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Remarks on the cohomology of groups 
By ANDRE WEIL 

1. This is a sequel to two recent papers [3a, b] where I proved some theorems 
on the deformation of certain types of discrete subgroups of Lie groups; the 
method consisted in proving (in [3a]) a general result on the small deformations 
of such groups, and then combining this with the determination of their 
infinitesimal deformations, as was (in substance) done in [3b]. I have now 
noticed that, by using an elementary lemma of a general nature, one may 
deduce the results of [3b] more directly from the knowledge of the infinitesimal 
deformations, or, what amounts to the same, of the relevant cohomology groups. 
The first purpose of the present note is to indicate briefly how this can be done. 

For simplicity, the lemma in question will be formulated for analytic 
manifolds, since the real-analytic case is alone relevant to the above-mentioned 
problems; the lemma is actually valid, not only for analytic manifolds over any 
complete valued field, but also for manifolds of class Cr (with any r ? 1) over 
the reals, and for non-singular algebraic varieties in the sense of abstract 
algebraic geometry. By a morphism, we understand a mapping of a manifold 
into a manifold, of the type indicated by the case under consideration (analytic, 
or of class Cr, or, in the case of algebraic varieties, any everywhere defined 
mapping in the sense of algebraic geometry). 

LEMMA 1. Let U and V be analytic manifolds and (W,),eI a family of 
analytic manifolds; let f be a morphism of U into V, and, for each c, let F. 
be a morphism of V into W, such that Fof is a constant mapping with the 
constant value c; and put X= nl, Fj-(c). Let a be a point of U, and b = f(a) 
its image in V by f; let A, B be the tangent vector-spaces to U at a, and 
to V at b, respectively; call M the image of A in B under the tangent linear 
mapping to f at a. Also, for each c, call L, the kernel of the tangent linear 
mapping to F. at b, and put L= n, L.. Assume now that L = M; then there 
is an open neighborhood V0 of b in V such that, if V' is any open neighbor- 
hood of b in V, xn V' is a submanifold of V'and coincides with the image 
f(U) nV' of f-1(V') underf. 

In some open neighborhood of a in U, take a submanifold U1 of U with the 
same dimension as M, containing a, and transversal at a to the kernel of the 
tangent linear mapping to f at a; then, if A1 is the tangent linear variety to 
U1 at a and if f1 is the mapping of U1 into V induced by f, the tangent linear 
mapping tof1 at a is an isomorphism of A1 onto M. On the other hand, for each 
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150 ANDRft WEIL 

t, take local coordinates x'i in a neighborhood of c,, with the value 0 at ci; then 
each function xYoF, is defined in a neighborhood of b on V; and, among these 
functions, we can choose finitely many functions q, whose differentials at b 
are linearly independent, and such that L is defined by the equations d', = 0. 
We can now choose an open neighborhood VO' of b in V where all the A,, are 
everywhere defined, and where their common zeros make up a manifold Y; 
L is then the tangent linear variety to Yat b, and xn Vot is contained in Y. As 
f maps U into X, this implies that f maps frl( V,) into Y, and that f1 maps 

fT1( V') into Y. In the analytic case now under consideration, the assumption 
L = M implies then that there is a neighborhood of a in U1 which f1 maps 
isomorphically onto a neighborhood of b in Y; the same would be true in the 
case of Cr-manifolds. In the case of algebraic varieties, the assumption L = M 
implies that a is an isolated point of fj1(b), and hence, by a theorem of Chevalley 
(re-stated and proved as Lemma 1 in M. Rosenlicht, Trans. A.M.S. 101 (1961), 
p. 212), that the set-theoretic image under f1 of any neighborhood of a in U1 
is a neighborhood of b in Y. Thus, in any case, the image of U1 under f1 con- 
tains an open neighborhood of b in Y, which we may write as Yn V., where 
V0 is an open neighborhood of b in V,. Let now V' be any open neighborhood 
of b in V,; then the image of f-1(V') under f is contained in xn V', which is 
contained in Yn V'; on the other hand, it contains the image of fT'( V') under 
f1, which contains Yn V'; therefore it is the same as Yn V' and the same as 
xn v'. This completes the proof. 

