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SU(2) Representation Varieties of 3-manifolds,
Gauge Theory Invariants, and Surgery on Knots

Paul Kirk*

ABSTRACT: Chern-Simons and spectral flow invariants of representations of 3-manifold groups
are investigated in the context of Dehn surgery on knots. Various formulae and computational
methods are explained, and examples are worked out. The guiding principle is that information
about these invariants can be obtained entirely from the representation varieties of the manifolds,
i.e. without using any analysis or Differential Geometry. These lectures outline the research in-

vestigations of E. Klassen and the author ([KK1]-[KK5]), as well as many others.**

LECTURE 1. Representation Varieties
LECTURE 2. Chern-Simons Invariants
LECTURE 3. Spectral Flow

1 Representation Varieties

1.1 Representation and Character Varieties

Given a compact manifold X, let

R(X) = hom(m X, SU(2))

* Supported by the DaeWoo foundation, the Global Analysis Research Center at Seoul National

University, and the National Science Foundation.
** No serious attempt is made in these notes to be careful and/or consistent with signs and ori-

entation conventions. The reader should refer to the cited articles for precise formulae.
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and

X(X) = hom(m X, SU(2))/conjugation.

These are called the SU(2)— Representation Variety and the SU(2)-Character Variety of X. They

are real-algebraic varieties: if m1 X has the presentation m X =<z, -+, xp|r1 (1, -, 2pn), - 121, - -

then the relations map
r:SU2)"—8U2)", r(gr.+.gn) = (ri(gr, -+ gn)s o191, gn))
is polynomial, and the map
e: R(X)—SU2)", e(a) = (afz1), -, a(z,))

is an embedding with image »~!(1,---,1). This gives the structure of an algebraic variety (over R
since SU(2) is a variety over R) to R(X) which is independent of the presentation. Then x(X) is a
variety whose ring of functions is the functions on R(X) which are invariant under the conjugation
action a — gag™! of SU(2) on R(X).

Notice that R and x are contravariant functors. Thus a continuous map f : X—Y induces
algebraic maps R(Y)—R(X) and x(Y)—x(X) by restricting representations.

One can make the same definition with any Lie group G replacing SU(2). This complicates
matters quite a bit; the resulting representation and character varieties have more singular strata.
In any case, SU(2) is complicated enough; it is the “simplest” non-abelian Lie group. Moreover,
there are no known examples of 3-manifolds with non-trivial fundamental group but with no non-

trivial representations to SU(2). We will therefore stick to SU(2).

1.2 An Important Example
Let X = T?, the torus. Write mT = Zu @ Z\. Then define a function:

d: R2—x(T)
by sending (v, 3) € R? to the conjugacy class of representations defined by
o 627ria 0 N 627riﬁ 0
H 0 67271'7:& ) 0 6727riﬁ .

Then ® : R*—x(T) is a branched cover. In fact, conjugating

(")

2
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by
0 1
-1 0

interchanges the eigenvalues and so ®(a, 3) = ®(a/, 3’) if and only if

for some sign and some m,n € Z. Thus (Z* x| Z/2) acts on R? by (i,n, %) - (o, B) = (v, B) +
(m,n) with quotient x(T"). The Z/2 comes from the Weyl Group acting on the maximal torus of
diagonal matrices. Figure 1 shows a fundamental domain for the action and x(7"). We call x(T)

the “pillowcase”.

(0,1/2)¢ H>—e—K

N —>

2 (1,0)
R

Pillowcase=x(T 2)

Figure 1.

One caveat about this example: the branched cover ® : R*—y(X) does not induce the correct
analytic structure on x(X) near the singular points. (This is seen by comparing the dimensions of
the Zariski tangent spaces of R?/(Z? x| Z/2) and x(T) at the singular points.) This fact will not
be important in these lectures, since we will always work away from the singular points of x (7).

Notice that SU(2) is the same as the unit quaternions; the identification is given by

a b .
For convenience we will use quaternionic notation.

1.3 Some 3-Manifold Topology
We will consider only oriented 3-manifolds in these lectures.

Closed 3-Manifolds decompose into simpler pieces in the following way:
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1. Prime Decomposition. A 3-manifold has a unique decomposition along 2-spheres as a connected
sum M = My#Ms# ---#M, where each M; is either irreducible (every 2-sphere bounds a
ball) or diffeomorphic to S? x St. [M]

2. Torus Decomposition. If M is irreducible and contains an incompressible torus (i.e. a torus T' so
that the induced map mT— 7 M is injective), then M has a unique (up to isotopy) maximal
collection T1U- - -UT;,, C M of embedded tori so that any other incompressible torus is parallel to
one of the T; Moreover, each piece X; in the decomposition of M , M = X; U---U X}y obtained
by cutting M along the T; is either Seifert-Fibered or atoroidal. Atoroidal (and a-annular)
3-manifolds are hyperbolic (by Thurston’s Uniformization Theorem). [JS], [Jo].

3. If M contains no incompressible torus, but contains an incompressible surface of higher genus,
then by Thurston’s theorem M is Hyperbolic.

Those 3-manifolds containing an incompressible surface are called Haken manifolds, and are

relatively well understood by 3-manifold topologists. Less is known about non-Haken manifolds.

We will study the gauge theory invariants of 3-Manifolds with boundary, especially those with

torus boundary. These include the important class of knot complements.

Definition A Knot, K, in a 3-manifold M is a smoothly embedded circle K : S* < M. The
tubular neighborhood of K is diffeomorphic to D? x S' and we denote it by N(K). We call the
complement in M of an open tubular neighborhood of K the Ezterior of the knot K, and denote
it by Xx. Thus N(K) and Xk are manifolds with boundary a torus.

Dehn Surgery on a knot K in M is a manifold obtained by cutting out a tubular neighborhood
D? x S' of K in M and gluing it back using a self-homeomorphism, h, of the boundary torus.
Denote the resulting manifold by M (K, h). Note that M (K,h) = M(K,h') if h’h~! extends over

the solid torus D? x S'. Thus the gluing parameters lie in
Homeo(S* x S*)/Homeo(D? x SY).

Given a knot K in a 3-manifold M, write M = Xx U N(K), Xg and N(K) as above. So
the boundary torus is 0Xx = ON(K). Let u be the isotopy class of simple closed curve in the
boundary torus which is the boundary of a disc in N(K) = D? x S!. Let X be an oriented simple
closed curve in the boundary torus which intersects p geometrically (and algebraically) once. (So
p-A=1.) Then pu, \ gives a coordinate system S* x S! on 0X[.

Note: If M is a homology sphere there is a natural choice for A determined up to isotopy by
the condition that A generates the kernel of Hy(0Xx)— H1Xg. If M is not a homology sphere
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there is no canonical choice of A, and so some arbitrary choice should be made subject to - A = 1.
None of the results we give in these lectures will depend on the choice of .

If we form the manifold M (K,h) by cutting along the torus and gluing back using h, then
there exists a relatively prime pair of integers p, ¢ so that the curve pu + ¢gA is null homologous
in N(K). More precisely, think of h : IN(K)—0Xk and so h(p) = pu + g\ homologically. A

simple exercise shows that the ratio 2 € Q U oo determines M (K, h) up to diffeomorphism and so

q
we write M (K, £) for M(K,h). Then M(K,ZL) is called “ p over ¢ surgery on K”. If K is a knot
in a homology 3-sphere, then Hy(M (K, L)) =Z/p.

We will call i the meridian and A the longitude.

The surgered manifold M (K, £) contains a knot, namely the core 0 x Sl c D? x St = N(K).
However, the meridian in M (K, g) does not equal the meridian in M; in fact the meridian in
M (K, g) is i = pu + g\, where p and \ refers to the meridian and longitude for M. We can take
as longitude A = ru + s\ where ps — gr = 1. (Remark: we will often use additive notation when

working in mT? = H,T?.)

1.4 Gluing Representations

We use the following notation, if Y C X is a subspace and px : m X—SU(2) is a representa-
tion, then let px|y : mY —SU(2) denote the restriction, i.e. the image under the induced map
R(X)—R(Y). Similarly, if [px] € x(X), let [px|y] denote its restriction to Y using the induced
map x(X)—x(Y). Here [ - | means conjugacy class.

Suppose that M3 = X Uy Y is a decomposition of a 3-manifold along a closed surface . Let
[px] € x(X), and [py] € x(Y). Then Van Kampen’s theorem says that px and py glue together
to give a representation of M if and only if [px|s] = [py =]

More precisely, let [px] € x(X), [py] € x(Y) and choose representatives px € R(X), py €
R(Y). If [px|s] = [py|n], then there exists a g € SU(2) so that

px|s = gpyisg -

Now
7T1X *7T1Y

mM = N(ix(s)iy(s) s € m2)’

and therefore px *gpy g~! defines a representation py; € R(M). The conjugacy class of px *gpy g~

may in general depend on the choice of representatives of px and py chosen and the choice of g.

To understand this, we first consider centralizers of subgroups of SU(2). The center of SU(2)
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is {+Id}. If H C SU(2) is a subgroup, then the centralizer of H in SU(2) is

{£Id} if H is non-abelian,
Z(H)=1<{ Sk if H is abelian, but H ¢ {£Id},
SU(2) if H C {+Id).
Here S}; denotes the unique maximal abelian subgroup containing H, which is a circle.
Suppose that [px] € x(X), [py] € x(Y), and [px|s] = [py|s] in x(¥). Choose representatives
px and py so that px|s = pyn. Then if g € Z(Image pxs), px|z = gpymg_l. Hence g —
[px * (gpyg~")] defines a function Z(Image px|s;)—x(X). This function surjects to the fiber

F(lpx], [py]) = {lpnm] | [pM|X] = [px], [PM|Y} = [py]}-

Now if g, h € Z(Image px|s), then [px *(gpyg~")] = [px * (hpy h™1)] if and only if there exists
an | € Z(Image px) so that g~tlh € Z(Image py). So, for example, if px and py are non-abelian
this happens only if g = 4h, and so in this case F([px], [py]) = Z(Image px|s)/ * Id.

In the particular case when ¥ is a torus T2, then 7, T is abelian, hence Z(Image px|r) is either
a circle or SU(2) depending on whether the image of px|r is non-central or central.

Consider the special case of surgery on a knot K in a 3-manifold M. As before we decompose
M = XgUN(K) and let pu, A € 110X g be the meridian and longitude. In this case the fundamental
group of M is just a quotient of the fundamental group of X obtained by killing the meridian:

7T1M = FlXK/N(;L).
Similarly for p/q Dehn surgery we have
m (MK, ) = m X [N (uX7).

