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REPRESENTATIONS OF KNOT GROUPS IN SU(2)

ERIC PAUL KLASSEN

ABSTRACT. This paper is a study of the structure of the space R(K) of rep-
resentations of classical knot groups into SU(2). Let ﬁ(K ) equal the set of
conjugacy classes of irreducible representations.

In §I, we interpret the relations in a presentation of the knot group in terms
of the geometry of SU(2) ; using this technique we calculate ﬁ(K ) for K equal
to the torus knots, twist knots, and the Whitehead link. We also determine a
formula for the number of binary dihedral representations of an arbitrary knot
group. We prove, using techniques introduced by Culler and Shalen, that if the
dimension of ﬁ(K ) is greater than 1, then the complement in $* of a tubular
neighborhood of K contains closed, nonboundary parallel, incompressible sur-
faces. We also show how, for certain nonprime and doubled knots, IA%(K ) has
dimension greater than one.

In §II, we calculate the Zariski tangent space, TP(R(K )), for an arbitrary
knot K, at a reducible representation p, using a technique due to Weil
We prove that for all but a finite number of the reducible representations,
dim Tp(R(K )) = 3. These nonexceptional representations possess neighbor-
hoods in R(K) containing only reducible representations. At the exceptional
representations, which correspond to real roots of the Alexander polynomial,
dim Tp(R(K )) = 3 + 2k for a positive integer k. In those examples analyzed
in this paper, these exceptional representations can be expressed as limits of arcs
of irreducible representations. We also give an interpretation of these “extra”
tangent vectors as representations in the group of Euclidean isometries of the
plane.

0. INTRODUCTION

This paper is a study of the space R(K) of representations of the funda-
mental group of the complement of a knot K into the Lie group SU(2). The
major results are as follows: (1) a calculation of the topological type of R(K)
for K a torus knot, a twist knot, or the Whitehead link, (2) a determination of
the Zariski tangent space to R(K) at a reducible representation for an arbitrary
knot K, and (3) a proposition and some examples relating the dimension of
R(K) to incompressible surfaces in the complement of K .

While the idea of representing 3-manifold groups in SU(2) is a fairly recent
one, the representation of these groups in other groups has a substantial history.
We will not attempt to chronicle this history in detail, but will comment here on
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those developments which we consider most relevant to this paper: In 4 quick
trip through knot theory [F, pp. 160-163], Fox analyzes cyclic and metacyclic
representations of knot groups. Weil in [W], did important work on calculating
the Zariski tangent space to a variety of representations into a Lie group. Riley
[Ril, Proposition 4] has exhibited specific arcs of representations of 2-bridge
knot groups into SU(2). There is some overlap between Riley’s work and
this thesis, since the twist knots and some of the torus knots (the ones of type
(2, q)) considered here are 2-bridge knots. Using methods similar to those
of Riley, Gerhard Burde [B] has computed ﬁ(K ) for certain 2-bridge knots
K, including the twist knots. In particular, he independently proved Theorem
3. Culler and Shalen, in [CS], develop a beautiful relationship between curves
of representations in SL(2, C) and incompressible surfaces. Finally, Andrew
Casson has constructed an important new invariant of homology 3-spheres using
their representation spaces in SU(2) (see [AM]).

Organization. Let K C S® be a knot and define R(K) to be the space of
representations Hom(n:](S3 - K),SU(2)). Let ﬁ(K ) be the set of conjugacy
classes of irreducible representations. (These terms will be discussed more fully
in §I.A.) This paper falls naturally into two sections.

§I is devoted to a geometric understanding of the structure of R(K). In
8I.A, some useful facts about the geometry of SU(2) are stated, and the basic
objects of study are defined. In §1.B the topological type of ﬁ(K ) is computed
for K equal to a torus knot, and an application is given concerning Casson’s
invariant for homology spheres constructed by 1/n surgery on the (3, 4)-torus
knot. In §I.C, the topological type of R(K) is computed for K an m-twist
knot. To perform this computation, a basic method is introduced whereby
R(K) is identified with a certain set of geometric immersions of a polygon
(which depends on the projection of the knot K) in S?. In §1.D (Theorem
6), the topological type of ﬁ(WL) is computed, where WL is the Whitehead
link. This computation is of use in computing R(doubled knots), an endeavor
which is touched on in §I.F, and which will be explored more fully in a future
paper (see [K]). In §I.LE (Theorem 10), a formula is derived for the number of
conjugacy classes of binary dihedral representations (which comprise a special
class of irreducible representations into SU(2)) of an arbitrary knot group. In
§I.F (Proposition 15) we show, using results of Culler and Shalen, that if R(K)
contains a component of dimension greater than one, then s - int(N(K))
contains nonboundary parallel, closed, incompressible surfaces. We also show,
by analyzing composite knots and satellite knots, that incompressible tori in a
knot complement often do, in fact, lead to components of ﬁ(K ) of dimension
greater than one (Propositions 13 and 14).

