ρα invariants of lens spaces (which is easy since they have finite fundamental groups) and

the Chern-Simons invariants of M .

Finding such a flat cobordism is rare. Other computations using this approach include [KKR]

for certain graph manifolds and abelian representations, and [SS] for certain links of algebraic

singularities.

Let us interpret several of the computations of [FS] for Dehn surgery on knots in terms of the

image χ(XK)−→χ(T ).
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3.3 Two Surgeries on the Trefoil

A. We start with the simplest non-trivial example: +1 surgery on the Trefoil; S3(K,+1), which

is just the Poincaré homology sphere Σ(2, 3, 5). Figure 9 Shows χ(XK) and χ(N(K)), on the left

in the natural S3 meridian and longitudes µ, λ and on the right in the meridian and longitudes µ̄, λ̄

in Σ(2, 3, 5). Thus µ̄ = µ + λ and λ̄ = λ. (Recall from section 1.5 that χ∗(XK) is parameterized

by Φ(t,−6t+ 1
2 ), t ∈ ( 1

12 ,
5
12 ).)

Figure 9.

Fintushel and Stern compute that in this example, SF (ρ0, ρ1; Σ(2, 3, 5)) ≡ 4 (mod 8).

B. Consider a slightly more complicated case, 1
3 surgery on the trefoil. Figure 6 has the

pillowcase picture in the S3 longitude and meridian. Taking µ̄ = µ+ 3λ and λ̄ = λ we obtain the

following figure in the natural coordinates µ̄ and λ̄ for S3(K, 1
3 ) = Σ(2, 3, 17):

Figure 10.

Fintushel and Stern’s computations imply:

SF (ρ1, ρ5) = 4, SF (ρ4, ρ5) = 6, SF (ρ4, ρ2) = 2, SF (ρ2, ρ6) = 4, and SF (ρ6, ρ3) = 6.

These examples will be used in the next section to derive a formula for the spectral flow.
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2

4

2

χ(N)

3.4 The Characteristic Cohomology Class

Consider the 3-manifold pair (N,T ) = (D2×S1, S1×S1) and give T the coordinates µ = S1×∗
and λ = ∗×S1. Let χ̂(T ) = χ(T )−{central representations}; this is the pillowcase with the corners

removed. Let χ̂(N) = χ(N) − {central representations}; this is an open arc mapping to the left

vertical edge of the pillowcase. Then define the Characteristic Cohomology Class for (N,T ),

s(N,T ) ∈ H1(χ̂(T ), χ̂(N);Z/8)

to be the Poincaré dual to the homology class z indicated in Figure 11.

Figure 11.

In this figure the cohomology class z equals 2 times the top horizontal edge + 2 times the

bottom horizontal edge + 4 times the right vertical edge (oriented as indicated). Thus, given a

path γ in χ̂(T ) with endpoints in χ̂(N), s(N,T )(γ) = γ · z (mod 8).

Now the important observation which the reader should verify is that in the previous two

examples, letting γ be a path in χ(XK) joining any pair ρ0, ρ1 ∈ χ(M) (where M denotes Σ(2, 3, 5)

in the first example and Σ(2, 3, 17) in the second example),

SF (ρ0, ρ1) = s(N,T )(γ).

This suggests that the spectral flow between two representations of a surgery on a knot K can

be computed by understanding the image of χ(XK) in the pillowcase and applying the class s(N,T ).

This is almost true, but one more invariant must be introduced, namely the Maslov Index. For

simplicity we introduce it for the pillowcase only.

Let L be the vertical line field on χ̂(T ), i.e. the image of the vertical line field in R2 − ( 1
2Z)2

under the projection Φ : R2−→χ(T ). Given an oriented, immersed curve τ in χ̂(T ) whose endpoints

32



τ

τ

τ

γ( τ)= +1 γ(τ)= -1

are transverse to ˆχ(N) , the Maslov index is defined to be the winding number of the tangent vector

τ̇ with respect to L, and is denoted by γ(τ). Figure 12 Shows how to compute γ(τ); it picks up a

+1 or −1 each time τ is tangent to L; +1 if the tangency is on the right and −1 if the tangency

is on the left of τ .

Figure 12.

