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Remarks on the cohomology of groups

By ANDRE WEIL

1. This is a sequel to two recent papers|[3a, b] where I proved some theorems
on the deformation of certain types of discrete subgroups of Lie groups; the
method consisted in proving (in [3a]) a general result on the small deformations
of such groups, and then combining this with the determination of their
infinitesimal deformations, as was (in substance) done in [3b]. I have now
noticed that, by using an elementary lemma of a general nature, one may
deduce the results of [3b] more directly from the knowledge of the infinitesimal
deformations, or, what amounts to the same, of the relevant cohomology groups.
The first purpose of the present note is to indicate briefly how this can be done.

For simplicity, the lemma in question will be formulated for analytic
manifolds, since the real-analytic case is alone relevant to the above-mentioned
problems; the lemma is actually valid, not only for analytic manifolds over any
complete valued field, but also for manifolds of class C™ (with any = 1) over
the reals, and for non-singular algebraic varieties in the sense of abstract
algebraic geometry. By a morphism, we understand a mapping of a manifold
into a manifold, of the type indicated by the case under consideration (analytic,
or of class C", or, in the case of algebraic varieties, any everywhere defined
mapping in the sense of algebraic geometry).

LEMMA 1. Let U and V be analytic manifolds and (W).e; a family of
analytic manifolds; let f be a morphism of U into V, and, for each ¢, let F,
be a morphism of V into W, such that F.of is a constant mapping with the
constant value c; and put X =, F,7(c.). Let a be a point of U, and b = f(a)
its vmage in V by f; let A, B be the tangent vector-spaces to U at a, and
to V at b, respectively; call M the image of A in Bunder the tangent linear
mapping to f at a. Also, for each ¢, call L, the kernel of the tangent linear
mapping to F, at b, and put L = ., L.. Assume now that L = M; then there
18 an open netghborhood V, of b in V such that, if V' is any open netghbor-
hood of bin V,, XN V' 1is a submanifold of V' and coincides with the image
SNV of f(V') under f.

In some open neighborhood of @ in U, take a submanifold U, of U with the
same dimension as M, containing a, and transversal at a to the kernel of the
tangent linear mapping to f at a; then, if A, is the tangent linear variety to
U, at a and if f, is the mapping of U, into V induced by f, the tangent linear

mapping to f; at a is an isomorphism of 4, onto M. On the other hand, for each
149
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150 ANDRE WEIL

¢, take local coordinates /" in a neighborhood of ¢,, with the value 0 at ¢; then
each function %o F is defined in a neighborhood of b on V; and, among these
functions, we can choose finitely many functions @, whose differentials at b
are linearly independent, and such that L is defined by the equations d®, = 0.
We can now choose an open neighborhood V; of b in V where all the @, are
everywhere defined, and where their common zeros make up a manifold Y;
L is then the tangent linear variety to Y at b, and X N V; is containedin Y. As
Jf maps U into X, this implies that f maps f~(V;) into Y, and that f, maps
ST (Vy)into Y. In the analytic case now under consideration, the assumption
L = M implies then that there is a neighborhood of @ in U, which f, maps
isomorphically onto a neighborhood of b in Y; the same would be true in the
case of C"-manifolds. In the case of algebraic varieties, the assumption L = M
implies that a is an isolated point of f;(b), and hence, by a theorem of Chevalley
(re-stated and proved as Lemma 1 in M. Rosenlicht, Trans. A.M.S. 101 (1961),
p. 212), that the set-theoretic image under f; of any neighborhood of a in U,
is a neighborhood of b in Y. Thus, in any case, the image of U, under f; con-
tains an open neighborhood of » in Y, which we may write as YN V,, where
V, is an open neighborhood of b in V;. Let now V'’ be any open neighborhood
of b in V,; then the image of f~*(V"’) under f is contained in XN V’, which is
contained in YN V’; on the other hand, it contains the image of f;*(V') under
f1, which contains YN V’; therefore it is the same as YN V' and the same as
XN V’. This completes the proof.