Hence px : m Xx—SU(2) extends to m M if and only if px (u) = 1. Similarly px : m Xx—SU(2)
extends to m (M (K, )) if and only if px (i) = 1, where fi = pPA‘.

This can easily be understood in terms of the pillowcase: the subvariety

{lp] € x(T) | p(uPA?) = 1}

is just the image of the line pa + ¢ = 0 under the branched cover ® : R*—x(T) of example 1.2.

Figure 2 shows the case £ = g
q



slope=-3/5

(p.)=(3,5)
X(T)

Figure 2.

It turns out that understanding x(Xx) and the restriction x(Xx)—x(7T) is the key to com-
puting Chern-Simons and spectral flow invariants of 3-manifolds. There are a few papers which
calculate the character varieties of knot complements and other 3-manifolds; See [K1], [K2], [KK1],

[Bol, [B], [Fr], and [H].

Before we list a few examples, we collect a few facts which hold in general for knots in a

homology sphere.

1. If K C M is a knot in a homology sphere, then H; X = Z. Therefore, the representations
of m1 X with abelian image are independent of K. Now x(Z) = SU(2)/conjugation = [—2,2], the
homeomorphism given by taking the trace. Also, p generates Hy Xk and A = 0 in H; X. Thus

writing
X(X) = x*(X) Ux™(X)

where y*(X) denotes the classes of abelian representations, we see that x*(X) is homeomorphic
to an interval and the restriction x*(X)——x(7) has image the bottom horizontal edge of the
pillowcase. Notice that x*(X) is parameterized by the representations u — e, ¢t € [0, 7] and
the endpoints of the interval correspond the the trivial representation and the non-trivial central
representation. See Figure 3. The reader should use this picture to count the number of points in
XA(M(K, 2)).

In general Hy X g depends only on the homology class of K in M, and so x*(X ) also depends
only on the homology class of K in M. To obtain more interesting information about the knot K

one must study the non-abelian representations x*(Xx).
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N non-trivial
trivial rep central rep.
° >- *
- >
restriction < _—
X (%)
e > ®
X(T)
Figure 3.

2. The image of x(Xx)—x(T) is a 1-dimensional subvariety (in fact a Lagrangian subvariety
of the symplectic variety x(7'), as we will see later). To explain this we first review the relevant
cohomology ideas:

Let X be a space with m X =< x1,- -+, x,|r1,--,m >. The Zariski Tangent Space of the variety
R(X) at a representation p : 1 X —SU(2) is isomorphic to ker dr(,), where r : SU(2)"—SU (2)"
is the relations map (g1,---,9n) — (r1(g91, -+, 9n), ), and e : R(X) C SU(2)™ is the embedding
p— (p(x1),--+) as explained above.

Let su(2) denote the Lie algebra of SU(2), and adp : m X—GL(su(2)) the composite of p
with the adjoint representation of SU(2). We identify the Zariski tangent space with the group
cohomology of m1 X with coefficients in su(2): the p-cocycles are functions (m; X )P—su(2), the
differential d : C°(m1 X; adp)—C* (71 X; adp) takes v € su(2) = C°(m1 X; adp) to x — v—adp(z)-v,
and the differential d : C'(m1 X; adp)—C?(m1 X; adp) takes ¢ € C' (w1 X;adp) to (z,y) — c(z) +
adp(z) - c(y) — e(zxy). Thus the 1-cocycles are crossed homomorphisms, and the 1-coboundaries are
principal homomorphisms.

Any element of ker dr.(,) can be written in the form

(vip(x1), -y vnp(Tn))

for some (vq,---,v,) € su(2)™. Then it is not hard to see that the assignment z; — v; defines
a 1-cocycle v € Z'(m X;adp). Conversely, if v is a 1-cocycle then (v(z1)p(z1),- -+, v(zn)p(xn)) €

ker dr This identifies the tangent space of R(X) at p with Z(m1 X;adp). Finally, a tangent

e(p)-

vector is tangent to the orbit of the conjugation action of SU(2) on R(X) if and only if the

corresponding cocycle is a coboundary. Therefore,
T,x(X) = H'(X;adp).
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Now suppose that X = 3. The differential of the restriction x(X)—x(T) is just the induced
map on cohomology H!(X;adp)— H'(3; adps,). If X is a 3-manifold then Poincaré duality implies
that this image is middle dimensional.

Now an easy computation shows that

T

R? if p is not central,
PX(T):{R6 if p 1s not centra

if p is central.
The pillowcase is a smooth 2-dimensional variety except at the 4 corners corresponding to the
central representations. Thus if X = T? the image of x(X)——x(T) is generically 1-dimensional.

The computation of the Zariski tangent space at the corners of the pillowcase also show that
our branched cover @ : R2—>>AT) is not analytic at the corners. Indeed, the Zariski tangent space
of R*/ £ 1 at 0 is 3 dimensional, not 6 dimensional.

3. For a knot in S3, the meridian p normally generates m X . Therefore, if p € R(Xf) sends
the meridian to +1d, then p must be central. Thus there are only 2 representations of m X g which
map to a corner of the pillowcase, namely the trivial representation and the non-trivial central
representation. In particular, this implies that the restriction of every non-abelian representation
of m X to the pillowcase misses the corners. This is not true for knots in general 3-manifolds, or
even in homology spheres.

4. Another restriction on the image x(Xx)—x(7) is that the image must be a Legendrian
subvariety [He]. See section 2.9 below.

5. If the dimension of x(Xk) is larger than 1, then Xk contains a closed incompressible
surface. See [K1] for a proof. Usually, if Xk contains a separating incompressible torus which is
not boundary parallel, then the dimension of x(Xg) is greater than 1; one sees this by using the
gluing construction described above to “bend” a representation along the separating torus

There are not too many more general facts which one can say about representation varieties of
knot complements. See [FK] for a theorem on deforming abelian representations of knot groups

into non-abelian representations.

1.5 Examples

We give a few examples for knots in S3. The arguments can be found in the citations given
above.

1. The Unknot. U has m Xy = Z, and so x(Xx) = x*(Xk) which is an interval, as explained
above. The image of this interval in the pillowcase is the bottom edge of the pillowcase, i.e. the

image of the a-axis under the map @ : R? —x(T). Surgeries on the unknot yields lens spaces; in
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fact M(U, p) L(p,q). Thus one can count the points in x(L(p,q)) by counting the intersections

of (8 =0) and ®(pa + g8 = 0) in the pillowcase; there are [%] such representations.

2. The Trefoil knot. Let K denote the trefoil. Then x*(Xx) consists of an open arc, whose

endpoints are abelian representations. Its image in x(7?) coincides with the image of the arc

{(t,—6t + = )\—<t<—}cR2

under ® : R*—x(T). Tt starts and ends at the bottom of the pillowcase and winds twice around.

| /
| /
| /
restrlctlon / /
| /
| /
X&(X i
K=Trefoil ( 0 7
X (X X (T)
X
Figure 4.

Arbitrary torus knots can be treated in the same way. One uses the presentation 7 =<
x,y | P = y? > for the (p,q) torus knot and u = x™y"™, A = zP(z™y") P? where pn — gm = 1
to find the image in the pillowcase. With a bit of work one shows that each component of x(X)

is an open arc limiting on the abelian representations; in fact there are (p — 1)(¢ — 1)/2 such arcs
((K1)).

Any non-abelian representation must take xP = y? to +1 since this element is central in 7.
This implies that in any component of x*(Xk), p(A) = £p(p)~P9. Thus each arc in x(Xx) maps
into a line segments of slope —ﬁ starting and ending along the bottom edge (by “ line of slope m

7

we mean the image of a line of slope m in R? under ®).

3. The Figure 8 Knot. If K denotes the Figure 8 knot then x*(Xk) is a smooth circle. Its

image in the pillowcase wraps twice around. For an argument see [K1] or [B].
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K=Figure 8
X(%) X(T)

X
Figure 5.

4. Two-Bridge Knots. See [B] for a parameterization of x(Xg) for K any two-bridge knot.
Burde shows that x*(Xk) is 1-dimensional, consisting of smooth circles and open arcs limiting on

the abelian representations. See also [H].

There are some other papers which compute x(Xg) for various K and in some cases their
image in the pillowcase. [K2] shows how to understand the character varieties of twisted Whitehead
doubles of a knot K in terms of x (X ) and x (W) where W denotes the Whitehead link complement.
The knot polynomial of [CCGLP] cuts out the image xc(Xx)—xc(T), where x¢ refers to the
SL(2,C) character varieties. The real points of these complex varieties are the union of SL(2,R)
and SU (2) character varieties, and one can sometimes use this polynomial and a computer to graph

the image of x(Xg) in the pillowcase.

1.6 Representations of Dehn Surgery on a Knot

We give some examples which illustrate how to understand the representations of M (K, g). As
we explained, this corresponds to the intersections of the image of x(Xx) in the pillowcase with
the line segment ®(pa+ ¢f = 0). Figure 6 shows 3 examples, —% surgery on the Trefoil, % surgery

on the Trefoil, and % surgery on the Figure 8.

11



M=-3/5 surgery on Trefoll M=1/3 surgery on Trefoil M=1/4 surgery on Figure 8

X(XQ X( DZXSl)

/
< |
I/\ \
| ~ \ T
1 / \
~ — |
| 2 : /
I = i

Figure 6.

Using the figure and the considerations of section 1.4, one see that —% surgery on the Trefoil
has 11 (conjugacy classes of) non-abelian representations, one non-trivial abelian representation,
and the trivial representation.

Similarly % surgery on the Trefoil has 6 non-abelian (conjugacy classes of) representations, and
only one abelian representation, namely the trivial representation. (Remark: Casson’s invariant is
3=3)

Finally we see that i surgery on the Figure 8 has 8 conjugacy classes of non-abelian represen-
tations, and only the trivial abelian representation. (Remark: Casson’s invariant is 4 = §.)

These pictures will be used to calculate the Chern-Simons and spectral flow invariants of surg-
eries on knots.