Then we have:

3.5 Theorem. Let K ⊂ M be a knot, and let ρ0, ρ1 ∈ χ∗(M) be two representations.

Suppose there exists a path ρ : I−→χ∗(XK) from ρ0 to ρ1, and suppose that χ∗(XK) is a smooth

1-dimensional variety along ρ, i.e. H1(XK ; adρt) is 1-dimensional for all t ∈ I. Finally suppose

that the image of ρt in the pillowcase lies in χ̂(T ) and is transverse to L at the endpoints (i.e.

H1(M ; adρi) = 0 for i = 0, 1.) Let τt denote the image of ρt in the pillowcase. Then:

SF (ρ0, ρ1) = s(N,T )(τt) + γ(τt).

Remarks: 1. This theorem was first proven by Yoshida [Y3] using his splitting theorem [Y2]

for spectral flow. Other proofs of the splitting theorem are now available; the clearest one in my

opinion is in [MW]. See also [CLM] and [N].

2. The assumptions on χ∗(XK) and χ(M) are “generic”, i.e. they are moduli spaces of the

dimension predicted by the index theorem. In [T],[F], a family of perturbations called “geometric

perturbations” of the Chern-Simons function B−→S1 are given which ensure that the critical

points are generic. Chris Herald [He] works this out carefully for a manifold with boundary, and

in particular proves that a geometric perturbation can be found which makes χ∗(XK) a smooth

33



1-dimensional variety. In principle his methods can be used to give the correct input to this

theorem. One needs to compute “perturbed” representation spaces, i.e. χp(M) and χp(XK) where

p denotes some perturbation of the Chern-Simons function and χp the corresponding set of critical

points. This involves additional difficulties; examples need to be worked out. However, finding

good perturbations is a topology and algebra problem; it involves no analysis. One needs to find

an appropriate link in the manifold and investigate the character variety of the link exterior.

3. There is nothing special about the line field L; any line field can be used. However, choosing

a different line field will change s(N,T ). It is the sum of the two which must remain invariant. We

have chosen L for convenience. Thus the notation s(N,T ) is not precise; strictly speaking this class

depends on L. It is the sum s(N,T )(−) + γ(L,−) which is independent of L.

4. We assume that the image χ∗(XK)−→χ(T ) misses the corners of the pillowcase. This is

OK if M is a surgery on a knot in S3, as we have observed in section 1.4. In general, however,

we need to understand what happens if the image χ(XK)−→χ(T ) passes through a corner of the

pillowcase. The class s(N,T ) no longer makes sense and needs to be replaced by a more general

object, maybe some kind of intersection cohomology class which keeps track of the strata. What

is at issue is that the dimension of H1(T ; adρ) jumps up from 2 to 6 dimensions at the corners.

Thus the Zariski tangent space of χ(T ) is not a vector bundle near the corners, but a sheaf. One

could conjecture that the spectral flow through a corner depends on the angle at which the path

approaches the corner.

5. In the each of the two examples above, the Maslov index term is zero, i.e. the image

χ(XK)−→χ(T ) is transverse to the vertical line field L. It is unlikely that this is true in general;

there are probably examples of surgeries on 2-bridge knots where this fails. A more subtle question

is whether χ(XK) is transverse to L at its endpoints when XK is the complement of a knot in M .

This is closely related to the question of whether there exist a representation ρ of closed 3-manifolds

M which is an isolated point in χ(M) but for which H1(M ; adρ) 6= 0. One conjecture states that

this is not possible.

6. It should be possible to generalize the characteristic class s(N,T ) to any 3-manifold pair

(X,Σ), and for that matter any compact Lie group G and representation instead of just SU(2)

and the adjoint representation. There are many difficulties in doing this, related to the singularities

of χG(X) and χG(Σ). See the method in [KK4] for constructing s(N,T ) and Theorem 1.7 in [KK5]

for the technical result needed at least for the case when one stays within a stratum of χ(Σ). This

makes the pair (H1(χ(X), χ(Σ);Z/n); s(X,Σ)) look suspiciously like a TQFT.