2. Now let o be a representation of a group T, i.e., a homomorphism of T"
into the automorphism group of a finite-dimensional vector-space V over a field
K. Let z be a mapping of I" into V; for each v € I, call p’(v) the automorphism
of the affine space underlying V which is given by & — p(7)x + 2(v). Then o’
is a homomorphism of I" into the group of automorphisms of that affine space
if and only if 2z satisfies the relation

(1) (") = 2(v) + p(Mr(Y') ,
for all v, v’ in T'; one expresses this by saying that z is a 1-cocycle (we shall say

more briefly a cocycle) of I'in V, when I" operates on V by (v, ®) — p(v)x. Let
t, be the translation * — % + @ in V; then 0'(v) = {,0(v)t." is equivalent to
(2) 2(7) =a — pMa ;
if this is so for all v, z is.a coboundary; the quotient of the space of cocycles
by the space of coboundaries is the cohomology space H\(T', V).

Let (Yu)ses be a family of generators for I'. Let I be the free group
generated by a family of generators (v,),c. indexed by the same set A4; let A’
be the kernel of the homomorphism of IV onto I' which maps v, onto v, for every
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COHOMOLOGY OF GROUPS 151

«. The elements of A’ can be considered, in the usual manner, as “words” w(v’)
in the v); for every such word, we have w(v) = ¢, where ¢ is the neutral element
of I'. If (w,) is a family of elements of A’, such that A’ is generated by the w,
and by their transforms under all inner automorphisms of I', then one says
that I'" is defined by the generators v, with the relations w,(v) = ¢; when that
is so, a homomorphism 7’ of I' into a group G with the neutral element ¢ has
the constant value ¢ on A’, and therefore determines a homomorphism 7 of T’
into G, if and only if »'(w,) = e for all ». Since such a homomorphism 7’ is
uniquely determined by the r, = 7'(v.), and these can be chosen arbitrarily,
we may also say that a homomorphism 7 of I" into G is uniquely determined
by the elements 7, = 7(7,), and that these can be chosen arbitrarily provided
they satisfy the relationsw,(r) = e. In particular, let again pbe a representation
of I', and let z and o’ be as above. Then we see that z is a cocycle if and only
if wx(0'(7)) = e for all . In other words, the cocycle z is uniquely determined
by the vectors z, = 2(7,), and these can be chosen arbitrarily provided they
satisfy the relations w,(0'(7)) = e. Moreover, z is then a coboundary if and
only if there is a vector a such that (2) is satisfied whenever one substitutes
one of the v, for 7.

In order to write in a convenient form the conditions we have just found
for the z,, write each word w,(v) as the product 0, «-- 0, of a sequence of
factors, each one of which is either of the form v, or of the form 7v,*; and put,
forl <1< n\)

Uni = P(0; *++ 05-1) Za if0; =7,

3
(3) tng = — PG, <+ 3) 2 if 0, = 72t .

Then it is easily seen that the relations w,(0'(v)) = e for the 2, are equivalent
to the following ones:

(4) i ua=0.

These are therefore the relations which determine the cocycles of T" in V;
HYT, V) is 0 if and only if every solution of these equations is a coboundary,
i.e., of the form z, = @ — o(7,)a for some choice of a.

3. Now assume that I' is finitely generated and that (7,).c. is a finite set
of generators for I', indexed by a finite set A. Let R be the set of all homomor-
phisms of I" into a group G; if we identify each r € R with the point (r,) of
G, Ris the set of the elements of G'* which satisfy the relations w,(r) = e.
We shall consider only the following two cases:

(a) G is a Lie group; then G'¥ is also a Lie group, and R is a real-analytic
subset of G; in this case, we take for K the field R of real numbers;
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152 ANDRE WEIL

(b) Gisan algebraic group; then G is also an algebraic group, and R is
a closed subset of G'4 in the Zariski topology; in this case, we take for K the
universal domain.

In both cases, each w, may be considered as a morphism of G'* into G, and
we have R = (), wx'(e). On the other hand, for a given 7 € R, consider all the
transforms 7’ of » by the inner automorphisms of G; these are given by 7., =
xr,ot, with ¢ € G, and the mapping & — (¥r,&™") is a morphism of G into G4,
which maps G into E. We shall now apply Lemma 1 to these morphisms. This
requires the determination, for the present situation, of the spaces denoted by
L and by M in Lemma 1.