2. Now let p be a representation of a group F, i.e., a homomorphism of F 
into the automorphism group of a finite-dimensional vector-space V over a field 
K. Let z be a mapping of F into V; for each y E F, call p'(7) the automorphism 
of the affine space underlying V which is given by x -> p(7)x + z(7). Then p' 
is a homomorphism of F into the group of automorphisms of that affine space 
if and only if z satisfies the relation 
( 1 ) z(4y') = Z(y) + P(Y)Z(y/') 

for all y, y' in F; one expresses this by saying that z is a 1-cocycle (we shall say 
more briefly a cocycle) of F in V, when F operates on V by (y, x) ) p(7)x. Let 
ta be the translation x x + a in V; then p'(7) = tap(Y)ta1 is equivalent to 

(2) z(y) = a-p(y)a; 

if this is so for all A, z is a coboundary; the quotient of the space of cocycles 
by the space of coboundaries is the cohomology space H1(F, V). 

Let (Y,),eA be a family of generators for F. Let F' be the free group 
generated by a family of generators (oeA indexed by the same set A; let A.' 
be the kernel of the homomorphism of F' onto F which maps y' onto Yas for every 
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COHOMOLOGY OF GROUPS 151 

a. The elements of A' can be considered, in the usual manner, as "words" w(y') 
in the a'; for every such word, we have w(7) = e, where s is the neutral element 
of F. If (wA) is a family of elements of A', such that A' is generated by the wA 

and by their transforms under all inner automorphisms of I", then one says 
that F is defined by the generators yas with the relations W,(Y) = e; when that 
is so, a homomorphism r' of F' into a group G with the neutral element e has 
the constant value e on A', and therefore determines a homomorphism r of F 
into G, if and only if r'(w,) = e for all X. Since such a homomorphism r' is 
uniquely determined by the ra, = r'(y'), and these can be chosen arbitrarily, 
we may also say that a homomorphism r of 1 into G is uniquely determined 
by the elements = r(ya,), and that these can be chosen arbitrarily provided 
they satisfy the relations w,(r) = e. In particular, let again pbe a representation 
of F, and let z and p' be as above. Then we see that z is a cocycle if and only 
if Wx(P'(Y)) = e for all X. In other words, the cocycle z is uniquely determined 
by the vectors za, = Z(7a,), and these can be chosen arbitrarily provided they 
satisfy the relations w(P'(7)) = e. Moreover, z is then a coboundary if and 
only if there is a vector a such that (2) is satisfied whenever one substitutes 
one of the 7as for vy. 

In order to write in a convenient form the conditions we have just found 
for the Za,, write each word wx(,Y) as the product ,. A%(A) of a sequence of 
factors, each one of which is either of the form 7as or of the form v;1; and put, 
for 1 < i ? n(X) 

(3) ~~Ux, = PO81 * *i-,) Zoo if di = 7a*, 
( ) Uxi = - p(.1 . i) Z. if di = 7-1. 

Then it is easily seen that the relations wx(P'(Y)) = e for the zas are equivalent 
to the following ones: 

( 4) n(A1 Uxi = ? . 

These are therefore the relations which determine the cocycles of F in V; 
H1(J', V) is 0 if and only if every solution of these equations is a coboundary, 
i.e., of the form z = a - p(7,,)a for some choice of a. 

3. Now assume that F is finitely generated and that (Ya)aeA is a finite set 
of generators for F, indexed by a finite set A. Let R be the set of all homomor- 
phisms of F into a group G; if we identify each r E R with the point (ra,) of 
G(A), R is the set of the elements of G(A) which satisfy the relations wA(r) = e. 
We shall consider only the following two cases: 

(a) G is a Lie group; then G(A) is also a Lie group, and R is a real-analytic 
subset of G(A); in this case, we take for K the field R of real numbers; 
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152 ANDRE WEIL 

(b) G is an algebraic group; then G(A' is also an algebraic group, and R is 
a closed subset of G(A) in the Zariski topology; in this case, we take for K the 
universal domain. 

In both cases, each wA may be considered as a morphism of G(A) into G, and 
we have R fnl w-j(e). On the other hand, for a given r E R, consider all the 
transforms r' of r by the inner automorphisms of G; these are given by r= 
xrx;1, with x e G, and the mapping x (xr0,x-1) is a morphism of G into G(A), 

which maps G into R. We shall now apply Lemma 1 to these morphisms. This 
requires the determination, for the present situation, of the spaces denoted by 
L and by M in Lemma 1. 