¢II is devoted to the computation and interpretation of the Zariski tangent
space to R(K), Tp(R(K )), at a reducible representation p. In §IL.A, we show
how to view R(K) as an algebraic set, and prove the basic lemma (Proposi-
tion 18, stated by Weil in [W, p. 151]) which makes it possible to calculate
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Tp(R(K )). In §I1.B, we apply these techniques to compute R p(R(K )), where p
is reducible. As a result we find (Theorem 19) that, except for a finite number
(up to conjugacy) of exceptions, the reducible representations are 3-manifold
points of R(K). The finite number of exceptional reducible representations,
which correspond to roots of the Alexander polynomial of K, have higher di-
mensional tangent spaces. In the case of the knots analyzed in §I, these extra,
“irreducible” tangent vectors correspond to actual irreducible deformations of
these reducible representations. We also show (Proposition 20) that these “irre-
ducible” tangent vectors can be interpreted as nonabelian representations of the
knot group into the group of isometries of the Euclidean plane. These Euclidean
representations have been analyzed by De Rham [D].

I. GEOMETRIC COMPUTATION OF REPRESENTATION SPACES

L.A. Preliminaries on SU(2) representations. We will begin by defining the two
Lie groups, SU(2) and s? , with which this paper is most concerned:

s ={( 5 5):abec el + i =1,
s’ = {quaternions g such that |g| = 1}.

These two groups are isomorphic via the map given by

Using this isomorphism we will refer to these groups pretty much interchange-
ably, though we will more often use quaternion notation.
Let T" be a finitely presented group with presentation

F={x,x,...,x, :w,w,,..., w,},
where the relators w; are words in the generators x Ix Define
R(T) = Hom(, S?),
and define
S(T") = {p € R(I')| im(p) is abelian}.
These abelian representations are often referred to as “reducible” because a
representation of any group in SU(2) is reducible if and only if it has abelian
image. We give S* its usual topology and I' the discrete topology; we then
give R(I") the compact-open topology.
S3/{:I:l} =~ SO(3) acts on R(I') by conjugation:

(g-p)(x)=qp(x)q”",

where g € $*, xeT,and p € R(I'). It is easily verified (see, for example,
[AM)), that this action is free when restricted to R(I') — S(I') . Hence, define

R(T) = (R(T") — S(I'))/action by SO(3).
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Using the above presentation for I, we can embed R(I') in (S3)" via the
map

flp)=(p(x)), ..., p(x,)).
The map f is injective because the x; generate I'. We now characterize the
image of f. Let (g, 0,, ..., 0,) be an element of (S3 )" . If we substitute g;
for each x; in the word w,, then we can view each w; as a map from (S3)"
to 3. It follows that

im(f) =({w, ' (D:i=1,..., m}.

The w; are polynomials in the ambient coordinates, so im(f) is an algebraic

subset of (S*)". We will henceforth identify R(I) with im(f). In [LM],
Lubotzky and Magid show how R(I') may be given the structure of an affine
algebraic scheme which is independent of the particular presentation of I'.
Let K C S° be a knot. To simplify notation, we write R(K), S(K), and
R(K) instead of R(r,(S’ - K)), S(z,(S* —K)), and R(rn,(S* - K)), respec-
tively. R(K) and R(K) will be the main objects of study in this thesis.

Geometry of S°. We now state (mostly without proof—see [S] for some of
these computations) some basic geometric facts about the group S Let q=
a+bi+cj+dke S* . Define Re(q) = a. Assume g # +1. We can express g
in the form
q = cos 6 + sin O(ai + bj + ck),

where @’ + b* +¢* = 1. If we fix a,b, and ¢, while allowing 8 € R to
vary, we obtain a subgroup S; of S which is isomorphic to S lcc. Indeed,
S]i,. =S' c C. Every q # %1 is contained in a unique such circle subgroup.
These subgroups are just the geodesics through 1 in S3. Any two of these circle
subgroups are conjugate to each other in s3.

Consider the map ¢ : = [-1, 1] given by ¢(q) = Re(q). If t # %1,
then (o”(t) is a 2-sphere. We will use the notation

T =9 '().

t

Note that if ¢ # +1 € S and ¢ (=1, 1), then S; meets X, in two points,
and they are orthogonal at these points.
We now consider the geometric effect of conjugation in S*. Define C 7" S -

$? vy C,(w) = qwg™". It is easily verified that C,(Z)=Z% for -1 <t<1.
In fact, C , actson Z, asarotation by angle 26 about the two antipodal points

where X, is pierced by S‘; . (We are writing

q = cos 0 + sin 8(ai + bj + ck),

where 0 < 6 < n.) The direction of this rotation is determined by which of the
two intersection points is closer to g in S® Itisa right-handed rotation about
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g = cos B + sin 8 (ai + bj + ck)

FiGure 1. Conjugation by ¢ induces a rotation by an
angle of 26 on X,

this closer intersection point. It follows that the X, are precisely the conjugacy
classes of S°. Figure 1 illustrates these relationships in s,

L.B. Torus knots. Let (7, s) be any pair of positive, relatively prime integers.
Let Kr’ , denote the (r, s)-torus knot in s3.