We note here that the computation of the coefficients of s(N,T ) for G = SU(2) and the adjoint

representation depends on Fintushel-Stern’s computations. It turns out that the computation for
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SU(2) and the defining representation (i.e. C2) looks like figure 11 except that in that case s(N,T )

is a mod 2 class, the 2 is changed to a 1 and the 4 to a 0. One can find the appropriate coeficients

for any representation of SU(2)

This theorem works well for surgeries on torus knots and 2-bridge knots, or more generally, any

Brieskorn sphere Σ(p, q, r). The inspired reader should work out the example of 1
4 surgery on the

figure 8 knot using Figure 5 (and changing coordinates to µ̄ = µ+2λ, λ̄ = λ) to test whether s/he

has understood the statement of Theorem 3.4. It turns out again that γ = 0, and so SF (ρi, ρj)

is always even. Hence the boundary operators in the Instanton chain complex are all zero and so

the Instanton chain complex equals its homology. Up to a Z/8 cyclic permutation the Instanton

homology is (Z2, 0,Z2, 0,Z2, 0,Z2, 0).

3.6 The Non-Generic Case So far we have been discussing spectral flow for Dehn surgeries

and have seen that in certain generic situations, the entire picture is contained in the image

χ(XK)−→χ(T ). We alluded to perturbations which make χ(XK) generic. We now want to describe

an alternative method, which does not suppose that χ(XK) is generic. Along the way we will

define spectral flow for a manifold with boundary. (Notice that HA and DA are not self-adjoint

for manifolds with non-empty boundary unless some boundary conditions are imposed.) This will

lead to interesting formulas for spectral flow in terms of certain Massey products in the twisted

cohomology of X. Moreover, a new feature is introduced, namely the analytic structure of χ(X)

is used to control eigenvalues and eigenvectors. Even for a closed manifold this is interesting;

for example Farber and Levine [FL] have used this idea to obtain results about the homotopy

invariance of the Atiyah-Patodi-Singer ρα invariants on any odd-dimensional manifold.

( Exercise: Show that L(7, 1) and L(7, 2) are not diffeomorphic by computing the spectral flow

between corresponding representations using Example 1.5.1 and Theorem 3.5.)

3.7 Analytic families of Flat Connections and Operators

Let X be a 3-manifold with non-empty boundary Σ; we assume a Riemannian metric on X is

given such that the collar of the boundary is isometric to Σ× I. A connection A on X is said to

be in cylindrical form if, on the collar, A is the product of a connection Â on Σ and the trivial

connection in the I direction. The following theorem (which also holds if Σ = φ) shows that

families of flat connections on X can be chosen parameterized by hom(π1X,SU(2)) which reflect

the analytic properties of the algebraic variety hom(π1X,SU(2)).
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3.8 Theorem. Given a flat connection A with holonomy ρA in cylindrical form, there exists a

neighborhood U ⊂ hom(π1X,SU(2)) of ρA and an analytic function s : U−→A so that s(ρ) is flat

with holonomy ρ for all ρ ∈ U and s(ρ) is in cylindrical form near the boundary. Here A is given

any Sobolev L2
s topology or any Ck topology.

For a proof see [FKK]. What this theorem says is that we can locally split the holonomy map

from flat connections F to hom(π1X,SU(2)) in such a way that the splitting s is analytic. Notice

that s : U−→A is a function from an open set in an analytic (in fact algebraic) variety to an

affine space. Since A is infinite dimensional, some topology must be used before one can define an

analytic function, and any Sobolev L2
s or Ck topology will do.

3.9 The Easy Case: Closed Manifolds

We show how to use this fact on a closed 3-manifold M where the technicalities of boundary

conditions do not enter. Let α : I−→hom(π1M,SU(2)) be an analytic path of connections. Let

Dt : Ω0+1
M ⊗ su(2)−→Ω0+1

M ⊗ su(2)

be the corresponding family of self-adjoint operators

Dt(φ, τ) = (d∗Atτ, dAtφ+ ∗dAtτ)

where At = s(α(t)), s the splitting of the previous theorem (after perhaps shortening the interval

I). Then Dt is an analytic path of self-adjoint operators in the sense of [Ka]. The results of analytic

perturbation theory imply that the eigenvalues and eigenvectors of Dt vary analytically. (Exercise:

find a C∞ path of self-adjoint 2× 2 matrices whose eigenvectors do not vary continuously)

The main reason why this method works easily a closed manifold than on a manifold with

boundary is that for a closed manifold, the domain of DA is independent of A; in fact it is just the

image of L2
1 in L2. Making this work on a manifold with boundary is a technical step which we

will describe below.