From a theoretical point of view, there is nothing special about knot complements, or even
manifolds with toral boundary. However, the torus distinguishes itself from the higher genus
surface because x(7') is 2-dimensional and has only 2 strata: the abelian non-central representations
and the central representations. Higher genus surfaces have, in addition, a strata of non-abelian
representations which is 6g — 6 dimensional. So the torus is the only 2-manifold whose character
variety I can draw. From the point of view of 3-manifold topology decompositions along tori
have already proven useful. It makes sense to separate the problem of describing x(X) into two
cases, X a Seifert fibered or X hyperbolic. The Seifert-fibered case is well-understood; see [A],
[Bo], and [KK1] among others. Not too much is written about SU(2) representations of hyperbolic
manifolds, but SU(2) is a subgroup of SL(2, C) and the literature is replete with papers on SL(2, C)

representations of hyperbolic manifolds.
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Thinking as a knot theorist, one can view the image of x(Xg) in the pillowcase as a knot
invariant. It contains a lot of information, for example it can tell whether a knot has Property
P, or whether surgery yields a non-cyclic fundamental group. We will see what it tells us about
gauge theory invariants in the next lectures. In any case, describing x(X) and its image in x(7)

is a non-trivial and interesting problem which does not involve any analysis or geometry.

2 Chern-Simons Invariants of 3-Manifolds and Decompo-
sitions Along Tori.

2.1 Connections

Let P— X be a principal SU(2) bundle over a manifold X; we assume that X has dimension
2 or 3. Since m;SU(2) = 0 for i = 1 and 2, P is trivializable. For convenience fix a trivialization
P = X x SU(2). There are many definitions of connections on P. Pick your favorite definition
and let 4p denote the space of all connections on P. Then:

1. If A€ Aand r: SU(2)—GL(V) is any representation, then A defines a covariant derivative
da: QP (E)—QPT(E)

where E is the associated vector bundle £ = P x, V, and QP(E) denotes the differential
p—forms on X with values in the bundle E. Of course FE is itself trivial, since P is, and so

OP(FE) = QP @ V. The covariant derivative satisfies the Leibnitz rule
da(a Ab) =daaNb+ (=1)1%a A dyb.

2. The trivial bundle has a distinguished connection, namely the product connection, which we
denote by © and call the product connection. Its associated covariant derivative is just the

usual exterior derivative with vector values which we denote by d:
d: P QV—PTaV.

3. If A,B € A, then the difference da — dp is a 0" order operator, i.e. (da — dg)(fa) =
f(da — dp)(a) for f € C®(X), and o € QP(E). Thus da — dp € Q' (Hom(E,E)). Using
the given trivialization and taking the standard representation SU(2)—GL(C?) a simple
computation shows that d4 — dp € Q! ® su(2). Moreover, the map A —Q! ® su(2) taking A
to d4 —d is an isomorphism. Thus a trivialization of P induces an identification of A with su(2)-

valued 1-forms. Given a connection A (which we think of as a 1-form) and a representation
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r: SU(2)—GL(V) the induced covariant derivative
da : QP V—QPtloVv

is given by the formula

dao = (d+1(A))a

where 7, : su(2)—gl(V) is the derivative of r, acting on V. We will abuse notation whenever
it is convenient and use A to denote both 1-forms and connections, with the understanding
that it is only a 1-form with respect to the fixed trivialization.

. Different trivializations are related by the gauge group, also called the group of gauge transfor-
mations. It is the group

G = C™(X,SU(2)) = Aut(P)

of automorphisms of the bundle. Precomposing the fixed trivialization SU(2) x X = P with
g: X—SU(2) gives a new trivialization. If A € Q! ® su(2) denotes the connection 1-form in
our fixed trivialization, then in the new trivialization A is replaced by gAg~! — dgg~!. (Notice
that dgg=! € Q*®su(2).) This action of G on A corresponds on the level of covariant derivatives
to dg.aa = g(da(g~ (), where g acts on E =X x V via r.

The orbit space 4 /G of gauge-equivalence classes of connections is denoted by B. In a certain

technical sense B is (or more precisely can be completed to be) an infinite dimensional singular

Banach manifold.

2.2 Holonomy and Curvature

Given a connection A € A consider the linear map dada : QP ® C?I 0Pt ¢ C2. Using the

fact that da(fw) = df Aw + fdaw for f € C°(X),w € QP ® C? one computes

dadafw = fdadaw.

Thus dads € Q%(hom(C?, C?)). It is called the curvature of A and denoted by F(A) and is easily

seen to lie in 2 ® su(2). In terms of our trivialization the curvature of the connection 1-form A is

F(A) = dA+ %[A,A].

Given a loop v : I—X, then v*(A) is a connection on I x SU(2). The ODE:

dg
29— (A —Id
7 7" (A)g, ¢(0)
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for g : I—SU(2) has a solution, and g(1) is called the Holonomy of A around the loop v, denoted
by hola(y). Thus A € A defines a function

holy : Loops(X, x9)—SU(2).

This function factors through 71 (X, zg) (i.e. depends only on the homotopy class of 7) if and only
if F(A) =0, ie. if Ais Flat.

Let F C A denote the flat connections. Then the holonomy induces a map
hol : F —R(X).
The gauge group G leaves F invariant, and the holonomy induces a homeomorphism
hol : F /G = x(X).

This is the basic relationship between the algebraic investigations of the first lecture and the

analytic objects we are studying now.

2.3 Chern-Simons Invariants
Let A be a connection on a principal SU(2) bundle Q) over a closed 4-manifold M. Chern-Weil
Theory implies that the integral

< [ Ay nF(a),
although a priori a real number depending on A, is in fact equal to the integer co(Q)[M] and in
particular is independent of A.

This immediately suggests defining an invariant for connections on 3-manifolds with values in
R/Z: if A is a connection on a principal SU(2) bundle P over a closed 3-manifold X, let X bound

the 4-manifold M, extend the bundle P to @ and A to A. Then define
1
cox(A) = / ir(F(A) A F(A)) € R/Z.
87T2 M
This gives us a function, the Chern-Simons Invariant
csx : B—R/Z.

One can also give a direct definition in terms of the connection 1-forms: if A € 4 then using

Stokes’ theorem one can show:

(2.1) csx (A) i/ tr(dA/\A—i—;AAAAA).
X

~ 82
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This function has has many nice properties and has been the subject of much investigation
recently. Taubes ([T]) introduced the idea of viewing csx as a Morse function, and by (carefully)
mimicking Morse theory, Floer ([F]) has used it to define the “Instanton Homology” groups of X.
The critical points of csx are the flat connections F /G = x(X). These instanton homology groups
provide a “relative” theory for Donaldson’s 4-manifold theory [DK]. Some of this will be outlined
in the next lecture.

One nice use for the restriction of ¢s to x(X) is the proof of Fintushel and Stern that the collec-
tion {¥(2,3,6r — 1)} of Seifert-fibered homology spheres are linearly independent in the homology
cobordism group ©%;. [FS]

A recent development is the “topological quantum field theory” which Witten [W] “defines”

using the functional integral
Zk(X) — / 627rik: cs
A

for any k € Z . Although this expression does not make mathematical sense, Witten outlines
two methods to interpret this integral. The first leads to an Axiomatic definition of 3-manifold
invariants which have been rigorously constructed by Reshetikin-Turaev [RT], Walker [Wa|, and
others. The alternative interpretation is to pretend that the the stationary phase expansion of
integrals like this in R"™ works for this integral over 4. This method leads to an asymptotic
expansion (as k——o00) of Zi(X) whose leading term is a sum over the critical points of c¢s, i.e.
over the points in x(X), of expressions involving the value of the Chern-Simons invariant at A,
the spectral flow of the Hessian of the Chern-Simons invariant from A to ©, and the Ray-Singer(=
Reidemeister) torsion of the chain complex with local coefficients ad hols. One can ask whether

these two interpretations are consistent, and we will see an example in the next lecture.

2.4 Surgery and the Chern-Simons Invariants of Flat Connections

Let us now consider c¢sy; as a function on x(M) for a closed 3-manifold M by restricting csps
to x(M) = F /G C B. It has several nice properties.

First, csps is an oriented flat cobordism invariant. In other words, suppose that py € x (M),
p1 € x(M;) and there exists a 4-manifold Y such that 0Y = X3 [[ X and a p € x(Y) so that
piM, = po, and pjx, = p1. Then csy,(po) = csn, (p1). The reason for this is that the difference
of Chern-Simons invariants is the integral of ¢tr(F(A) A F(A)) where A is a flat connection on Y
with holonomy p. But A is flat, so F(A) = 0.

A fancy way to say this is that cs defines a homomorphism
H3(BSU(2)’)—R/Z,
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where SU(2)? means SU(2) with the discrete topology, so BSU(2)? = K(SU(2),1), the CW
complex with fundamental group equal to SU(2) and all other homotopy groups equal to 0. One
conjecture which has been around is that the image of this homomorphism lies in the rationals,
i.e. in Q/Z, so that the Chern-Simons invariant of a flat connection on a closed 3-manifold should
be rational. Many computations have been made, for example Seifert-Fibered spaces and torus
bundles over S!, [KK2], [A], and these have rational Chern-Simons invariants.

Another property of csys is that it is locally constant, i.e. csps(p) depends only on the path
component of x(M) containing p. To see this, suppose that p;, ¢ € [0,1] is a path of representations
of M, and A; a corresponding path of flat connections so that hols, = p;. We can view the path
A, as a single connection A on the 4-manifold M x [0, 1]; then

F(A) =dA + %[A,A] = 88—? A dt.

Thus F(A) A F(A) =0, and so
1

82

esy(pr) —esn(po) = /MXItr(F(A) ANF(A))=0.

This leads to the following idea. Suppose M2 = X Ux Y is a decomposition of a closed 3-
manifold along a surface, and suppose pg, p1 € x(M). We know that if these representations lie
on the same path component of x(M) then their Chern-Simons invariants are the same, but what
about if the restrictions to X or Y (or both) lie in the same path component? In other words, can
we obtain a formula for the difference csar(p1) — esar(p1) if pojx and pyx lie in the same path
component of x(X) and/or pg|y and p;}y lie in the same path component of x(Y')?

The easiest case to consider is Dehn Surgery. In [KK2] we proved the following theorem.
2.5 Theorem. Let K C M be a knot in a 3-manifold. Let pg,p1 € x(M) and suppose there
exists a path p; : [— R(X) from pox to pyx. Let (a(t),B(t)), t € I be a path in R? such that
pt(ﬂ) — 27 a(t)v pt()\) — 27 B(t)

(in other words the restriction of p; to the pillowcase is ®(a(t), B(t))).
Then:

1
esp(pr) — esy(po) = —2/ pa'dt € R/Z.
0

What this means is that if we know the image of the path p; : m Xx——SU(2) in the pillowcase

then we can compute the difference in Chern-Simons invariants. Thus the difference is determined
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by this image. This theorem illustrates the basic philosophy which says that a Gauge theory
invariant (namely the difference of Chern-Simons invariants) can be computed entirely from the
algebraic data of the map x(Xx)—x(T) for Dehn surgery on a knot.