Theorem 1. R(K, ) is the disjoint union of (r — 1)(s — 1)/2 open arcs.

r,s

Proof. In this proof, we assume that r and s are odd. The case of r or s
even is handled by the same method. T' = &, (S3 - K, ;) has a presentation of
the form

T={x,ylx =y}
Since we are considering classes of nonabelian representations, we consider only
representations p such that [p(x), p(y)] # 1. It follows that p(x) # +1 #

p(y), and that p(x) and p(y) lie in distinct circle subgroups S:,(x) and S ;l>(y) ,

which we denote simply by S)lc and Syl . We know that

(%) p(x) = p(y) €8, NS, = {£1}.
Consider the case p(x)" = p(y)’ = +1. It follows that
p(x)e{qld’ =1,q9# 1} =2 11, €4},

where A4 = {cos(2n/r), cos(4n/r), ..., cos((r — 1)n/r)}. This gives (r —1)/2
possible conjugacy classes for p(x). Since s is odd as well, there are (s—1)/2
possible conjugacy classes for p(y). When we choose conjugacy classes X,

for p(x) and X, for p(y) we constrain these images to lie in two concentric
y

2-spheres centered at 1 in s3. (They are concentric with respect to geodesic
radii emanating from 1 € 53 .) The only remaining conjugacy invariant for the
pair (p(x), p(»)) is the angle o between the shortest geodesic from 1 to p(x)
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p(x)

tx

FIGURE 2. The angular invariant « for pairs (p(x), p(y))

and the shortest geodesic from 1 to p(y). This is because conjugation of p
induces the “same” rotation on X, and X,

If a=0or a=mn,then p is abelian. Thxs leaves an open arc (corresponding
to 0 < a < m) of conjugacy classes of nonabelian representations for each
pair of conjugacy classes (Z, , X, ) for (p(x), p(y)). It follows that there are

(r—1)(s—1)/4 open arcs of classes of representations for which p(x)" = p(y)’ =
+1. A similar computation yields another (r —1)(s — 1)/4 open arcs of classes
of representations satisfying p(x)" = p(y)’ = —1. The theorem follows. O

Let M, be the homology 3-sphere obtained by a Dehn surgery of type 1/n
on K, ,. (For conventions regarding Dehn surgery on knots, see Rolfsen [Ro,
pp. 258 259] ) Let

R(M,) = Hom(n,(M,)

3 . o3
,)>S")/conjugacy in S~ .

Proposition 2. The cardinality of ﬁ(Mn) is equal to |10n|.

Note. Casson’s invariant for homology 3-spheres, A(M 3) , is defined to be 1/2
the algebraic intersection number of two manifolds whose geometric intersec-
tion is R(M 3). Hence, for a given homology 3-sphere M 3 it is natural to
ask the question: does |,1(M3 )N = card(IAZ(M3 ))/2? The above proposition
answers this question affirmatively for those homology 3-spheres obtained by
Dehn surgery on K ,, since A(M,) = nd'(K; ,) = nA',’<3 [(D=5n. (A (0

is the Alexander polynomial normalized so that the coefficient of £ is the
same as the coefficient of ¢ ¥ for each value of k. See [AM] for details of this
computation.) In [BN], Boyer and Nicas carry out this calculation for homol-
ogy 3-spheres obtained from surgery on (2, g)-torus knots, and find agreement
there, also, between M(M3)| and card(ﬁ(M3))/2.

Added in proof. The author has learned that Fintushel and Stern have recently
shown that for all Seifert-fibered homology spheres M 3 with three exceptional
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fibers,

A(M?) = L card(R(M)) .

This class of homology spheres includes those obtained by surgery on torus

knots. Their proof uses Floer’s recent reformulation of Casson’s A-invariant in
terms of gauge theory.

Proof of Proposition 2. In this proof, we shall assume that » > 0. The case
n < 0 is handled in the same way, and is omitted.
The group I' = 7zl(S3 - K, ,) has presentation

T={x,y:x =y".

In T, a meridian can be represented by u = xy_1 , and a longitude by A =
x3(xy_l)_12. To obtain =,(M,), we adjoin the relation uA" =1 to our pre-
sentation of I". In terms of x and y, this relation takes the form

ey ™)™ = 1.

In order to obtain the cardinality of ﬁ(Mn) , we now count the classes of repre-
sentations [p] € R (K3 4) which satisfy this additional relation. (Note that if an
element p of R(K, ,) takes a relator to 1 in S, then so does any conjugate
of p.)

If [p] € ﬁ(K3,4), then p(x)3 = p(y)4 = +1. We consider first the case
p(x)3 = p(y)4 = +1. In this case we must have (p(x), p(y)) € 2_1/2 xZ,.
(This is because these sets contain the only nontrivial 3rd and 4th roots of 1 in
s? .) To satisfy the additional relation, we insist in addition that

p(xy NIpx) pxy ) =1,

ie., that p(xy™")'™'*" = 1. Thus p(xy~') must be a (121 — 1)th root of 1.
Assume, by conjugation, that p(y) = —i, so that p(y'l) =1i. As p(x) takes
values in the 2-sphere X_, j2» We see that p(xy_l) = p(x)i takes values in the
round but nonlatitudinal 2-sphere (X_, /2)i~

Let Q,,, = {0 € $* 1 ¢'""' = 1}. Then we may write Qiony =
U{Z, : t = cos(2nk/(12n - 1)), k=0, 1, ..., 6n— 1}. Note that E_iyhn
Q,5,—, 1s a disjoint union of circles, at most one of these circles lying in any
latitudinal 2-sphere. The conjugacy classes of representations p in ﬁ(Mn) are
in one-to-one correspondence to the conjugacy classes (under simultaneous con-
jugation by an element of Sl) of pairs

(p(x), p(r)) € Z_; ), x {~i}

satisfying (p(x)p(y)")u”_l = 1. The number of conjugacy classes of these
pairs is equal to the number of circles in Q,,_, N (Z_, s2)i. The number of
these circles is, in turn, equal to the number of (12n — 1)th roots of 1 of the




802 E. P. KLASSEN

form eie, where 7/6 < 8 < Sn/6. Thus we need simply to calculate the
number of integers k satisfying the condition

n/6<2mk/(12n - 1) < 57/6.