In particular, we have the following principle:

3.10 Principle:. If λ(t) is an eigenvalue of Dt so that λ(0) = 0, one can tell if λ(t) is changing

from positive to negative or from negative to positive by looking at the sign and order of the first

non-vanishing derivative of λ(t) at t = 0.
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Returning to our closed manifold M , a basic fact about the operator DA when A is flat is

that the kernel of DA consists of dA-harmonic 0- and 1-forms, which by the Hodge and DeRham

theorems is isomorphic to the cohomology

H0(M ; adρA)⊕H0(M ; adρA).

(Here ρA = holA ∈ χ(M).) In particular, the dimension of the kernel of DA is a cohomological

invariant, which means that topologists can compute it if they really want to. Thus along our path

of representations αt we know exactly when the kernel of Dt jumps up, i.e. when an eigenvalue

crosses zero.

To get a handle on the spectral flow, we need to know more than just when the kernel jumps,

but which way the eigenvalue is crossing through 0. But according to our principle, this is the

same as knowing the first non-vanishing derivative of the eigenvalue at the point where it crosses.

This can be encoded abstractly as follows: suppose that λi(t), i = 1, · · · , n are the paths of

eigenvalues which are equal to 0 at t = 0. (so n = dimH0+1(M ; adα0).) Define a sequence of

bilinear forms Fk which are just diagonal forms with the kth derivatives of the λi at t = 0 along

the diagonal. Then the sequence of signatures σ(Fk) clearly give the spectral flow through t = 0.

It turns out these signatures can be computed cohomologically. We describe the first one.

Let a ∈ H1(M ; adα0) = Tα0χ(M) be the derivative of the path αt at t = 0. It is well known

(and easy to prove) that the cup product [a, a] ∈ H2(M ; adα0) equals zero (see e.g. [GM]). Thus we

have a “derived ” complex whose chain groups are H∗(M ; adα0) and whose differential is cupping

with a (using the Lie bracket as bilinear form on the coefficients):

[a,−] : H∗(M ; adα0)−→H∗(M ; adα0).

The following theorem is proven in [KK4] (and generalized to arbitrary odd dimensions in [KK5])

3.11 Theorem. In the situation above, let

B1 : H1(M ; adα0)×H1(M ; adα0)−→R

be the symmetric bilinear form

B1(x, y) = −[a, x] · y

where [a, ] is described above and · : H2(M ; adα0)×H1(M ; adα0)−→R is the cup product induced

by the bilinear form su(2) × su(2)−→R, (a, b) 7→ −tr(ab) and the Poincaré duality isomorphism

H3(M ;R) ∼= R.
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Then the signature of B1 equals the signature of F1. Moreover, if the cohomology of the

derived complex (H∗(M ; adα0), [a,−]) is zero, then the signature of B1 equals the spectral flow of

Dt through t = 0.

Thus the first order part of the spectral flow can be computed using cup products, some-

thing topologists can do better than computing derivatives of eigenvalues of paths of self-adjoint

operators. Notice that B1 is a homotopy invariant.

The proof of this theorem is quite easy (and standard). One writes down the eigenvalue equation

Dtφt = λtφt and differentiates with respect to t. Then one uses a little algebra to clean up the

resulting bilinear form.

Taking higher derivatives leads to Massey products, we will not pursue this here but only say

that there is a product (a Massey triple product (x, y) 7→ {a, a, x} · y) defined on the cohomology

of the derived complex whose signature gives the signature of F2. Continuing in this manner

one should obtain all the higher signatures of the forms Fk (and hence the spectral flow) as

increasingly complicated formulas involving higher order Massey products. In [FL], Farber and

Levine circumvent these subtleties by defining a product directly as a torsion pairing over the power

series ring from which one can extract (theoretically!) the spectral flow. This immediately leads to

the homotopy invariance of the spectral flow, and related results about the homotopy invariance

of the Atiyah-Patodi-Singer ρα invariants.