We identify the tangent vector-space to G at any point of G with the tangent 
vector-space to G at e, i.e., with the Lie algebra g of G, by means of a right- 
translation. Then G operates on g by means of the ad joint group; more precisely, 
the inner automorphism x - sxs-1 of G induces on the tangent vector-space g 
of G at e the automorphism X - Ad(s)X. 

It is now easily seen that the image M of the tangent vector-space g to G 
at e, under the tangent mapping to the morphism x (xrax-1) at e, consists of 
the vectors (A) E g(A) of the form Z, = X - Ad(r,,)X, where X is any vector 
in g. On the other hand, write again W,(Y) as .1 ..X where the di are as 
above; then the image of a tangent vector (Z4>) to G(A) at r, under the tangent 
mapping to the morphism wA of G(A) into G, is E U, where the ui are given 
by (3), provided one substitutes (Za,) for (Za,) and Ador for p in (3). Therefore, 
after this substitution is made, the kernel LA of the tangent mapping to WA at 
r is defined by (4); and those equations, taken for all X, define the linear variety 
L = nA LA. In other words, L is the space of the cocycles of Ir in g, when F 

operates on g by (7, X) - Ad(r(b))X, while M is the space of coboundaries for 
the same group; L = M is equivalent to H1(J', g) = 0. In view of Lemma 1, 
this gives the following theorem: 

If Hl(iF, g) = 0, there is a neighborhood of r in which every element of R 
is the transform of r by an inner automorphism of G. 

As a consequence, in order to prove Theorem 1 of [3b], one has only to verify 
that, under the assumptions of that theorem, H1(F, g) = 0; in substance, this 
is precisely what is done in nos. 6-10 of that paper (cf. also [4]). 

4. In the cases covered by Theorems 2 and 3 of [3b], H1(T', g) is not 0; 
nevertheless, these theorems can be proved by a similar method, viz., by applying 
Lemma 1 to the situation described above in nos. 2-3, and combining this with 
the information about H1(J', g) contained in [3b] and with the direct determi- 
nation of this group for the case in which I'is a discrete subgroup, with compact 
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COHOMOLOGY OF GROUPS 153 

quotient-space, of the 3-dimensional hyperbolic group. It seems hardly 
worthwhile to give a detailed proof along these lines, which would not lead to 
any new result; but I shall take this opportunity for giving some results about 
the cohomology of the groups F of the last-mentioned type, since this also plays 
a role in other investigations (cf. e.g., [1] and [2]). As in [1], we consider more 
generally the discrete subgroups F of the hyperbolic group for which the 
quotient-space has a finite measure. It is known that these groups can be 
obtained as follows. 

To begin with, take a free group A with 2g + n generators Al, * Ag, 
B1, * Bg, Cl, * *, Cn (where g > 0 n > 0); call E the neutral element of that 
group. Put Ro = E, and define elements (or "words") R1, ... , Rg+n of that group 
inductively by the following formulas 

(5) R. , = R(A, B, C) = R._jA.B.,A-1B.1(1 ? a ? g), 
(6) Rg+v = Rg+v(A, By C) = Rg+vCv (1? _ < n) 

actually, for 1 ? a ? g, the word R,,, contains only the Ax and Be for 1 ? 8 ? a 
and could have been written Ra,(A, B). 

Choosing now n integers s.,> 0_ we take for F the group with the 2g + n 
generators a,, ..., ag, bl, .., bg, cy, , can and the defining relations 

(7) Rg+n(a, b, c) = e; cV = e _ v _ n), 

where e is the neutral element of F; we shall denote by X the homomorphism 
of A onto F which maps A,, Bay C,, onto a,,, ba,, c>, respectively, for 1 ? a _ g, 
1 ? v ? n. 

5. We shall now define an involutory automorphism of F which will be 
needed in our discussion of the cohomology of F. Define elements A', B', C' 
of A by putting 

(8) A? = F.,(A, B) = R.1BBR;1 (1 ? a ? g), 
(9) Ba' = G.s(A B) = RasA-Rm 1 (1 a _ g), 
(10) Cf = Hv(A, B, C) = Rg+viRg-+ (1-?<v _ n). 