An easy computation shows that there are precisely 4n such integers. Thus we
have 4n classes of representations of z,(M,) satisfying p(x)3 = p(y)4 =1.
We now consider the case p()c)3 = p(y)4 = —1. In this case we must have
p(x) € X, 2 and p(y) € 2(1 vy Y Z(_l V3 After performing computations
analogous to those in the first case, we find 3# classes of representations coming
from
(p(X) ’ p(y)) € Z1/2 x Z(]/ﬁ)y

and another 37 classes coming from

(p(x), p(¥)) €Ly )y X Z(_y )3 -

Thus we obtain a total of 4n + 3n + 3n = 10n classes of representations of
7,(M,) in §*. O

Note. The three sets of representations considered in this proof come from the
three separate arcs of representations that make up R(K, ).

L.C. m-twist knots. The m -twist knot K, is the knot whose projection is shown
in Figure 3.

In this section we calculate the topological type of the representation space
of the m-twist knot (m=1,2,3,...).

Theorem 3. ﬁ(Km) is the disjoint union of [m/2] circles and, if m is odd, one
open arc.

crossings

FIGURE 3. The m-twist knot K,
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. 3
FIGURE 4. Wirtinger generators for #,(S” - K,)

Proof. We prove the theorem for the case in which m is even. The computa-
tions are completely analogous when m is odd. Define n by m =2n-2.
Using the pictured Wirtinger generators, we write:

-1
C=7n,(K,)={x, X, .., X% XX, = X3
-1
[xX3%,%, = X,
-1
X4 X3%, = X;
|

-1
1X2p—1X2p—2X0n_1 = X,

~1
X2, X1 Xy, = X}

Notational convention. Suppose p: I’ — S? is a nonabelian representation.
Since the p(x;) are all conjugate to each other, they all lie in a common latitu-
dinal X,. From now on we will use x; both for the generators of I', and for
their images in £, under p. For 1 </ <2n-1, connect x; to X, 4 0 X,
by the shorter geodesic connecting them. (We will soon see that x; and x,,
are not antipodal, hence this procedure is not ambiguous.) This gives rise to a
geodesic immersion of the following polygon, P, ,in X, :
This immersion satisfies the following metric constraints:

(A) d(x;, x;, ) =d(x,,, x;,,).
(B) XX, X9 = =4X1 01 X110 % 45 -

(C) d(x,, x,,) =d(x,, x,,) -
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X *4 X2n-2 %2n

X1 X3 X2n_3 X2n_]

FIGURE 5. The polygon P

Because p is nonabelian, the angles in condition (B) are well defined and
nonzero.

Define imm, (P, , ;) to be the set of those geodesic immersions of P, in
X, which satisfy (A), (B), and (C).

Proposition 4. There is a one-to-one correspondence between imm (P, , X,) and
R(I') = S(I') (i.e., nonabelian representations).

Proof. Given a nonabelian representation p, the corresponding immersion is
obtained by first connecting the points x; and x, , of X, by the shortest
geodesic of X, between them. There is no ambiguity; x; and x,, , cannot
be antipodal. If they were, it would be impossible to satisfy the additional
requirement
d(x), x,) =d(xy, x,,)

which is implied by the last relation. Now project X, onto X, along the
geodesics connecting +1 to —1 in S*. This composition is the desired im-
mersion. The fact that it satisfies the metric constraints (A), (B), and (C) is a
consequence of the geometry of conjugation in S* discussed in SLA.

Suppose, conversely, that we are given such an immersion P, — X,. We
then use projection along geodesics to map X, onto X, , where

t = cos(14x3x,x,).

By the geometry discussed in §I.A, it follows that we have a representation
p: I — S* as soon as we verify the following lemma.
Lemma 5. If P,,_, is immersed satisfying conditions (A), (B), and (C) in X,
then it also satisfies

LXyXgy Xy = LXgy 3 X1 Xgp -
Proof of Lemma 5. In this proof, “X = Y” means that X is related to Y by
an orientation-preserving isometry of X, where X and Y are any geometric

figures. “X = —Y” means they are related by an orientation-reversing isometry.
By symmetry, it is clear that

A’X:Zn—l’)CZn'x2 = _A‘x2n—2'x2n—1xl .