3.12 Spectral Flow on a 3-Manifold with Boundary

We turn now to the problem of adapting the results of the last section to a 3-manifold X with

non-empty boundary Σ. This is what is needed for examining the spectral flow for Dehn surgeries.

As was mentioned, the basic problem is that the domain of Dt must be restricted in order to obtain

a self-adjoint operator. As is clear from [Y2], the correct domain to use for gluing problems are

analogues of the Atiyah-Patodi-Singer boundary conditions. The technical problem which arises

is that these boundary conditions are changing with t. Thus some work must be done to apply the

results of analytic perturbation theory, namely one must re-parameterize the domains analytically.

In [KK4] we were able to do this in an ad-hoc manner when the boundary of X is a torus. A

more careful analysis is carried out in [KK5] and so the general problem (in any dimension) can

be solved.

We briefly outline what must be done. See [Y2], [KK4],[KK5], and, of course, [APS] for details.

First a computation shows that on the collar,

DA = σ(D̂A +
∂

∂u
)
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in the sense of [APS] where the tangential operator D̂A is the operator on Σ:

D̂A : Ω0+1+2
Σ ⊗ su(2)−→Ω0+1+2

Σ ⊗ su(2)

given by

D̂A(α, β, γ) = (∗dÂβ,− ∗ dÂα− dÂ ∗ γ, dÂ ∗ β).

(Recall that A = Â×Θ on the collar.)

Now D̂A is self-adjoint on the closed manifold Σ with symmetric spectrum (D̂Aσ = −σD̂A).

Moreover, if Â is flat (e.g. if A is flat) then the kernel of D̂A is identified with H∗(Σ; adρA) via the

Hodge and DeRham theorems. Use the Spectral theorem to decompose L2(Σ) = L2(Ω∗Σ ⊗ su(2))

into

L2(Σ) = P−(A)⊕HA⊕P+(A)

where P±(A) is the span of the positive or negative eigenvectors of D̂A and HA is the kernel of

D̂A. So in particular HA ∼= H∗(Σ; adρA). Now σ2 = −1 and σ interchanges P±(A) , and leaves

HA invariant. Thus σ induces a complex structure on HA and, using the L2 inner product, a

symplectic structure via

{x, y} =< x, σ(y) > .

Since σ depends on the metric, an easy computation shows that the symplectic inner product

is metric independent, and in fact coincides with the cup product · on cohomology using HA =

H∗(Σ; adρA).

Now let αt : I−→hom(π1X,SU(2)) be an analytic path of representations. Choose an ana-

lytic path of flat connections At with holonomy αt in cylindrical form. We now must make the

assumption:

Assumption: The dimension of Ht is independent of t.

This is the analogue of the assumption that the path αt does not pass through a corner of the

pillowcase. More generally it says that the restriction of αt to the boundary stays in one stratum

of χ(Σ). We are not assuming that αt itself stays in one stratum, in fact the entire point of this

approach is to analyze what happens as one crosses through singularities. (There exist approaches

which suggests how to drop this assumption; as far as I know there is no coherent method of

organizing the information as one moves across a singular stratum.)

With this assumption, we can define subbundles of L2(Σ)× I with fiber over t ∈ I:

P+(t) = span{φ | D̂tφ = µφ, µ > 0}
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Ht = ker D̂t

and

P−(t) = span{φ | D̂tφ = µφ, µ < 0},

so that L2(Σ)× I−→I = P+ ⊕H⊕P−−→I.
The bundle isomorphism σ and the L2 inner product turns L2(Σ)× I into a symplectic vector

bundle over I and H into a finite-dimensional symplectic subbundle. (More generally, one obtains

a bundle over any parameter space T such that dimHt is constant for t ∈ T .)

The bundle H is an analytic subbundle of L2(Σ) × I; this follows from the fact that the path

Ât is an analytic path of connections on Σ (and Σ is closed). Choose an analytic Lagrangian

subbundle L ⊂ H. Then the boundary conditions we will use are P+ ⊕ L. Let Dt mean the

operator Dt on X with these boundary conditions. Then it follows from [APS], [Y2], [MW], and

many others that Dt is a self-adjoint operator with discrete spectrum.