The fundamental principle which underlies the proof is that one can find a path of connections
on M which are flat on Xk and non-flat (excepts at the endpoints) on N(K) = D? x S'. Thus
the easy part of the connection, i.e. the flat part, lives on the complicated part of the 3-manifold,
the exterior of the knot. However, the difficult part of the connection (the non-flat part) lives on

an easy space, D? x S1.

2.6 Let us try a computation to illustrate this theorem. Let M = % surgery on the trefoil. The

following figure shows that x (M) has 4 (conjugacy classes of) representations:

\p /
| 4 /
[
/ &
| /
| I -
| %/
| P
o 7\ 2
7
U, A coordinates I, A coordinates

Figure 7.
The picture on the left is given in the coordinates u, A of K C S3. To apply the Theorem, we
need to use a meridian and longitude for M = S3(K, %) In particular we need a meridian which

bounds a disc in M. This is achieved by using the coordinates fi, A defined by:
A=pu+2\ A=\

Thus the right side of Figure 7 is the image of x(Xg) in these new coordinates. This just corre-

sponds to using the new coordinates @, [ for R?, where
a=a+28, =0

We learned in the first section that the image of x*(Xx)—x(T") (in the o, coordinates) is

the arc ®(t, —6t + %), % <t < % In the new coordinates we therefore have

1
Gt) =t +2(=6t + ) = —11t + 1
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and

- 1

This gives the arc of slope in the right side of Figure 7. Since the p;,7 = 1,2, 3,4 correspond

6
11
to the representations of M = S3?(K, %), they must send ji to Id. This is seen in the right side of
Figure 7 by the fact that the p; are aligned on the left edge of the pillowcase, which corresponds
to p € x(T) such that p(z) = Id. Thus the p; correspond to @(t) € Z, and this happens when

t=: (for p1), t = & (for pa), t = 2 (for ps), t = & (for ps). So for example,

3/11
es(ps) — es(pa) = —2 / Byl (t)dt

/11
3/11 8

= —2/ (=6t +1/2)(—11)dt = —-30/11 = — (mod Z)
2/11 11

Some other computations possible using this theorem include an easy proof that the set of
Chern-Simons invariants of the lens space L(p, q) is

2

ner D
_ —0.1.---.[2
im0 ]

where r € Z satisfies gr = —1 (mod p). The proof is to apply the theorem to surgeries on

the unknot. We remark that the collection of Chern-Simons invariants distinguishes homotopy
inequivalent lens spaces, although it cannot distinguish homotopy equivalent non-homeomorphic
lens spaces (since csx is a homotopy invariant).

Letting K be a regular fiber in a Seifert Fibered homology sphere, one quickly reproves Fintushel
and Stern’s [FS] computation of the Chern-Simons invariants of these 3-manifolds. The argument
is basically identical to the computation for % surgery on the Trefoil carried out above.

A slightly trickier computation is the Chern-Simons invariant of surgeries on the figure 8 knot.
Although one can compute the difference between the Chern-Simons invariants of irreducible repre-
sentations in the same way, there is no path from an irreducible representation of the figure 8 knot
exterior to the trivial representation since x (X ) is not connected (see example 1.5, Figure 5). This
is overcome by passing to the complex character variety, i.e. by considering hom(m X, SL(2, C))
which turns out to be connected in this case. As a sample application one can compute the Chern-
Simons invariants of surgeries on the Figure 8 knot numerically (i.e. by computer). Applying
1

Fintushel and Stern’s argument one can then show that —% and —%

7 surgery on the Figure 8 knot

are each linearly independent of the set {3(p, ¢, pgk — 1)} in the homology cobordism group ©%
except possibly that —% might be homology cobordant to n3(2,3,5) for some n > 0. For the
proofs of the preceding facts see [KK2].
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2.7 The S! bundle over x(%)

What about general decompositions along tori? In [KKR] we needed a computation of Chern-
Simons invariants for graph manifolds obtained by gluing together the complements of regular
fibers in Seifert Fibered homology spheres in order to compute their Instanton Homology.

What is needed is a definition of Chern-Simons invariants for manifolds with boundary. At first

sight this seems problematic since the integral

1 2
— | tr(dANA+-ANANA) eR/Z
87r2XT( A +3 NANA)eR/

is not gauge invariant on a manifold with boundary; that is, it can change by a non-integer if A € A
is replaced by g - A. Thus one cannot use this integral to define an R/Z = S'-valued function on
x(X).
However, there is a simple solution to this problem which I first saw in [RSW], which shows
csx is a cross section of a non-trivial S* bundle over x(8X). The bundle is constructed as follows.
Let ¥ be a closed oriented surface and let Q—3 be a principal SU(2) bundle over ¥. Then
define 6 : Ag x Gg —S* by

0(A, g) = exp(2mi(cs(A) — es(g - A)))

where A is some extension of A to a connection over a 3-manifold X with boundary ¥, and § is
an extension of g to the corresponding bundle over X. The fact that csys is well-defined in R/Z
if M is closed implies that (A, g) is independent of the choice of extensions.

Thus 6 defines an action of Gg on Ag xS ! covering the Gg action on Aq by the formula

g- (Av Z) - (g : A,Q(A,g)z).

One checks that if g- A = A, then §(A, g) = Id, and so the Gy-equivariant bundle Aq xSt— Ag
has a quotient S!'-bundle

Ly— Bs.

Note that @ is necessarily trivial and so Ly depends only on X..
Yy y
It is now a tautology that if X = X, then cx = e>™“*X is a cross section of Ly— By over

the restriction Bx — Bx.

7]

Bx—>82
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We can restrict to character varieties since x = F /G C B, thereby obtaining a bundle
Ly—x(X) such that for any 3-manifold X with boundary ¥, cx = e2™¢X defines a lift of

the restriction map y(X)—x(X) as indicated in the next diagram.

Ly,
A

Xx — Xz

This line bundle has extra structure. First of all, x(3) has a symplectic structure induced by

the cup product on cohomology. To see this, recall that T,x(X) = H Y(2;adp). The cup product
- HY(Z;adp) x HY(Z; adp)—H?*(Z,R) 2 R

induced by the non-degenerate form (a, b) — tr(ab) on su(2) is skew symmetric and non-degenerate,
and induces a symplectic structure on x(X). (Strictly speaking, since x(X) is not a manifold, we
should think of x(X) either as a stratified object or just restrict to the top stratum.) In [RSW]
a connection on the bundle Ly is constructed whose curvature is this symplectic form. Moreover
they show that if X is a 3-manifold with boundary ¥ the image x(X)—x(X) is Lagrangian.

In [KK3] we construct the bundle Ly, directly when X is a torus. From our construction the
connection on Ly and the symplectic structure on (the top stratum of) x(7') is obvious. Moreover,
Theorem 2.5 above can be succinctly stated by saying that the lift cx of x(X)—x(7T) to Ly is
parallel. We describe this now.

The construction is similar to the one given above, but with a smaller group. Let G be the
semi-direct product of Z and Z/2, acting on R? by (m,n, £) - (a,8) = £(a, 3) + (m,n). We saw
in example 1.2 that R?/G is a good model for x(X). Now extend the action of G to R* x S by
the formula

(m,n,£) - (a, B, 2) = (Fa + m, £8 + n, ze2™(MA=na)y,

Then the trivial bundle descends to give a quotient bundle £ —x/(T).
Moreover, the inner product < , >: S x S'——81 given by < 2,w >= zw induces a (fiberwise)

inner product L1 x L7 —S*. Then [KK3]:
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2.8 Theorem.

1. L7 = Ly, and so if X is a 3-manifold with boundary a torus, cx = exp(2micsx) defines a lift
of the restriction x(X)—x(T) to L.

2. Let M = X Ur Y be a closed 3-manifold obtained by cutting M along a torus. If py; € x(M),
and px = pyix € X(X), py = pupy € x(Y), then

eQwicsM (par)

=< cx(px),ey(py) > .
3. The euler class of L1 is —1.

(Remark: It seems that several people knew this type of fact before we did. Moreover it is not

hard to prove once one has seen the idea of [RSW].)

2.9 The Connection and Symplectic Form on L.

The previous theorem says that if we can compute cx for manifolds with boundary a torus, part
2 of this theorem together with the gluing results of section 1.4 shows how to compute Chern-Simons
invariants of manifolds glued along tori. A more general result holds for manifolds decomposed
along a union of tori.

To take advantage of this, we need a theorem like 2.5 to compute cx for manifolds with toral
boundary.

We use the following notation for points in Lp: since Ly is a quotient of R? x S! we write

[a, B; 2] for equivalence classes, so for example
[0, 332] = [+ m, B + i ze2miCmA—m)

if m,n € Z.

The main computational tool for Chern-Simons invariants in [KK3] is the following theorem.

2.10 Theorem. Let X be a 3-manifold with 0X = T?. Let p; : [—x(X) be a path of
representations. Let (a(t), 5(t)), t € I be a path in R? so that p,(11) = €>™*®) and p,(\) = 2™F1),
If

cx (po) = [(0), 5(0), 2]
and

ex(p1) = (1), B(1), 2],
then

1
P exp(2m'/ adf — fda).
0

22



Again this theorem says that for a manifold X with torus boundary, the “difference” in Chern-
Simons invariants of 2 representations can be calculated solely by knowing the map x(X)—x/(T).
We will give an example below which shows how easy it is to compute Chern-Simons invariants
with this theorem. It contains Theorem 2.5 as a special case. Before we compute, however, we
would like to point out a more theoretical interpretation of this result and draw some (perhaps

surprising) conclusions about the subvariety Image(x(X)—x(T)).

The following is essentially a restatement of the previous theorem.

2.11 Corollary.
1.The connection 1-form

—2mi(adf — Pdov)

on the trivial principal S* bundle R* x S'—R? descends to give an orbifold connection 1-form w
on Ly—x(T). Given any 3-manifold with boundary T, the lift cx : x(X)—— Lt of the restriction
X(X)—x(T) is parallel with respect to this connection.
2. The symplectic form on R?,
—4mi(da A dS)

pushes down to give the curvature F(w) of w.