Hence,

Xy 1 XgyXy = =L Xy, 5 Xy, 1 X
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x-axis

FIGURE 6. The image of P, in a spherical coordinate
system

By isosceles triangles,

LX\ Xy Xgy_| = —LX Xoy_ 1 Xy -
Adding these equations gives

LX) Xy Xy = LXyp Xy 1 Xgp s

which completes the proof of the lemma and of the proposition. O

Continuing with the proof of Theorem 3, we will now give a canonical way
to choose a representative of each oriented congruence class in imm, (P, , L) .
By elementary geometry (using symmetry), the midpoints of x,x,, x,x;, ...,
Xy,_1%,, all lie on and, in fact, determine a great circle in X,. Consider the
directed geodesic path o that traces from midpoint(x,x,) to midpoint(x,x;)
to --- tomidpoint(x,,_,x,,) (possibly traversing the great circle several times).
Rotate the immersion so that ¢ lies on the ij-equator, midpoint(x,x, ) lies
at i, and o runs in the direction {i — j — —i}. This prescription uniquely
determines a representative of each oriented congruence class, and we shall say
the resulting immersion is in “standard position”.

Consider the coordinate system:

Rx (-m/2,7/2) = X,

given by
(8, a) — cosa((cos 8)i + (sin B)j) + (sina)k.
Assuming our immersion is in standard position, we can pull it back to the
fa-plane to obtain the graph pictured in Figure 6.
We write i-j-k coordinates for some of these points in terms of the spherical

coordinates «;, and 6,:

X, = cos(—ag)[cos((1 — 2n)6)i + sin((1 - 2n)0,)j] + sin(— )k,

X, = cos(ay)[cos((3 — 2n)0)i + sin((3 — 2n)6,)j] + sin(a, )k,
= cos(ay)[cos((2n — 1)6,)i + sin((2n — 1)6,)j] + sin(a, k.

=
[and
|

Let ( , ) denote the usual inner product on R® = Ri + Rj + Rk. Then for
points x, y on X,, we have (x, y) = cos(dist(x, y)). Since 0 < dist(x, y) <
7, the inner product (x, y) gives an unambiguous measure of distance. The
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n-1 components

/_\ /_\ o

FIGURE 7. R(K,)

immersion of P, pulled back in Figure 6 automatically satisfies conditions A
and B. We may assume that —7n/2 < o, < n/2 and that 0 < 6, < n/2 (by
the use of shortest geodesics in constructing the immersion and the fact that
x, and x,_ , are not antipodal). We now calculate the conditions imposed on
(6,, ay) by condition C. Using the above formulae we compute:

(X, Xy,) = cos’ a,cos((4n —2)6,) — sin’ Q>
(x5, X5,) = cos’ a,cos((4n — 4)6,) + sin’ Q-

Setting these equal, we obtain
() 2tan’ o, = cos((2n — 1)§') — cos((2n - 2)6")

where 6’ = 26, (hence we allow 0< 6’ < 7).

Given a value of 8’ for which the right-hand side (RHS) of () is greater than
zero, we obtain two different allowable values of o, and hence two allowable
immersions. When RHS(x) = 0, we obtain a; = 0, hence a single allowable
immersion. If RHS(x) < 0, there is no solution. When we examine the right-
hand side we find that RHS(x) > 0 for values of 6’ in (n—1) closed subarcs
of [0, n]. RHS(x) = 0 precisely at the endpoints of these subarcs. Thus for
each closed subarc we have two arcs of immersions, and they share endpoints,
as shown in Figure 7.

Since each of these immersions corresponds to a distinct conjugacy class of
representations, we find that, topologically,

ﬁ(Km) = n — 1 disjoint circles,
as was to be proved. O

Away from the points where o, = 0, we can smoothly parametrize ﬁ(Km)
using @' as a parameter, because the derivative with respect to o, of LHS(x)
is nonzero. When o, = 0, the derivative with respect to 6" of RHS(x) is
nonzero and, hence, near those points we may smoothly parametrize ﬁ(Km)
using o, as a parameter. It follows that under this embedding in aoe’-space,
ﬁ(Km) is a smooth I-manifold.

I.D. The Whitehead link. The Whitehead link (WL) is the two-component link
in S* with the projection shown in Figure 8.
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Y1
|

X1——)

|
~Lg2
FIGURE 8. The Whitehead link WL

Using the pictured Wirtinger generators, its fundamental group is presented
as follows:

3 -1
(8™ = WL) = {Xx;, X;, X3, ¥y » VolXsX X3 =X,

—1

Xy, =X,

-1

[y, X3, =X,
~1

X%, =Yy,
-1

lxlyle =y1}-

Theorem 6. R(WL) is a punctured S bx st

The proof of Theorem 6 will occupy the rest of this section. Let p:
7t1(S3 -WL) - S® be a representation.

Lemma 7. (a) [p(x,), p(y,)] =1 & p is abelian.
(b) p(y,) = p(y,) ® p is abelian.

Proof of Lemma. (a) (<) is obvious, so assume [p(x,), p(y,)] = 1. Then, by
the relations, p(y,) = p(y,) and p(x,) = p(x,) = p(x;), so p is abelian.

(b) Clearly, [p(x,), p(y)]=1® p(y,) = p(y,). Then, by (a), the lemma is
proved. O

We use the fact that the conjugacy classes in S3 are precisely the latitudinal
2-spheres X, of constant real part 7. Since y, and y, are conjugate, p(y,)
and p(y,) lie in a single latitudinal 2-sphere. p(x,), p(x,), and p(x,) also lie
in a single latitudinal 2-sphere.