We identify the tangent vector-space toG at any point of G with thetangent
vector-space to G at e, i.e., with the Lie algebra g of G, by means of a right-
translation. Then G operatesongby means of the adjoint group; more precisely,
the inner automorphism & — sxs™ of G induces on the tangent vector-space g
of G at e the automorphism X — Ad(s)X.

It is now easily seen that the image M of the tangent vector-space g to G
at ¢, under the tangent mapping to the morphism x — (xr,x™) at e, consists of
the vectors (Z,) € g2 of the form Z, = X — Ad(r,)X, where X is any vector
in g. On the other hand, write again w,(v) as 0, -« * 0,,, Where the J, are as
above; then the image of a tangent vector (Z,) to G at r, under the tangent
mapping to the morphism w, of G'* into G, is Ei %,;, Where the u,; are given
by (8), provided one substitutes (Z,) for (z,) and Ador for o in (3). Therefore,
after this substitution is made, the kernel L, of the tangent mapping to w, at
ris defined by (4); and those equations, taken for all A, define the linear variety
L = N L.. In other words, L is the space of the cocycles of I" in g, when T
operates on g by (v, X) — Ad(r(7))X, while M is the space of coboundaries for
the same group; L = M is equivalent to H(I", g) = 0. In view of Lemma 1,
this gives the following theorem:

If H(, g) = 0, there is a neighborhood of r in which every element of R
1s the transform of r by an inner automorphism of G.

As a consequence, in order to prove Theorem 1 of [3b], one has only to verify
that, under the assumptions of that theorem, HT', g) = 0; in substance, this
is precisely what is done in nos. 6-10 of that paper (cf. also [4]).

4, In the cases covered by Theorems 2 and 3 of [3b], H'(T, g) is not 0;
nevertheless, these theorems can be proved by a similar method, viz., by applying
Lemma 1 to the situation described above in nos. 2-3, and combining this with
the information about H*(T", g) contained in [3b] and with the direct determi-
nation of this group for the case in which I' i3 a discrete subgroup, with compact
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quotient-space, of the 3-dimensional hyperbolic group. It seems hardly
worthwhile to give a detailed proof along these lines, which would not lead to
any new result; but I shall take this opportunity for giving some results about
the cohomology of the groups I' of the last-mentioned type, since this also plays
a role in other investigations (cf. e.g., [1] and [2]). Asin [1], we consider more
generally the discrete subgroups I' of the hyperbolic group for which the
quotient-space has a finite measure. It is known that these groups can be
obtained as follows.

To begin with, take a free group A with 29 + % generators A, «--, 4,,
B,:--,B,C,, -, C,(where g = 0, n = 0); call E the neutral element of that
group. Put R, = E, and define elements (or “words”) R,, - - -, R, of that group
inductively by the following formulas
(5) R, = Ri(4, B, C) = R, ,A,B,A;'B;’ l=a=g),
(6) Ry, = R,1(4, B, C) = R,,,,C, 1=v=mn);
actually, for1 < a < g, the word R, contains only the Agand Bgfor 1 < 8 < «
and could have been written E,(4, B).

Choosing now 7 integers s, = 0, we take for I the group with the 29 + n
generators a,, ++-, a, b, +++, b,, ¢, ++-, ¢, and the defining relations

(7) R, (a,b,c)=¢; cpr=ce l=v=mn),
where e is the neutral element of I'; we shall denote by A the homomorphism
of A onto I which maps A,, B., C, onto a,, b,, ¢,, respectively, forl < a < g,
1=y =mn.

5. We shall now define an involutory automorphism of I' which will be

needed in our discussion of the cohomology of I'. Define elements A, B, C,
of A by putting

(8) A,=FyA,B) = R,.BJR l=a=yg),

(9) B, =GuA4,B) = R,A'RZ, l=a=y)),

(10) C, = H(4, B, C) = Ry, R, l=v=mn).