The proof of this corollary is just an application of the fact that if w is a connection in an S*!

bundle, and v is a loop, then
1
hol,, () = 6:Ep(271’i/ v (w))-
0

The statement of this corollary gives strong restrictions to what the image of x(X)—x(T') can
be, and we illustrate this fact now. The following argument was shown to me by Chris Herald.

Suppose that y(X) contains a loop. (For example, if X is the exterior of the trefoil knot, then
there is a loop consisting of the arc of non-abelian representations together with part of the arc of
abelian representations, see figure 4. Likewise, if X is the exterior of the figure 8 knot, then x*(X)
contains a smooth circle; see figure 5.) Let v : I—x(X) be a loop and consider its image in x (7).
By Stoke’s theorem the symplectic area which v bounds in x(7") is equal to fol v*(w), since dw
is the push forward of the area form in R?. But since the loop lies in (X ), the Chern-Simons

function cx gives a parallel lift of v to Ly. Hence the holonomy hol,,(7) is trivial, i.e. is equal to
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Id in SU(2). Recall that the formula for the holonomy is just e*™ J 7"(“) Hence we conclude that

the image of v in x(T') must bound zero area mod Z.
This puts constraints on the the map x(X)—x(T'). Figure 8 shows some forbidden examples.

(conjugacy classes of ) representations:

Figure 8.

Symplectic subvarieties like x(X)——x(2) which have this extra structure, namely a parallel
lift to Ly, are called Legendrian. In [He] Herald carries out a detailed analysis of perturbations
of the maps x(X)—x(X) and cx similar to Taubes’ [T]| and Floer’s [F]| perturbations of the
Chern-Simons function for closed manifolds. Among other things he shows that the image of

X(X)—x (%) varies by a Legendrian cobordism.

Both Theorems 2.8 and 2.10 generalize to other Lie groups. An especially interesting case is to
take G = SL(2,C). For the special case when X is a cusped hyperbolic manifold, these theorems
(for SL(2,C)) can be reinterpreted as a result of Yoshida’s [Y1] constructing an analytic function
on Xsr(2,c)(X) near the complete hyperbolic representation (see [KK3]) whose real and complex
parts correspond to the hyperbolic volume and the Chern-Simons invariant of the Levi-Civita

connection. The theorems also work just as well for links as for knots.

2.12 A Computation

We finish this section with a piece of the computation of the Chern-Simons invariant of a graph
manifold obtained by gluing X = ¥(ay, - - -, a,,) — N(regular fiber) toY = ¥(c¢q, - -, ¢,,) — N(regular
fiber) along their boundary torus. Here ¥(ay, - - -, a,,) denotes the Seifert Fibered homology sphere
with singular fibers of multiplicity a;. We will not carry out the entire computation, but only one

part to illustrate using the inner product < , >: Ly x Ly—S?t.
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Consider first X. Let a = a; - - - a,, be the products of the multiplicities. Now
mX =<1, -+, 2, b | b central | z%Rh% =1 >

for some integers b; satisfying
m

b
a =~ =1.
=1 %
Moreover the meridian and longitude are given by =21+, A=h

Suppose that px : m X—SU(2) is a non-abelian representation. Then from the presentation

of 1 X we see that each x; must go to a 2al” root of unity in SU(2) (since h must be sent to +Id).

Let I; be the integer between 0 and a; so that x; is sent to a conjugate of eacp%%ﬂi, and let

ex =a —.
izt %
Then, using Theorem 2.10 and using the simple description of x(X) in terms of linkages as in

[KK1] one computes cx (px) to be

[O[, 67 6—27”'(6%( /4a+ﬁa)]

where px (1) = €*™ and px (\) = 2™ (notice that 3 € Z[3] since h is central.)
Likewise,

mY =<wyi,---,ym, k | k central JySihdi =1 > .

If py—SU(2) is a representation we have rotation numbers for Y and define ey similarly. This
time we use the meridian and longitude i = y;---y, and A = k. Letting py (i) = €™ and
py (A) = €27 we get

ey (py) = [, Bs e~ 2mi(ek /ot P,

Now suppose that we are given a gluing map ¢ : 0X—0Y, expressed in terms of the bases
w, A and fi, A by ¢(p) = uji +w and ¢(\) = vji + 2\ (so uz —vw = —1).

Let T'= 0X. Suppose that px|7 equals py|p. Then these two representations glue together to
give a representation ppr of M, where M = X Uy Y. Theorem 2.8 now implies that

ear(par) =< ex(px), ey (py) >=< [, B; e~ 27/ 4at50)] [, B; = 2milek/datha)]

We must be careful since cx and cy are expressed in terms of different bases, namely bases

differing by the linear map ¢. We will express everything in terms of the bases fi and \.
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Write o = ua + wf and 3 = va + z3. Substituting, we obtain:

e2
x(px) = [, B e 2milEted)]
62 — _
= [ua + wf,va + 23; 6727”'(%+(u&+w,@)(vd+zﬁ))]‘

Since 8 and (3 are half integers it follows that o and @ are rational with denominator 2uv.

Write

=P g "r
=5 P73
for some integers p and k. Then
P K (Y
cy (p) = [%7 256727”(E+ﬁ§)]

and
P K. _or X + ua’—l—wﬁ va’—&-zﬁ
Cy(p)—[%’g;e 2mi( 5 +( )( ))]

We can now take the inner product:

T S
car = ~(X + (wa + wi)(va + 2)) - (5 + af)
2 2

- ‘% - % — aB((1 4 uz + vw)) — a?uv — FPwz
e e pu wk?

You will notice the similarities of the first two terms with Fintushel and Stern’s formula for
Seifert Fibered homology spheres; the last two terms are “interaction” terms defined solely in terms

of the gluing map and the restriction of the representation to the separating torus.

3 Spectral Flow

3.1 The Hessian of the Chern-Simons Function

In this last lecture we investigate the spectral flow of the Hessian of the Chern-Simons function
(and the related Atiyah-Patodi-Singer odd signature operator) along a path of connections on a
3-manifold. We will describe a method which allows us to compute the spectral flow for Dehn
surgery on knots in terms of x(Xg) and its image in x (7).

We begin by defining the Hessian of the Chern-Simons function, following Taubes [T]. Consider

the space B = A /G of gauge equivalence classes of connections on a closed 3-manifold M. By
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completing A, G in appropriate Sobolev norms we can give B the structure of a (singular) infinite-
dimensional Banach manifold. (We will ignore all technicalities about completions here; the reader
can look up any one of many good references, e.g. [DK]. Our only intention is to display the
analogy with Morse theory). Since A is an affine space modeled on Q}, ® su(2), the tangent space
to A at Ais Ta A = Q}; ® su(2). We wish to describe the tangent space to B. Since B= A/G,
the pull back of the tangent space of B to A4 can be identified with the orthogonal complement to
the tangent space of the G-orbits.

Now G = Maps(M,SU(2)) and so T1 G = Maps(M,su(2)) = 99, ® su(2). The function
G — A taking g to g - A maps G onto the orbit of A and its differential at 1 € G is just the
covariant derivative d4 : 9, ® su(2)—Q},; @ su(2). Now A has a Riemannian metric induced by

the L? inner product
<a,b>=— /M tr(a A*b), a,b€ Ty A= Q% @ su(2).
Therefore the pullback of T, B to A is the G-equivariant subbundle whose fiber over A € A is
(Im da : Q% @ su(2)—Q, @ su(2))t = ker d¥ : Qb @ su(2)—Q%, ® su(2).

(This is not quite a bundle, since it “jumps up” along the reducibles, i.e. along the set of connections
A in A for which kerds : 99, ® su(2)—Q},; ® su(2) is non-zero. However we can think of B as
being stratified by the dimension of the centralizer of the holonomy of a connection, and then along
each open stratum this gives the pullback of the tangent space to B.)

The Chern-Simons function cs : B —S1 lifts to c¢s : 4 —R (in a given trivialization) using

the equation (2.1). Now if A € A, B € Ta A= Q}; ® su(2), then
. 1
dcsa(B) = th_)mo ;(cs(A +tB) —cs(A))

1 2
=32 WMAAB+dBAA+§MAAAB+AABAA+BAAAA»
™ JMm

=33 tr(dANB+dBANA+2ANANDB)
™ JMm

1
_ —/ tr((dA+ AN A) A B)
47'('2 M

(Stokes’ theorem is used to show that [¢r(dB A A) = [tr(B A dA).) Thus the gradient of the
Chern-Simons function is grad cs(A) = 12z * F(A).

This is also the pullback of the gradient of cs : B—S! to A since the Bianchi identity implies
that d% (+F(A)) = —*xdaF(A) = 0 and so xF'(A) lies in the subbundle whose fiber over A is
ker d*%. Thus the set of critical points of cs : B—S' is just F /G = x(M).
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Continuing the Morse theory analogy we need a notion of index of a critical point. In finite
dimensions this is defined to be the signature of the Hessian at a critical point. Let us first calculate
the Hessian of cs.

The Hessian is the linearization of the gradient. Since grad cs : A —Ti A is given by A +—
2z * F(A), and F(A+tB) = F(A) + tdaB + t*B A B for B € Q}; ® su(2), we compute that the

Hessian of c¢s at A is given by
HA : TAA—>TAA, B — *dAB

This is the Hessian if we view cs as a function from A to R. To compute the Hessian if we consider
cs as an S'-valued function on B, we can use the connection V on 7* (T B) obtained from the

trivial connection on T, A = A xQ}; ® su(2). Thus
Hs = Vgrad css = projier ds, * da : ker dy — ker dy

where (T4 B) = kerd*, and projger dr, is the orthogonal projection in the fiber Ty A, (which
is just the L? projection Q}; ® su(2)— kerd?). At a critical point, F(A) = dada = 0, and so
d* (*da) = 0. Thus the Hessian at a critical point A € x(X) is just *d4. It is easy to compute
that H 4 is self-adjoint with respect to the L? inner product.

3.2 Spectral Flow

What distinguishes H,4 from the Hessian of a function on a finite-dimensional manifold is
that H4 has infinitely many positive and negative eigenvalues. However, what is relevant in Morse
theory is not so much the signature of the Hessian at a critical point, but the difference in signatures
of the Hessian at two different critical points.