We now examine the set of nonabelian representations, p. Up to conjugacy,
p(y,) and p(y,) are determined by two real parameters: their real part ¢ (the
same for both), and their angular separation within the latitudinal 2-sphere X, .
We use one-half this separation as our second parameter «.

Ist parameter: -1 <t<1.

2nd parameter: 0 < a < m/2.

Note. We exclude ¢t = £1 and o = 0, because these would result in abelian
representations by Lemma 7.
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plx =i "

p(x3)

t (X5)
;P2

FIGURE 9. The ij-equator of X,

Case 1. a = n/2. In this case p(y,) and p(y,) are antipodal in their latitu-
dinal 2-sphere. Since x,y,x, b= Y, » We see that conjugation by p(x,) must
correspond to rotation by 180°. It follows that p(x,) (and, hence, all p(x;))
must lie in the equatorial 2-sphere X,. We may assume (by conjugation) that

(p(¥,), p(¥,)) = (cos @ — sin Ok, cos 6 + sin Ok),

where ¢ =cosf and 0 < 6 < m. Since xlyle_1 =y,, p(x,) must lie in the
ij-equator of X,. Thus we may assume (by conjugation) that p(x,) =i. Now,
the relations y;'x,y, = x, and y,x,y;' = x, determine the positions of the
p(x;), as pictured in Figure 9.

Thus for each of these antipodal positions of (p(y,), p(y,)) we obtain pre-
cisely one class of representations:

p(y,) = cos @ — sin 6k, p(v,) = cos B + sin 6k,
px)) =1, p(x,) = cos 46i + sin 46,
p(x;) = cos26i + sin 26j.

It is easy to verify that these images satisfy the relations.

Case 2. 0 < a < m/2. By conjugation, assume p(y,) and p(y,) are in the
following standard position:

pyy) =1+ (1=

pyy) =t+(1-1))

cosai — sinak),
l/z(cos ai+ sinak).

The following lemma gives information about the positions of the p(x;) in Case
2.

Lemma 8. Let p be a nonabelian representation such that (p(y,), p(y,)) are
in the above standard position, and 0 < a < n/2. Then there exist 0, B, and
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FIGURE 10. The points p(x;) and p(xj), as given in
Lemma 8, projected onto X,

y Such that
p(x,) = cos 8 + sin 6(cos Bi + sin Bj),
p(x,) = cos B + sin 6(— cos Bi + sin Bj)
p(x;) = cos 6 + sin 6(cos yj + sin 7k) .

Before continuing with the proof of this lemma, please consider Figure 10,
a diagram of the relative positions of these points. In making this diagram,
we have projected the images of all the generators onto X, along the geodesics

connecting +1 to —1 in S*. This enables us to see the images of all the
generators on a single 2-sphere. We will refer to the images of the generators
under this projection by the symbols X, and j,.

Proof of Lemma 8. The relations x,y,x, b= y, and x,y,x, b= y, imply that
X, and %, are each equidistant from j, and y,; hence X, and X, both lie on
the ij-equator. We also know that the angle of rotation about X, taking y, to
¥, is equal to the angle of rotation about X, taking y, to y,. (This is because
p(x,) and p(x,) both lie in the same latitudinal 2-sphere.) Once we have fixed
X, , this leaves only two possibilities for X, . Either

(i) X, =Xx,, or

(ii) %, is obtained from X, by reflecting through the jk-plane (i.e., changing
the sign of its i-coordinate, as asserted in the lemma). Note that if we reflected
%, through the ik-plane, we would get an angle of rotation of opposite sign.

We need to show that (ii) holds. If g = +=r/2, then (i) and (ii) coincide,
so assume f # +7m/2. Suppose that (i) holds, so p{x,) = p(x,). Then, since

X3X X5 P X, , we conclude that x; commutes with x, . It follows that X; =
%, (p(x3) = p(xl)i]). If p(x;) = p(x,), then p(x,) commutes with p(y,),
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FIGURE 11. A projection of X, along the j-axis

so p is abelian by Lemma 7, giving a contradiction. If X; = —%,, please
consider Figure 11. This figure is a planar projection of X, along the j-axis.
The equation y,x,y, b= x, implies that %, is obtained from X, by a rotation
about y,. However, a rotation about y, must keep X, on the circle C (seen
from the side as a line in the figure), which cannot intersect X, ! So we again
have a contradiction. This eliminates possibility (i) above, and establishes that
p(x,) and p(x,) are as claimed in Lemma 8.

All that remains is to show that X; lies on the jk-equator. If g # +m/2,
then, since X;x,X; ' = X,, X, is equidistant from X, and %, ; hence, %; is on
the jk-equator. If § = +n/2, then X, = X, = £j, so p(x;) commutes with
p(x,). It follows that %; = £X,, so X, is on the jk-equator. This completes
the proof of Lemma 8. O

Using Lemma 8, we can associate to each nonabelian p such that p(y,) #
p(yz)'l (i.e., in Case 2, above), a well-defined triple (o, £, y), where 0 < a <
n/2 and B,y € R/2nZ. Note that for p(y,) = p(yz)_1 (i.e., in Case 1), we
can also represent p by (a, B, y) as in Lemma 8, with a = n/2. However,
instead of getting a well-defined triple, we get a choice of two possible triples,
one with y = 0 and one with y = n. This is the only ambiguity. Thus we can
identify R(WL) with a subset of afy-space, with identifications corresponding
to the ambiguity in Case 1. We just need a simple criterion for deciding which
triples (a, B, y) correspond to representations. First, note that for (a, £, y)
to correspond with a representation, we must have either

(i) pe€[-n/2,n/2] and y €[0, 7], or
(i) peln/2,3n/2] and y € [-m, 0].