Notice that the boundary conditions are varying with t. Applying analytic perturbation theory

is not as simple, since the domain of the operators is changing with t. In [KK5] we prove the

technical result:

3.13 Theorem.

Dt is an analytic path of self-adjoint operators. In particular the eigenvalues and eigenvectors

vary analytically.

Thus we are poised to apply the same analysis that we did in the closed case to obtain Theorem

3.11. Unfortunately, one more problem creeps in: in the analytic expression for an eigenvector

φ(t) =
∞∑
i=0

φit
i

the coefficients φi need not satisfy the boundary conditions that each φ(t) does. To make a long

story short, this problem is compensated by “stretching the neck”, i.e. replacing X by the manifold

X(R) = X ∪ (Σ× [0, R])

and letting R−→∞. The corresponding theorem is weaker, and we state it precisely now. First

some notation: the superscript R refers to objects on X(R). The form B1 is defined to be

H̃1(X; adα0)× H̃1(X; adα0)−→R, (x, y) 7→ −[a, x] · y,
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where H̃1(X; adα0) means the image of the relative cohomology in the absolute cohomology. There

is also a larger form B̂1 with the same signature as B1 whose signature is a homotopy invariant.

See [KK5] for details; the form B1 is the “non-hyperbolic part” of B̂1.

3.14 Theorem:. Given any ε > 0, there exists an Rε > 0 so that for all R > Rε, there is a 1-1

correspondence between the eigenvalues of B̂1 and the first derivatives of the eigenvalues λi(t) of

DRt passing through 0 at t = 0, denoted by τi(B̂1)↔ λ̇Ri (0), so that

|τi(B̂1)− λ̇Ri (0)| < ε.

In particular, if the cohomology of (H̃∗(X; adα0), [a,−]) is zero, then the signature of B1 gives

the spectral flow of DR
t (P+(t) + Lt) through t = 0 for R > Rε, where ε < 1

2 inf |τi(B̂1)|.

This is not quite as good a result as Theorem 3.11, since if some of the τi(B̂1) are zero we

cannot tell what the sign of λ̇Ri is. In the case when all the τi(B̂1) are non-zero then this gives the

computation of spectral flow on X(R) for R large enough. It is probably true that if some τi(B̂1)

vanishes, then so does the corresponding λ̇Ri , although a complete proof is not yet available.

3.15 An Example

We finish these lecture notes with a description of a computation using this theorem which

verifies a conjecture of Jeffrey [Je] relating the computations of the TQFT invariants of torus

bundles over S1 in the two methods (as described earlier in the notes), namely using the TQFT

Axioms as constructed in [Wa] and the stationary phase expansion. For details of the computations

see [KK4].

Let M be a torus bundle over a circle, and let ρ0, ρ1 ∈ χ(M) be two non-abelian representations.

In this setting Jeffrey’s conjecture is

SF (ρ0, ρ1) ≡ 0 (mod 4).

This conjecture is true if and only if the two interpretations of Witten’s invariant are consistent.

We approach this in our by now familiar way. There exists a simple closed curve K in a fiber

so that the restrictions of ρi to XK lie on a path ρt in χ(XK). (In almost all cases, we were able

to prove that the image of this path misses the corners of the pillowcase for a suitable choice of K,

but this simple question is the only step which is still missing to verify Jeffrey’s conjecture in its

entirety. It is purely a question of arithmetic in SL(2,Z).)

Now it turns out that χ(XK) is not always a smooth 1-dimensional variety along ρt. If it were,

we could apply Theorem 3.5 and immediately compute the spectral flow. However, there are some

41



Part of χ(X )
K

0
ρ

ρ
1

0
ρ ρ

1

0
ρ

t

ρ
t
1

0
ρ

t

ρ
t
1

rest r ic t

χ(T)

2-dimensional components of χ(XK) which intersect the path ρt transversaly for some 0 < t < 1.