Consider the finite dimensional case. If Z is a finite dimensional manifold and f : Z—R is
a Morse function, let grad f denote its gradient vector field. If V is a connection in the tangent
bundle then V(grad f), : T.Z—T,Z gives a family of self-adjoint endomorphisms parameterized
by the points of Z. In particular, if 2, z; are non-degenerate critical points, (so V(grad f)., is
invertible, i« = 0, 1), and z; is a path in Z from 2y to z1, then the eigenvalues of V(grad f)., vary

continuously with t. If \;(t),7 =1,---,dimZ denotes the eigenvalues, then the quantity
{0 | N(0) < 0,7(1) > 0} — #{i | Au(0) > 0,4(1) < 0}

is equal to the difference in the Morse index of f at z; and zg and is called the Spectral Flow of

the family of self-adjoint operators V(grad f).,.
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This same quantity makes sense for a continuous family of self-adjoint operators with discrete
spectrum (with each eigenvalue of finite multiplicity). We will show below that H4 has such a
spectrum, and so if pg, p1 € x(M), we define the spectral flow from pg to p1 to be the spectral flow
of the family H 4, where A, is a path of connections with A; flat with holonomy p; for « = 0,1. It
is an integer.

There are several technicalities which we have ignored. Firstly, we have assumed that the
path A; lies in a single stratum of B, so that T} B does not jump up along the path. Second,
we have not shown that H,4 has a discrete and continuously varying spectrum. We are also
blurring the distinction between representations and characters (and between connections and
gauge-equivalence classes of connections) and, in particular, we should know what changing A to
g - A does to the spectral flow. Finally, we would like to know how the choice of path A; affects
the spectral flow.

Taubes [T] introduces the following trick to deal with all these problems. If A € A is a

connection, decompose Q2° ® su(2) @& Q! ® su(2) into
Q° ® su(2) ® Image d @ ker d7.

Let Ba : Q0 ® su(2) ® Image da @ ker % —Q° @ su(2) & Image da @ ker d* be the self-adjoint

operator given by the matrix:

0 da O
Bya=\|dy O 0
0 0 Hy
Then
1. The spectrum of the top left block < dg dg‘) is symmetric since if (f) is a A-eigenvector
A
then ¢ is a —A-eigenvector.

2. If A is flat, then Ha7T = *d47, and so
Ba (¢7 T) = (dz (p?”Oj[mdA T)? dA¢ + Ha (projker dz’r))
= (dZT, dag + *dAT).

For a general connection A, let D (¢, 7) = (d%7, dad++daT) acting on Q°®su(2) & Q' @su(2).
Then Ds = By if A is flat. Moreover, D 4 is elliptic, and D4 — By is compact.

Therefore, the spectrum of B4 is discrete, and so also of H4. The spectral flow of H 4, equals
the spectral flow of By, along any path in 4*. If Ag, A; € A* are flat then SF(Ba,) = SF(Da,).
However, the domain of the operator D4, is independent of ¢; it is just the image of L} in L?. In

particular, the spectral flow of D4, makes sense for any path A; between any two connections Ay
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and A;. Thus we lose nothing by taking the spectral flow of the family D4, instead of the family

Hy,, in fact we gain since D 4, makes sense even when A; does not lie in one stratum of 3.

This leaves only the question of the dependence on the path and the choice of gauge equivalence
class of connections. This is done by showing that D, is the tangential operator (in the sense of
[APS]) of the self-duality operator on a 4-manifold. What we must compute is the spectral flow
of a family around a loop in BB, or equivalently, along a path A; in A4 from A to g - A. Applying
the index theorem of [APS] we conclude that the spectral flow along any such loop is equal to the
index of the self-duality operator on a bundle over M x S, and this index is divisible by 8. Thus
the spectral flow of the family D 4, is well-defined mod 8 as a function on the pairs pg, p1 € x(X).
(see the appendix to [KKR] for details.)

Note that the operator D; is a disguised form of the Atiyah-Patodi-Singer odd signature oper-

ator, i.e. half of the tangential operator of the signature operator [APS].

Finally let us mention the definition of Floer’s instanton homology. First, the chain complex is
generated by the points of x(M), and is Z/8 graded by taking the grading of p to be the spectral
flow from p to some fixed pg. The differentials in the chain complex are more difficult to explain,
and as of yet I do not know of a rigorous way to obtain the differentials from the “pillowcase”
picture, although several people have told me this should be possible, ostensibly by identifying the
instanton Chain complex with Floer’s “symplectic” homology. I will have nothing to say about

these differentials in what follows (except to point out when they must be zero!)

Among the earliest computations of spectral flow were Fintushel and Stern’s computations for
Seifert fibered homology spheres [FS]. Their computations were carried out by showing that given
any Seifert fibered homology spheres M and p € x(M), there exists a 4-manifold Z such that the
boundary of Z equals —M UL where L is a union of lens spaces, and p extends to a representation of
m Z. Applying the Atiyah-Patodi-Singer index theorem (and the relationship between the spectral
flow and the 7 invariant of [APS]) the computation reduces to a computation of the Atiyah-Patodi-
Singer p, invariants of lens spaces (which is easy since they have finite fundamental groups) and

the Chern-Simons invariants of M.

Finding such a flat cobordism is rare. Other computations using this approach include [KKR]
for certain graph manifolds and abelian representations, and [SS] for certain links of algebraic
singularities.

Let us interpret several of the computations of [F'S] for Dehn surgery on knots in terms of the

image x(Xg)—x(T).
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3.3 Two Surgeries on the Trefoil

A. We start with the simplest non-trivial example: +1 surgery on the Trefoil; S3(K, +1), which
is just the Poincaré homology sphere ¥(2,3,5). Figure 9 Shows x(Xx) and x(N(K)), on the left
in the natural S® meridian and longitudes x, A and on the right in the meridian and longitudes fi, A

in ¥(2,3,5). Thus i = u + A and A = X\. (Recall from section 1.5 that x*(Xx) is parameterized
by ®(t,—6t + 3), t € (75, 3)-)

I\ 7t
A,
| 7 /
/ﬁ)o /
[
U, A coordinates [, A coordinates

Figure 9.
Fintushel and Stern compute that in this example, SF(po, p1;2(2,3,5)) =4 (mod 8).
B. Consider a slightly more complicated case, % surgery on the trefoil. Figure 6 has the
pillowcase picture in the S® longitude and meridian. Taking i = 4+ 3A and A = X we obtain the
following figure in the natural coordinates i and A for S3(K, %) =%(2,3,17):

Figure 10.

Fintushel and Stern’s computations imply:

SE(p1,p5) =4, SF(pa, ps) = 6, SF(pa, p2) = 2, SF(p2, ps) = 4, and SF(pg, p3) = 6.

These examples will be used in the next section to derive a formula for the spectral flow.
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3.4 The Characteristic Cohomology Class

Consider the 3-manifold pair (N, T) = (D? x S*, S x S1) and give T the coordinates u = S* x x
and A = *x S1. Let X(T) = x(T) — {central representations}; this is the pillowcase with the corners
removed. Let Y(N) = x(IV) — {central representations}; this is an open arc mapping to the left
vertical edge of the pillowcase. Then define the Characteristic Cohomology Class for (N,T),

S(N,T) € HI(X(T), X(N);Z/8)

to be the Poincaré dual to the homology class z indicated in Figure 11.

2

R(N)

2

Figure 11.
In this figure the cohomology class z equals 2 times the top horizontal edge + 2 times the
bottom horizontal edge + 4 times the right vertical edge (oriented as indicated). Thus, given a

path 7 in x(T') with endpoints in X(N), s(x1)(7) =72z (mod 8).

Now the important observation which the reader should verify is that in the previous two
examples, letting v be a path in x (X ) joining any pair pg, p1 € x(M) (where M denotes (2, 3,5)
in the first example and ¥(2,3,17) in the second example),

SF(po,p1) = sn,1)(7)-

This suggests that the spectral flow between two representations of a surgery on a knot K can
be computed by understanding the image of x (X ) in the pillowcase and applying the class sy 7).

This is almost true, but one more invariant must be introduced, namely the Maslov Indez. For
simplicity we introduce it for the pillowcase only.

Let £ be the vertical line field on x(T'), i.e. the image of the vertical line field in R* — (1Z)?

2
under the projection ® : R*>— /(7). Given an oriented, immersed curve 7 in Y (T') whose endpoints
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are transverse to x(N) , the Maslov index is defined to be the winding number of the tangent vector
7 with respect to £, and is denoted by (7). Figure 12 Shows how to compute ~y(7); it picks up a
+1 or —1 each time 7 is tangent to £; +1 if the tangency is on the right and —1 if the tangency

is on the left of 7.

y(1)=+1 vn=-1

Figure 12.

Then we have:

3.5 Theorem. Let K C M be a knot, and let pg,p1 € x*(M) be two representations.
Suppose there exists a path p : [—x*(Xk) from py to p1, and suppose that x*(X ) is a smooth
1-dimensional variety along p, i.e. H'(X;adp;) is 1-dimensional for all t € I. Finally suppose
that the image of p; in the pillowcase lies in x(T) and is transverse to £ at the endpoints (i.e.

HY(M;adp;) =0 for i =0,1.) Let 7, denote the image of p; in the pillowcase. Then:

SF(po, p1) = s(n,r) (1) + (7).

Remarks: 1. This theorem was first proven by Yoshida [Y3] using his splitting theorem [Y?2]
for spectral flow. Other proofs of the splitting theorem are now available; the clearest one in my
opinion is in [MW]. See also [CLM] and [N].

2. The assumptions on x*(Xg) and x(M) are “generic”, i.e. they are moduli spaces of the
dimension predicted by the index theorem. In [T],[F], a family of perturbations called “geometric
perturbations” of the Chern-Simons function B ——S' are given which ensure that the critical
points are generic. Chris Herald [He| works this out carefully for a manifold with boundary, and

in particular proves that a geometric perturbation can be found which makes x*(Xx) a smooth
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1-dimensional variety. In principle his methods can be used to give the correct input to this
theorem. One needs to compute “perturbed” representation spaces, i.e. x,(M) and x,(Xx) where
p denotes some perturbation of the Chern-Simons function and y, the corresponding set of critical
points. This involves additional difficulties; examples need to be worked out. However, finding
good perturbations is a topology and algebra problem; it involves no analysis. One needs to find
an appropriate link in the manifold and investigate the character variety of the link exterior.

3. There is nothing special about the line field £; any line field can be used. However, choosing
a different line field will change sy 7). It is the sum of the two which must remain invariant. We
have chosen £ for convenience. Thus the notation s ) is not precise; strictly speaking this class
depends on £. It is the sum sy 7y(—) + v(£, —) which is independent of L.