This can be seen from Figure 10. The fact that X, is related to X; by a rotation
about y, implies that (i) or (ii) holds.
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j-axis

FIGURE 12. Another planar projection of X,
Thus, our representations are to be sought in the union of two boxes:
(a, B, 7)€ B, UB,, where
B, =(0,n/2]x[~-nr/2, /2] x [0, n],
B,=(0,n/2] x[r/2,3n/2] x[-=, O].

Lemma9. If (a, B, ) € B|UB,, then (a, B, y) corresponds to a representation
& cosacos B =sinasiny.

Proof. (1) d(y,, X)) = d(,, X;) ® (2) (J,, X|) = (J,, X;), because these
points lie on the unit 2-sphere. ({ , ) is the usual inner product on R} .) When
we write out (2) using the formulae in Lemma 8, we obtain precisely

cosacos f =sinasiny.

It follows immediately from »,x,y;' = x, that this condition is necessary. For
sufficiency, assume we have (a, f, y) satisfying

cosacos f =sinasiny.

Then the angle of rotation about y, taking X; to X, determines the real part
of the p(y;), and the angle of rotation about X, taking X, to X, determines
the real part of the p(x;). It then follows from elementary geometric arguments
that all the relations are satisfied, so we have a representation. This completes
the proof of Lemma 9. 0O

We now set about analyzing the set of triples satisfying

cosacos f =sinasiny.

It is easy to verify that this equation defines smooth surfaces (in fact, discs) in
B, and B, . These surfaces in afy-space are pictured in Figure 13. (Note that
in order to allow a clear view of the boundaries of the surfaces, the perspective
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in these diagrams is somewhat distorted, so that the front face of each B, is
drawn smaller than the rear face. The y-axis is intended to point out of the
page, and the arrows on the ends of the coordinate axes point in the direction
of higher coordinate values.)

When we take the union of these two surfaces, while making the indicated
identifications of their boundaries, we obtain ﬁ(WL) . It is left to the reader to
verify that the resulting complex is a punctured torus. This completes the proof
of the theorem. O

surface surface
in B1 in B

.Y
vy
T

[N
1444

Y
» X
x € (0, n/2] x € (0, n/2]
Bel-n/2, n/2] Beln/2, 3n/2]
Yy € [0, m] Y € [-m, 0]

The meaning of the markings on the subarcs of the boundaries of the above
discs is as follows:

—_—

These points correspond to abelian representations, hence
are excluded.

_—_”—.—
PR (Y G—

These identifications are a consequence of the ambiguity in
assigning a triple to a representation in Case 1 above.

_——
——

These identifications are a consequence of equality (mod 27)
for # and for y.

FIGURE 13. Two surfaces whose union (with identifica-
tions) is R(WL)
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LE. Binary dihedral representations. Define the binary dihedral group N C s?
by N = S/l1 US;3 , where
S\={a+bi:d’+b° =1}
and
1 . 2R
Sg={ci+dk:c" +d" =1}.

Topologically, N is the disjoint union of two circles. S/I1 is a subgroup of

N of index 2. Let K C S° be a knot. Let I = z,(S* — K) have Wirtinger
presentation

T={x, . X, () ") =%, 1<i<n—1},
where ¢, = £1 for all /. The following theorem is the main result of this

section.

Theorem 10. The number of conjugacy classes of nonabelian homomorphisms
I' = N is equal to

(A (=Dl -1)/2,
where A (t) is the Alexander polynomial of K .

Note that A, (—1) is always an odd integer (see, for example, Rolfsen [Ro,
p. 213)).

Corollary 11. If |Ag(—1)| # 1, then there exist nonabelian representations of
7,(S; - K) into NCS’.
As an example the torus knots of type (p, g), where p and g are both odd,

are knots without nonabelian representations into N . The groups of these torus
knots do, however, have nonabelian representations into s3.

Proof of Theorem 10. The idea of this proof is closely related to the study of
metacyclic representations in Fox [F, pp. 160-163].
Suppose p:I' — N has nonabelian image. Since the x; are all conjugate,

and since S/'1 is normal in N, we know that either all the p(x;) are contained
in S; or all are contained in Sg. If {p(x;)} is contained in S; then p is

abelian, so assume {p(x,)} is contained in S;. Each element of S; can be
expressed as

eiej = cos 0 + sin 0k
for some 6 € R/2nZ. Any two elements of Stl, are conjugate in N because

eia(eiej)e-ia _ ei(0+2a)j .