Then a trivial induction shows that we have the relation

11) R = R(4', B, (") = R l=i=g+mn),

which gives at once

| F(A,B)=A4,, GuA, B)=B8B, l<a=yg),
H(A', B, C)=C, A=v=n);

this shows that there is an involutory automorphism ® of A which maps A4,,
B,, C, onto 4., B., C,, respectively. From (6), (10) and (11), it follows that we
have
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DCy = -Rg+v—1cv_s"Rg_-}}v—1 ’ ®(Rg+n) = Ra_+1n ’
which implies that ® maps the kernel of A\ onto itself; therefore the relation
@on = Aod determines an involutory automorphism @ of I'. Put a, = ®(a,),
bi, = P(bs), ¢, = P(c).
Assume now that A operates on a vector-space V by (X, ) — X-«; then,
for any cocyle z of A in V, we have

12) 2(R,) = 35 (A — E)ReBg-2(Ap) — 35, (B — E)Ry 1 Ag-2(By)

l=a=zyg),
(13) 2(R,s) = 2(R,) + 3. Ryrur+2(C.) Q=v=mn),
and also, for every integer s = 0:
14) 2C)=E+C,+ -« +C5)-2(C) .

In particular, if o is a representation of I' in a vector-space V over a field K,
we can apply (12), (13) and (14) to the representation pox of A in V. On the
other hand, the remarks in no. 2 show that a cocycle z of I" in V is uniquely
determined by the vectors z(a,), 2(b,), 2(¢c,), and that these can be chosen arbi-
trarily provided they satisfy the relations obtained by writing

(R, =0, 2(Cr) =0
for the cocycle Z of A in V defined by
Z2(A.) = 2(a.) ,  Z(Ba) =2(ba), 2(C) =2(c) .
6. For each v, call T, the subgroup of I' generated by ¢,; it is isomorphic

to Z if s, = 0, and cyclic of order s, if s, > 0. In view of (14), and with the
notations which have just been explained, the relation z(C:») = 0 can be written

(15) Yo o(eha(e) =0,

which expresses that z(c,) determines a cocycle of ', in V; this is a coboundary
if and only if z(c,) is of the form

(16) z(c,) = w, — p(c,)w,

with w, e V. We shall say that a cocycle z of I" in V'is parabolic if, for every
v, it induces a coboundary on T, i.e., if 2(c,) is of the form (16) for every v.
Every coboundary of I in V is of course a parabolic cocycle; we shall write
PY T, V) for the quotient of the space of parabolic cocycles by the space of
coboundaries of I'in V. It iseasily seen (and, of course, well-known) that every
solution of (15) is of the form (16) if s, is not a multiple of the characteristic of
K; if that is so for every v, every cocycle of I' in V is parabolic, and PY(T", V) =
HYT, V); in particular, this is so if K is of characteristic 0 and none of the s,
is 0.
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From the above remarks, it follows that a parabolic cocycle z is uniquely
determined by the vectors z(a,,), 2(b,), w,, and that these can be chosen arbitra-
rily, provided they satisfy the relation which was written above as z(%,.,) =0;
this can at once be written in terms of the z(a,), 2(b,), w, by using (12), (13)
and (16). In order to write it more conveniently, put

U = P(Ra(a, b, €)b,) 2(as) l=a=9),
17 Ve = P(Ra—i(a, b, €)a,) 2(bs) l1=2a=zy),
t, = p(R,+(a, b, ¢)) w, l=v=mn).

The relation in question can then be written as follows

(18) Ew [,O(a;) - 1V]uw - Ea, [lo(b;) - 1,7]1)“ + Ev [P(C{) - 1,7]1},, =0,
where 1, = p(e) is the identity automorphism of V. Call F'(u, v, t) the left-hand
side of (18); F'is a linear mapping of V**" into V. Let d be the dimension of
V, and let 4’ be the codimension in V of the image of V**" under F’; then the
kernel of F, i.e., the space of the solutions (u, v, t) of (18), has the dimension
D = (29 + n)d — d + 7'. On the other hand, for each v, call e, the rank of the
endomorphism 1, — p(c,) of V. Then the kernel of the mapping w, — z(c,)
defined by (16) has the dimension d — e,; therefore, in the mapping of the space
of solutions (%, v, t) of (18) into the space of parabolic cocycles which is defined
by (16) and (17), the dimension of the kernelis 3 (d — e,). This gives, for the
space of parabolic cocycles, the dimension

(19) P=Q@—1d+7+Xe.