4. We assume that the image x*(Xx)—x(7) misses the corners of the pillowcase. This is
OK if M is a surgery on a knot in S3, as we have observed in section 1.4. In general, however,
we need to understand what happens if the image x(Xx)—x(T') passes through a corner of the
pillowcase. The class sy ) no longer makes sense and needs to be replaced by a more general
object, maybe some kind of intersection cohomology class which keeps track of the strata. What
is at issue is that the dimension of H'(T;adp) jumps up from 2 to 6 dimensions at the corners.
Thus the Zariski tangent space of x(7") is not a vector bundle near the corners, but a sheaf. One
could conjecture that the spectral flow through a corner depends on the angle at which the path
approaches the corner.

5. In the each of the two examples above, the Maslov index term is zero, i.e. the image
X(Xg)—x(T) is transverse to the vertical line field £. It is unlikely that this is true in general;
there are probably examples of surgeries on 2-bridge knots where this fails. A more subtle question
is whether x (X ) is transverse to £ at its endpoints when Xk is the complement of a knot in M.
This is closely related to the question of whether there exist a representation p of closed 3-manifolds
M which is an isolated point in x(M) but for which H*(M;adp) # 0. One conjecture states that
this is not possible.

6. It should be possible to generalize the characteristic class s(y,r) to any 3-manifold pair
(X,Y), and for that matter any compact Lie group G and representation instead of just SU(2)
and the adjoint representation. There are many difficulties in doing this, related to the singularities
of xq(X) and xg(X). See the method in [KK4] for constructing s(y r) and Theorem 1.7 in [KK5]
for the technical result needed at least for the case when one stays within a stratum of x(X). This
makes the pair (H'(x(X), x(2); Z/n); s(x,x)) look suspiciously like a TQFT.

We note here that the computation of the coefficients of sy 7y for G = SU(2) and the adjoint

representation depends on Fintushel-Stern’s computations. It turns out that the computation for
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SU(2) and the defining representation (i.e. C?) looks like figure 11 except that in that case S(N,T)
is a mod 2 class, the 2 is changed to a 1 and the 4 to a 0. One can find the appropriate coeficients

for any representation of SU(2)

This theorem works well for surgeries on torus knots and 2-bridge knots, or more generally, any
Brieskorn sphere X(p, ¢, 7). The inspired reader should work out the example of % surgery on the
figure 8 knot using Figure 5 (and changing coordinates to fi = -+ 2\, A = \) to test whether s/he
has understood the statement of Theorem 3.4. It turns out again that v = 0, and so SF(p;, p;)
is always even. Hence the boundary operators in the Instanton chain complex are all zero and so
the Instanton chain complex equals its homology. Up to a Z/8 cyclic permutation the Instanton

homology is (Z2,0,Z?,0,Z%,0,Z* 0).

3.6 The Non-Generic Case So far we have been discussing spectral flow for Dehn surgeries
and have seen that in certain gemeric situations, the entire picture is contained in the image
X(Xk)—x(T). We alluded to perturbations which make x (X k) generic. We now want to describe
an alternative method, which does not suppose that x(Xg) is generic. Along the way we will
define spectral flow for a manifold with boundary. (Notice that H4 and D, are not self-adjoint
for manifolds with non-empty boundary unless some boundary conditions are imposed.) This will
lead to interesting formulas for spectral flow in terms of certain Massey products in the twisted
cohomology of X. Moreover, a new feature is introduced, namely the analytic structure of x(X)
is used to control eigenvalues and eigenvectors. Even for a closed manifold this is interesting;
for example Farber and Levine [FL] have used this idea to obtain results about the homotopy

invariance of the Atiyah-Patodi-Singer p,, invariants on any odd-dimensional manifold.

( Exercise: Show that L(7,1) and L(7,2) are not diffeomorphic by computing the spectral flow

between corresponding representations using Example 1.5.1 and Theorem 3.5.)

3.7 Analytic families of Flat Connections and Operators

Let X be a 3-manifold with non-empty boundary 3; we assume a Riemannian metric on X is
given such that the collar of the boundary is isometric to ¥ x I. A connection A on X is said to
be in cylindrical form if, on the collar, A is the product of a connection A on ¥ and the trivial
connection in the I direction. The following theorem (which also holds if ¥ = ¢) shows that
families of flat connections on X can be chosen parameterized by hom(m X, SU(2)) which reflect

the analytic properties of the algebraic variety hom(m X, SU(2)).
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3.8 Theorem. Given a flat connection A with holonomy p in cylindrical form, there exists a
neighborhood U C hom(m; X, SU(2)) of ps and an analytic function s : U— A so that s(p) is flat
with holonomy p for all p € U and s(p) is in cylindrical form near the boundary. Here A is given
any Sobolev L? topology or any C* topology.

For a proof see [FKK]. What this theorem says is that we can locally split the holonomy map
from flat connections F to hom(m X, SU(2)) in such a way that the splitting s is analytic. Notice
that s : U— A is a function from an open set in an analytic (in fact algebraic) variety to an
affine space. Since A is infinite dimensional, some topology must be used before one can define an

analytic function, and any Sobolev L? or C* topology will do.

3.9 The Easy Case: Closed Manifolds
We show how to use this fact on a closed 3-manifold M where the technicalities of boundary

conditions do not enter. Let o : [— hom(w1 M, SU(2)) be an analytic path of connections. Let
Dy : Q% @ su(2)—Q% ! @ su(2)
be the corresponding family of self-adjoint operators
Di(¢,7) = (d4y,7,da, ¢ + *da,T)

where Ay = s(a(t)), s the splitting of the previous theorem (after perhaps shortening the interval
I). Then D, is an analytic path of self-adjoint operators in the sense of [Ka]. The results of analytic
perturbation theory imply that the eigenvalues and eigenvectors of D; vary analytically. (Exercise:
find a C*° path of self-adjoint 2 x 2 matrices whose eigenvectors do not vary continuously)

The main reason why this method works easily a closed manifold than on a manifold with
boundary is that for a closed manifold, the domain of D 4 is independent of A; in fact it is just the
image of L? in L?. Making this work on a manifold with boundary is a technical step which we

will describe below.

In particular, we have the following principle:

3.10 Principle:. If \(t) is an eigenvalue of D, so that A\(0) = 0, one can tell if \(t) is changing
from positive to negative or from negative to positive by looking at the sign and order of the first

non-vanishing derivative of \(t) at t = 0.
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Returning to our closed manifold M, a basic fact about the operator Dy when A is flat is
that the kernel of D4 consists of d4-harmonic 0- and 1-forms, which by the Hodge and DeRham

theorems is isomorphic to the cohomology
H°(M;adpa) ® H°(M;adpa).

(Here pa = hola € x(M).) In particular, the dimension of the kernel of D4 is a cohomological
invariant, which means that topologists can compute it if they really want to. Thus along our path
of representations «a; we know exactly when the kernel of D; jumps up, i.e. when an eigenvalue
Crosses zero.

To get a handle on the spectral flow, we need to know more than just when the kernel jumps,
but which way the eigenvalue is crossing through 0. But according to our principle, this is the
same as knowing the first non-vanishing derivative of the eigenvalue at the point where it crosses.

This can be encoded abstractly as follows: suppose that A;(¢),7 = 1,---,n are the paths of
eigenvalues which are equal to 0 at ¢ = 0. (so n = dim H*™1(M;aday).) Define a sequence of
bilinear forms Fj, which are just diagonal forms with the k' derivatives of the \; at ¢t = 0 along
the diagonal. Then the sequence of signatures o(F}) clearly give the spectral flow through ¢t = 0.
It turns out these signatures can be computed cohomologically. We describe the first one.

Let a € H(M;adag) = Ta,x(M) be the derivative of the path ay at ¢t = 0. It is well known
(and easy to prove) that the cup product [a,a] € H?(M;adag) equals zero (see e.g. [GM]). Thus we
have a “derived ” complex whose chain groups are H*(M;adag) and whose differential is cupping

with a (using the Lie bracket as bilinear form on the coefficients):
[a,—] : H*(M;adag)—H* (M;aday).
The following theorem is proven in [KK4] (and generalized to arbitrary odd dimensions in [KK5])

3.11 Theorem. In the situation above, let
By : HY(M;adag) x H(M;aday)—R
be the symmetric bilinear form

Bi(z,y) = —[a, 2] -y

where [a,] is described above and - : H*(M; adog) x HY(M; adag)—R is the cup product induced
by the bilinear form su(2) x su(2)—R, (a,b) — —tr(ab) and the Poincaré duality isomorphism
H3(M;R) ~R.
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Then the signature of By equals the signature of Fy. Moreover, if the cohomology of the
derived complex (H*(M;aday), [a, —]) is zero, then the signature of By equals the spectral flow of

D; through t = 0.

Thus the first order part of the spectral flow can be computed using cup products, some-
thing topologists can do better than computing derivatives of eigenvalues of paths of self-adjoint
operators. Notice that B; is a homotopy invariant.

The proof of this theorem is quite easy (and standard). One writes down the eigenvalue equation
D¢y = M ¢y and differentiates with respect to t. Then one uses a little algebra to clean up the
resulting bilinear form.

Taking higher derivatives leads to Massey products, we will not pursue this here but only say
that there is a product (a Massey triple product (z,y) +— {a,a,z} - y) defined on the cohomology
of the derived complex whose signature gives the signature of F5. Continuing in this manner
one should obtain all the higher signatures of the forms Fj (and hence the spectral flow) as
increasingly complicated formulas involving higher order Massey products. In [FL], Farber and
Levine circumvent these subtleties by defining a product directly as a torsion pairing over the power
series ring from which one can extract (theoretically!) the spectral flow. This immediately leads to
the homotopy invariance of the spectral flow, and related results about the homotopy invariance

of the Atiyah-Patodi-Singer p, invariants.

3.12 Spectral Flow on a 3-Manifold with Boundary

We turn now to the problem of adapting the results of the last section to a 3-manifold X with
non-empty boundary 3. This is what is needed for examining the spectral flow for Dehn surgeries.
As was mentioned, the basic problem is that the domain of D; must be restricted in order to obtain
a self-adjoint operator. As is clear from [Y2], the correct domain to use for gluing problems are
analogues of the Atiyah-Patodi-Singer boundary conditions. The technical problem which arises
is that these boundary conditions are changing with t. Thus some work must be done to apply the
results of analytic perturbation theory, namely one must re-parameterize the domains analytically.
In [KK4] we were able to do this in an ad-hoc manner when the boundary of X is a torus. A
more careful analysis is carried out in [KK5] and so the general problem (in any dimension) can
be solved.

We briefly outline what must be done. See [Y2], [KK4],[KK5], and, of course, [APS] for details.