Then a trivial induction shows that we have the relation 

(11) ~~~Ri = Ri(A', B'Y C') = Ri-1 (1 i _ g + n), 
which gives at once 

Fa,(A' B') = A~,, y Ga,(A', B') = Ba, (1 ? a o g), 
H,,(A I BIY C' = CV ( v _ n); 

this shows that there is an involutory automorphism 1' of A which maps Aa,, 
Ba,, C,, onto A', B', C', respectively. From (6), (10) and (11), it follows that we 
have 
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154 ANDRt WEIL 

(DCa= Rg+v-lC- vaRg+",-, (D (R+) = g+ln 9 

which implies that 1? maps the kernel of X onto itself; therefore the relation 
poX = Xoo determines an involutory automorphism q of F. Put a' = p(Gu), 
b= 9(ba,), c' = p(c0). 

Assume now that A operates on a vector-space V by (X, x) -X* x; then, 
for any cocyle z of A in V, we have 

(12) z(Ra,) = (A -E)RBz(A) - { (Be - E)RlA, *z(B,) 
(1 ?a o g), 

(13) z(Rg+y) = Z(Rg) + >=iRg+j-i Z(CpW) (1 ? v _ n) 

and also, for every integer s > 0: 

(14) z(C-) = (E + C, + * + C'-r) a z(C.) 
In particular, if p is a representation of I' in a vector-space V over a field K, 
we can apply (12), (13) and (14) to the representation poX of A in V. On the 
other hand, the remarks in no. 2 show that a cocycle z of F in V is uniquely 
determined by the vectors z(ae,,), z(ba), z(c,), and that these can be chosen arbi- 
trarily provided they satisfy the relations obtained by writing 

z(Rg~n) = 0 c (C V) = 0 

for the cocycle z of A in V defined by 

z~(Aa) = z(a,) , z(Ba,) = z(b,) , z(C") = z(c>) 

6. For each v, call J',, the subgroup of I' generated by c,; it is isomorphic 
to Z if s, = 0, and cyclic of order sv, if s. > 0. In view of (14), and with the 
notations which have just been explained, the relation z(C3v) = 0 can be written 

(15) L p'V ) (C) 0 

which expresses that z(c,,) determines a cocycle of J',, in V; this is a coboundary 
if and only if z(c,,) is of the form 

(16) z(C,) = W,,-p(C,)W, 

with w,, E V. We shall say that a cocycle z of F in V is parabolic if, for every 
V, it induces a coboundary on J',, i.e., if z(c,,) is of the form (16) for every V. 
Every coboundary of I' in V is of course a parabolic cocycle; we shall write 
P1(T', V) for the quotient of the space of parabolic cocycles by the space of 
coboundaries of P in V. It is easily seen (and, of course, well-known) that every 
solution of (15) is of the form (16) if s. is not a multiple of the characteristic of 
K; if that is so for every v, every cocycle of I in V is parabolic, and P1(I', V) = 
Hl(F, V); in particular, this is so if K is of characteristic 0 and none of the s,, 
is 0. 
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COHOMOLOGY OF GROUPS 155 

From the above remarks, it follows that a parabolic cocycle z is uniquely 
determined by the vectors z(a~,), z(bob), w,, and that these can be chosen arbitra- 
rily, provided they satisfy the relation which was written above as z(R0n) = 0; 
this can at once be written in terms of the z(aa,), z(ba,), w, by using (12), (13) 
and (16). In order to write it more conveniently, put 

U'b = p(R,,(a, b, c)b,,) z(a,,) (1 ?a _ g), 

(17) va, = p(Ra1_,(a, b, c)aa,) z(ba>) (1 ?a _ g), 

t,, = p(R,+,(a, b, c)) w. (1 _ v _ n). 

The relation in question can then be written as follows 

(18) A [p(a') - lv]ua - E [p(b') - 1,]v,, + ,, [p(c') - l]t= 0 
where 1, = p(e) is the identity automorphism of V. Call F(u, v, t) the left-hand 
side of (18); F is a linear mapping of Vlg+n into V. Let d be the dimension of 
V, and let i' be the codimension in V of the image of V29+" under F; then the 
kernel of F, i.e., the space of the solutions (u, v, t) of (18), has the dimension 
D = (2g + n)d - d + i'. On the other hand, for each v, call e,, the rank of the 
endomorphism 1, - p(c,) of V. Then the kernel of the mapping w,, - z(c,,) 
defined by (16) has the dimension d - e,; therefore, in the mapping of the space 
of solutions (u, v, t) of (18) into the space of parabolic cocycles which is defined 
by (16) and (17), the dimension of the kernel is Ad (d - e,,). This gives, for the 
space of parabolic cocycles, the dimension 

(19) P = (2g - )d + i' + A,> e,, 

In order to give a more convenient interpretation for i' than the one given above, 
let V' be the dual space to V; write <x, x'> for the bilinear form on V x V' 
which defines the duality between V and V'; as usual, denote by tp(s), for s e F, 

the transpose of p(s), i.e., the automorphism of V' defined by 

<P(s)x, x'> = <x, tp(s)X'>. 