This corresponds exactly to the fact that the cohomology jumps up, and so the corresponding

path of operators Dt on Xt picks up some kernel at these special values of t. Figure 13 shows

a typical example: ρt always maps to a straight line in the pillowcase, and the singularities (i.e.

the intersection with the two dimensional components) arise exactly when the image of ρt in the

pillowcase crosses the top or bottom horizontal edges of the pillowcase. This figure only shows

part of χ(XK) and its image in the pillowcase. The 2-dimensional sheets cutting through the arc

ρt map to the top or bottom edges of the pillowcase (i.e. they send λ to ±1). The picture makes

it plain that χ(XK) is not a smooth 1-dimensional variety along this arc.

Figure 13.

Now the correct generalization of theorem 3.5 in this situation says that if τt is the path in the

pillowcase corresponding to the restriction of ρt, then

(∗) SF (ρ0, ρ1) = s(N,T )(τ) + γ(τ) + SF (Dt) (mod 8).

The curve τ is a straight line, and is transverse to the vertical line field L on the pillowcase.

Therefore the Maslov index term γ(τ) vanishes. We know how to compute s(N,T )(τ): this just

picks up a ±2 whenever τt crosses the top or bottom horizontal edges of the pillowcase, and a 4

whenever τt crosses the left vertical edge. Since kerDt is 2 dimensional whenever τt crosses one

of the two horizontal edges and zero otherwise, what must be shown is that the two eigenvalues

of Dt crossing through zero at these values of t are crossing with the same sign, if the conjecture

is to hold. (If the eigenvalues were crossing with opposite sign, or if one or both had a horizontal
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tangency, then the spectral flow of Dt could be 1 or 0, but then applying the formula (∗) we would

have an example where SF (ρ0, ρ1) is not equal to 0 (mod 4), contradicting the conjecture.)

But Theorem 3.14 tells us how to compute the spectral flow of the family Dt (at least if the

derived cohomology vanishes, which it does in this case). A long but elementary calculation in

group cohomology shows that the bilinear form B1 is definite, and so the first derivatives of the

two eigenvalues passing through zero are non-zero. This finishes the proof.

4 Conclusions, Loose Ends

I hope that these lectures have illustrated the point that gauge theory information about 3-

manifolds can be obtained by a careful analysis of their character varieties, especially in the context

of Dehn surgery, where pictures are possible.

We list some questions which came up in these lectures which need answering.

1. Are all Chern-Simons invariants of representations of closed 3-manifolds rational? See [KK2]

and [A] for evidence.

2. An affirmative answer to the following question would make the theory even more useful: Given

a closed manifold M and ρ0, ρ1 ∈ χ(M), does there exist a knot or a link K in M so that the

restrictions of ρ0 and ρ1 to the exterior XK lie on a path component of χ(XK)? The answer is

probably no, but under what conditions is this possible?

3. Describe the differentials in Instanton homology in terms of the pillowcase for Dehn surgeries.

This is a special case of what I have heard called the Atiyah conjecture. This was presumably

answered by Floer in the construction of his exact triangle.

4. Compute the spectral flow along a path which passes through a corner of the pillowcase. This

vague question could be answered e.g. by finding the proper generalization of the characteristic

cohomology class s(N,T ) (perhaps in some generalization of cohomology?).

5. Define the characteristic cohomology class for any 3-manifold pair (X,Σ) and any compact Lie

group. (Hint: Answer question 4 first.) Then show that this gives a “torsion” TQFT whose

vector spaces associate to Σ some sort of cohomology of χ(Σ) and to X the characteristic class

s(X,Σ).

6. Referring to example 3.15 (an easy (?) question for number theorists): Prove that given any two

representations ρ0, ρ1 ∈ χ(M) when M is a torus bundle over S1, there exists a knot K ⊂ M

which lies in a fiber and a path ρt ∈ χ(XK) from ρ0|XK to ρ1|XK whose image in the pillowcase

avoids the corners. (See [KK4] for a reduction of this question to a question about matrices in

SL(2,Z).)
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7. Calculate χ(X) for a bunch of hyperbolic knot complements. What can be said about the SU(2)

character varieties of hyperbolic knot complements? In general, tables of character varieties of

knot exteriors and the image χ(XK)−→χ(T ) are needed.

8. Does every 3-manifold with non-trivial fundamental group admit a non-trivial representation

to SU(2)? Does every 3-manifold with non-abelian fundamental group admit a non-abelian

representation to SU(2)?
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