First a computation shows that on the collar,

< 0
D4 :U(DA‘F%)
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in the sense of [APS] where the tangential operator D is the operator on X:
Dy : QL2 ® su(2)— Q%2 @ su(2)

given by
Dale, 8,7) = (xd 48, — x djo —d g %7,d 3  §).
(Recall that A = A x © on the collar.)

Now D, is self-adjoint on the closed manifold ¥ with symmetric spectrum (D a0 = —aD A)-
Moreover, if A is flat (e.g. if A is flat) then the kernel of D 4 is identified with H*(3;adp4) via the
Hodge and DeRham theorems. Use the Spectral theorem to decompose L?(X) = L?(Q% ® su(2))
into

L2(S) = P_(A) @ Ha ©Py (A)

where Py(A) is the span of the positive or negative eigenvectors of D4 and ‘Ha is the kernel of
Dy4. So in particular Ha = H*(Z;adps). Now 02 = —1 and o interchanges Py (A) , and leaves
H4 invariant. Thus o induces a complex structure on {4 and, using the L? inner product, a
symplectic structure via

{z,y} =< z,0(y) >.

Since o depends on the metric, an easy computation shows that the symplectic inner product
is metric independent, and in fact coincides with the cup product - on cohomology using H4 =
H*(X;adpa).

Now let o : I— hom(m X, SU(2)) be an analytic path of representations. Choose an ana-
lytic path of flat connections A; with holonomy «y in cylindrical form. We now must make the

assumption:
Assumption: The dimension of H; is independent of .

This is the analogue of the assumption that the path «; does not pass through a corner of the
pillowcase. More generally it says that the restriction of a; to the boundary stays in one stratum
of x(X). We are not assuming that a; itself stays in one stratum, in fact the entire point of this
approach is to analyze what happens as one crosses through singularities. (There exist approaches
which suggests how to drop this assumption; as far as I know there is no coherent method of
organizing the information as one moves across a singular stratum.)

With this assumption, we can define subbundles of L?(X) x I with fiber over ¢ € I:

Py (t) = span{¢ | D¢ = g, p > 0}
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Hi = ker ﬁt

and

P_(t) = span{¢ | D¢ = g, pu < 0},

so that L?(X) x [—1 = P, @ HOP_—1.
The bundle isomorphism ¢ and the L? inner product turns L?(X) x I into a symplectic vector
bundle over I and 7 into a finite-dimensional symplectic subbundle. (More generally, one obtains

a bundle over any parameter space T' such that dim H; is constant for t € T'.)

The bundle ¥ is an analytic subbundle of L?(X) x I; this follows from the fact that the path
A, is an analytic path of connections on ¥ (and X is closed). Choose an analytic Lagrangian
subbundle £ C H. Then the boundary conditions we will use are Py & £. Let D; mean the
operator D; on X with these boundary conditions. Then it follows from [APS], [Y2], [MW], and
many others that D; is a self-adjoint operator with discrete spectrum.

Notice that the boundary conditions are varying with ¢. Applying analytic perturbation theory
is not as simple, since the domain of the operators is changing with ¢. In [KK5] we prove the

technical result:

3.13 Theorem.
D; is an analytic path of self-adjoint operators. In particular the eigenvalues and eigenvectors

vary analytically.

Thus we are poised to apply the same analysis that we did in the closed case to obtain Theorem

3.11. Unfortunately, one more problem creeps in: in the analytic expression for an eigenvector
o0
o(t) = it
i=0

the coefficients ¢; need not satisfy the boundary conditions that each ¢(t) does. To make a long
story short, this problem is compensated by “stretching the neck”, i.e. replacing X by the manifold

X(R) = X U (% [0,R)])

and letting R—o00. The corresponding theorem is weaker, and we state it precisely now. First

some notation: the superscript R refers to objects on X (R). The form Bj is defined to be

HY(X;adag) x HY(X;adayg)—R, (z,y) — —|a,z] -y,
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where H L(X; adag) means the image of the relative cohomology in the absolute cohomology. There
is also a larger form B, with the same signature as B; whose signature is a homotopy invariant.

See [KK5] for details; the form By is the “non-hyperbolic part” of B;.

3.14 Theorem:. Given any € > 0, there exists an R > 0 so that for all R > R., there is a 1-1
correspondence between the eigenvalues of By and the first derivatives of the eigenvalues \;(t) of

DF passing through 0 at t = 0, denoted by 7;(B1) < AF(0), so that
m:(B1) = Af(0)] < e.

In particular, if the cohomology of (I:I *(X;adag), [a, —]) is zero, then the signature of By gives
the spectral flow of Df*(Py.(t) 4+ L;) throught = 0 for R > R, where € < } inf |7:(By)|.

This is not quite as good a result as Theorem 3.11, since if some of the TZ'(Bl) are zero we
cannot tell what the sign of )\f is. In the case when all the Ti(Bl) are non-zero then this gives the
computation of spectral flow on X (R) for R large enough. It is probably true that if some 7;(B;)

vanishes, then so does the corresponding )\f, although a complete proof is not yet available.

3.15 An Example

We finish these lecture notes with a description of a computation using this theorem which
verifies a conjecture of Jeffrey [Je] relating the computations of the TQFT invariants of torus
bundles over S! in the two methods (as described earlier in the notes), namely using the TQFT
Axioms as constructed in [Wa] and the stationary phase expansion. For details of the computations
see [KK4].

Let M be a torus bundle over a circle, and let pg, p1 € x(M) be two non-abelian representations.

In this setting Jeffrey’s conjecture is
SF(po,p1) =0 (mod 4).

This conjecture is true if and only if the two interpretations of Witten’s invariant are consistent.
We approach this in our by now familiar way. There exists a simple closed curve K in a fiber
so that the restrictions of p; to Xk lie on a path p; in x(Xg). (In almost all cases, we were able
to prove that the image of this path misses the corners of the pillowcase for a suitable choice of K,
but this simple question is the only step which is still missing to verify Jeffrey’s conjecture in its
entirety. It is purely a question of arithmetic in SL(2,Z).)
Now it turns out that x(Xg) is not always a smooth 1-dimensional variety along p;. If it were,

we could apply Theorem 3.5 and immediately compute the spectral flow. However, there are some
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2-dimensional components of x(X ) which intersect the path p; transversaly for some 0 < t < 1.
This corresponds exactly to the fact that the cohomology jumps up, and so the corresponding
path of operators D; on X; picks up some kernel at these special values of t. Figure 13 shows
a typical example: p; always maps to a straight line in the pillowcase, and the singularities (i.e.
the intersection with the two dimensional components) arise exactly when the image of p; in the
pillowcase crosses the top or bottom horizontal edges of the pillowcase. This figure only shows
part of x(Xx) and its image in the pillowcase. The 2-dimensional sheets cutting through the arc
pr map to the top or bottom edges of the pillowcase (i.e. they send A to +1). The picture makes

it plain that x(Xk) is not a smooth 1-dimensional variety along this arc.
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Figure 13.

Now the correct generalization of theorem 3.5 in this situation says that if 7y is the path in the

pillowcase corresponding to the restriction of p;, then
(+) SF(po.p1) = s(v.r)(7) + () + SF(Dy)  (mod 8).

The curve 7 is a straight line, and is transverse to the vertical line field £ on the pillowcase.
Therefore the Maslov index term ~(7) vanishes. We know how to compute sy 7y(7): this just
picks up a +2 whenever 7; crosses the top or bottom horizontal edges of the pillowcase, and a 4
whenever 7y crosses the left vertical edge. Since ker D; is 2 dimensional whenever 7; crosses one
of the two horizontal edges and zero otherwise, what must be shown is that the two eigenvalues
of D, crossing through zero at these values of ¢ are crossing with the same sign, if the conjecture

is to hold. (If the eigenvalues were crossing with opposite sign, or if one or both had a horizontal
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tangency, then the spectral flow of D; could be 1 or 0, but then applying the formula (%) we would
have an example where SF(pg, p1) is not equal to 0 (mod 4), contradicting the conjecture.)

But Theorem 3.14 tells us how to compute the spectral flow of the family D; (at least if the
derived cohomology vanishes, which it does in this case). A long but elementary calculation in
group cohomology shows that the bilinear form B; is definite, and so the first derivatives of the

two eigenvalues passing through zero are non-zero. This finishes the proof.

4 Conclusions, Loose Ends

I hope that these lectures have illustrated the point that gauge theory information about 3-
manifolds can be obtained by a careful analysis of their character varieties, especially in the context
of Dehn surgery, where pictures are possible.

We list some questions which came up in these lectures which need answering.

1. Are all Chern-Simons invariants of representations of closed 3-manifolds rational? See [KK2]
and [A] for evidence.

2. An affirmative answer to the following question would make the theory even more useful: Given
a closed manifold M and pg, p1 € x(M), does there exist a knot or a link K in M so that the
restrictions of py and p; to the exterior X lie on a path component of x(Xx)? The answer is
probably no, but under what conditions is this possible?

3. Describe the differentials in Instanton homology in terms of the pillowcase for Dehn surgeries.
This is a special case of what I have heard called the Atiyah conjecture. This was presumably
answered by Floer in the construction of his exact triangle.

4. Compute the spectral flow along a path which passes through a corner of the pillowcase. This
vague question could be answered e.g. by finding the proper generalization of the characteristic
cohomology class sy 7y (perhaps in some generalization of cohomology?).

5. Define the characteristic cohomology class for any 3-manifold pair (X, ) and any compact Lie
group. (Hint: Answer question 4 first.) Then show that this gives a “torsion” TQFT whose
vector spaces associate to ¥ some sort of cohomology of x(X) and to X the characteristic class
5(X,%)-

6. Referring to example 3.15 (an easy (?) question for number theorists): Prove that given any two
representations pg, p1 € X(M) when M is a torus bundle over S!, there exists a knot K C M
which lies in a fiber and a path p; € x(Xx) from pyx, to p1x, whose image in the pillowcase
avoids the corners. (See [KK4] for a reduction of this question to a question about matrices in

SL(2,Z).)
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7. Calculate x(X) for a bunch of hyperbolic knot complements. What can be said about the SU(2)
character varieties of hyperbolic knot complements? In general, tables of character varieties of
knot exteriors and the image x(Xg)—x(T') are needed.

8. Does every 3-manifold with non-trivial fundamental group admit a non-trivial representation
to SU(2)? Does every 3-manifold with non-abelian fundamental group admit a non-abelian

representation to SU(2)7
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