In order to give a more convenient interpretation for 2’ than the one given above,
let V' be the dual space to V; write <z, 2> for the bilinear form on V x V’
which defines the duality between V and V”’; as usual, denote by ‘0(s), forse T,
the transpose of 0(s), i.e., the automorphism of V'’ defined by

{o(s)x, a") = <=, ‘o(s)x”y .
By definition, 4’ is the dimension of the space of vectors 2’ € V'’ such that
<F(u’ /v7 t)’ x’> = 0
for all (u, v, t). This is clearly equivalent to the relations
‘e’ =", e =a,  fple)r’ = .
As the al, b, ¢, make up a set of generators for I', this shows that ¢’ is the
dimenstion of the space of the vectors in V' which are invariant under 0(s)
Jforall seT.

On the other hand, call © the dimension of the space of the vectors in V
which are invariant under O(s) for all seT'. This is the dimension of the
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kernel of the mapping @ — 2z of V onto the space of coboundaries of I' which
is defined by (2); therefore that space has the dimension d — ¢, and we get, for
the dimension p of the space P{T', V), the formula

p=02g—2d+1+3+3 6.

This gives the dimension of the cohomology space H(I", V') in the cases in which
all cocycles are parabolic (e.g., if no s, is 0 and K is of characteristic 0).

7. As in no. 3, these results can be applied to the study of the space of
the representations of I into a group G of one of the types introduced there, i.e.,
a Lie group in case (a) and an algebraic group in case (b). We assume that none
of the s, is a multiple of the characteristic of the field K (i.e., in case (a), that
none of them is 0); then every cocycle of T' is parabolic; more precisely, as we
have already observed in no. 6, the cohomology space H(I',, V), for any repre-
sentation of I', in a vector-space over K, is 0. For each v, call W, the set of
the elements w of G which satisfy w*> = e¢; the theorem at the end of no. 3
shows that W, is an analytic submanifold of G in case (a), and that it is the
union of finitely many mutually disjoint non-singular subvarieties of G in case
(b); moreover, it shows that the connected component in W, of any point w of
W, consists of the points zwx™ for x € G, and that the tangent linear variety
to that component at w is the image M, of g under the tangent linear mapping
to x — xwax~ at e,

Now let R be the set of the homomorphisms of I' into G; for each r¢ R,
put 7, = r(a,), v, = r(b,), ) = 7(c,), and identify » with the point (r,, 5, 7y
of G* X W, where W= Hv W,. We can consider R,,, as defining, in an obvious
manner, a mapping of G¥ x Winto G, and the set R is then nothing else than
R,;(e). By the same kind of calculations as those in nos. 3, 5, 6, it is easy to
determine the tangent linear mapping to R,., at any point, or, what amounts
to the same, the tangent linear variety S to the graph of E,,, at any point
(r, R,..(r)) of that graph, and in particular, at the point (r, e) of this graph
for any r € R; if we take again for 0, as in no. 3, the homomorphism Ador of
I' into the group of automorphisms of g, and if we write again F'(u, v, t) for
the left-hand side of (18), we find that S is the space of all vectors of the form

(2(aa), 2(ba), 2(¢,), F(u, v, t))

when one takes for (2(a,), 2(b,)) all the vectors in g*, for (w,) all the vectors in
a”, and for (u, v, t) and (z(c,)) the vectors defined in terms of these by (16) and
(17). With the notations of no. 6, S has then the dimension 2gd + Ev e,
d being the dimension of G. The points of S for which F'(u, v, t) = 0 are no other
than the cocycles of I' in g, and make up a subspace of S whose dimension P is

This content downloaded from 129.64.99.141 on Sat, 02 Jan 2016 12:41:28 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

COHOMOLOGY OF GROUPS 157

given by (19); its codimension in S is d if and only if ?’ = 0. This shows that
the graph of R,,, is transversal to (G* x W) X e at (r, ¢), for a given re R,
if and only if ¢" = 0. Therefore, when i’ = 0, there is a neighborhood of r in
which R s an analytic submanifold of G** x W in case (a), and a non-singular
subvariety of G** X W in case (b), with the dimension P = (29 — 1)d + 3_ e,.

INSTITUTE FOR ADVANCED STUDY
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