By definition, i' is the dimension of the space of vectors x' E V' such that 

<F(u, v, t), x'> = 0 

for all (u, v, t). This is clearly equivalent to the relations 

tp(a)XP = X', tp(bW)xP x' tp(cV)XP = X 

As the a', b', C' make up a set of generators for P, this shows that i' is the 
dimension of the space of the vectors in V' which are invariant under tp(s) 
for all se F. 

On the other hand, call i the dimension of the space of the vectors in V 
which are invariant under p(s) for all s E F. This is the dimension of the 
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156 ANDRE WEIL 

kernel of the mapping a z of V onto the space of coboundaries of I' which 
is defined by (2); therefore that space has the dimension d - i, and we get, for 
the dimension p of the space P1(J', V), the formula 

p = (2g - 2)d + i + i' + E e,, . 

This gives the dimension of the cohomology space H1(J', V) in the cases in which 
all cocycles are parabolic (e.g., if no sa, is 0 and K is of characteristic 0). 

7. As in no. 3, these results can be applied to the study of the space of 
the representations of IF into a group G of one of the types introduced there, i.e., 
a Lie group in case (a) and an algebraic group in case (b). We assume that none 
of the s., is a multiple of the characteristic of the field K (i.e., in case (a), that 
none of them is 0); then every cocycle of F is parabolic; more precisely, as we 
have already observed in no. 6, the cohomology space H1(J'V, V), for any repre- 
sentation of ., in a vector-space over K, is 0. For each a, call W. the set of 
the elements w of G which satisfy w8v = e; the theorem at the end of no. 3 
shows that W. is an analytic submanifold of G in case (a), and that it is the 
union of finitely many mutually disjoint non-singular subvarieties of G in case 
(b); moreover, it shows that the connected component in W. of any point w of 
W., consists of the points xwx-1 for x E G, and that the tangent linear variety 
to that component at w is the image M. of g under the tangent linear mapping 
to x - xwx-1 at e. 

Now let R be the set of the homomorphisms of P into G; for each r E R. 
put r. = r(a,), r' = r(ba,,), r" = r(c.), and identify r with the point (ro, r', r") 
of G2g x W, where W =lI, W>,. We can consider R,+g? as defining, in an obvious 
manner, a mapping of G2g x W into G, and the set R is then nothing else than 

Rg7+ln(e). By the same kind of calculations as those in nos. 3, 5, 6, it is easy to 
determine the tangent linear mapping to Rg+? at any point, or, what amounts 
to the same, the tangent linear variety S to the graph of Rg+,n at any point 
(r, Rg+,(r)) of that graph, and in particular, at the point (r, e) of this graph 
for any r E R; if we take again for p, as in no. 3, the homomorphism Ador of 
]P into the group of automorphisms of g, and if we write again F(u, v, t) for 
the left-hand side of (18), we find that S is the space of all vectors of the form 

(z(a.>), z(b.6), z(c,,), F(u, v, t)) 

when one takes for (z(a,,), z(bo>)) all the vectors in g2g, for (wv) all the vectors in 
gfl, and for (u, v, t) and (z(c>)) the vectors defined in terms of these by (16) and 
(17). With the notations of no. 6, S has then the dimension 2gd + E. e,, 
d being the dimension of G. The points of S for which F(u, v, t) = 0 are no other 
than the cocycles of ]P in g, and make up a subspace of S whose dimension P is 
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given by (19); its codimension in S is d if and only if i' = 0. This shows that 
the graph of Rg+n, is transversal to (G2g x W) x e at (r, e), for a given r E R. 
if and only if i' = 0. Therefore, when i' = 0, there is a neighborhood of r in 
which R is an analytic submanifold of G29 x W in case (a), and a non-singular 
subvariety of G29 x W in case (b), with the dimension P = (2g - 1)d + Be,. 

INSTITUTE FOR ADVANCED STUDY 
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