Hence, by conjugation, we can assume that p(x,) =j. Foreach i, 1 <i<n,
define 6, € R/27Z by p(x,) = €.
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To see what conditions are imposed on the 6, by the relations in our presen-
tation for I", we substitute this expression for p(x;) into those relations. The
result is the following system of linear equations over R/2nZ for the 6, :

0,+6,., - 20}, =0,
where 1 <i<n-1 and 6, =0. It follows that the set of n-tuples

6,,6,,...,6,_,,0) ¢ (R/2nZ)"

n—1?

satisfying this system of equations is in one-to-one correspondence with the
set J of representations of I' into N taking x, to j. In the ith row of the
(n—1) x n matrix corresponding to this system, we have the following nonzero
entries:

column: i i+1 J;

entry: |1 1 =2

We wish to count the set of solutions to this system over R/2nZ having 6, = 0;
thus we may drop the last column of the matrix. The ith row of the resulting
matrix, which we call A4, is the same, up to sign, as the ith row of A4, (-1),
where A, (t) is obtained from the Alexander matrix corresponding to our orig-
inal group presentation by removing its last column. Since

detd = +A(~1)

is always an odd integer, we know A is nonsingular.
Think of A4 as a linear transformation R"™' — R"™'. The number of solu-
tions mod 27Z is equal to

card{4~' (222" "/ (272" ")}
= card{(2nZ""")/4(27Z" ")}
= card(Z"”'/A(Z" ")) = | det(A)| = |A (-1)].

There is precisely one abelian representation taking x, — j, namely, the one
taking all x, — j. Each nonabelian representation in J has precisely one
distinct conjugate in J: the one obtained from conjugating by j. It fol-
lows that the number of conjugacy classes of nonabelian representations is
(|Ag(=1)] = 1)/2. This completes the proof of Theorem 10. O

~

LF. Incompressible surfaces and dim(R(K)). In this section we explore the re-
lationship between incompressible surfaces in knot complements, and higher
dimensional components in E(K ). We begin by using composite and doubied
knots to show how incompressible annuli and tori can lead to components of
ﬁ(K ) whose dimension is greater than one. A proposition is then proved which
states that a component of ﬁ(K ) whose dimension is greater than one always
leads to closed, nonboundary parallel, incompressible surfaces in the comple-
ment of K.
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Composite knots. Let K C S® be a knot, and let u € 7zl(S3 — K) be a group
element corresponding to a meridian of K. Define ¢,: R(K) — [-1, 1] by

ox([P]) = Re(p(w)) . Define R,(K) = 95" (1) = {[p]: p(u) € Z,}.

Let K, and K, be oriented knots in S, and let K = K, #K, denote their
connected sum. Let u; € 7ti(S3 -K;), i =1, 2, be meridians of these knots.
Van Kampen’s theorem allows us to express 7, (S3 —K) as a free product with
amalgamation

3 3 3

(ST -K)=m (S - K)) x, 1, (S - Kp),

where the amalgamating homomorphism f: (u,) — (u,) is given by f(u,) =
Ky Let p = pu =u, € 7t1(S3 — K) be a meridian of K. The following
proposition expresses R,(K) in terms of R,(K,) and R/(K,).
Proposition 12. ﬁ,(K ) =X, UX,UX,, (adisjoint union), where

Xl gﬁt(I{l)’ XZ gﬁt(Kz)’
and there is a surjective map

w: X,, - R,(K,) x R,(K,)

with the property that W_l([P.], [p,)) is a circle for all [p,] € R;(K1) and
[/72] € Rt(Kz) .
Proof. The intuitive idea behind this proof is that the circles which make up X,
are obtained by pivoting representations of x, (S3 — K,) about representations
of 7tl(S3 — K,) using conjugation in s3.

Suppose p € R(K) is nonabelian. Define p; € R(K;) by p, = p|7zl(S3 -K))
for i =1, 2. We then write p = p, * p,. Conversely, given p, € R(K,) and
p, € R(K,), we can form p = p, * p, if and only if p,(u,) = p,(1,). Now
define

X, ={lp,*p,] € ﬁ,(K) : p, 1s abelian},
X, ={lp, *p,] € ﬁ,(K) : p, 1s abelian},
and R
X, ={lp, *p,] € R,(K) : p, and p, are nonabelian} .
Clearly, X, UX,U X, is a disjoint union.

Note. If p, and p, are both abelian, then so is p, * p,. However, we are
assuming p, *p, is nonabelian, so it follows that either p, or p, is nonabelian.

Given p, with [p|] € ﬁ,(Kl), there is a unique abelian representation
2% 7z1(S3 -K,) - s satisfying p,(u,) = p,(u,) . It follows that X, is home-
omorphic to ﬁ,(K ;) and, by the same argument, that X, is homeomorphic to
R,(K,).
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Define the map y: X,, — R,(K,) x R,(K,) by

w(lp, *py)) = p], [py))
One easily checks that y is well defined. To see that y is surjective, observe
that if ([p,], [p,]) € ﬁt(Kl) X ﬁ,(KZ), then there exists ¢ € S° such that

ap,y(iy)0”" = p,(u,). Hence w([p, * (ap,0~ ")) = ([p,], [p,)).-

To see that point inverses under i are circles, note that the set of all cosets
[t] € 53 /{x1} satisfying t,oz(uz)t'l = p,(u,) is a coset of the circle subgroup
containing [p,(u,)] € s? /{£1} and is, therefore, a circle. Since s? /{x1} acts
freely on the nonabelian representations, this implies that y/'l([pl], [p,]) isa
circle. O

If t € im(p Kl)ﬂim((o Kz) then, by the previous proposition, dim(ﬁt(K ) >1.
Suppose, in addition, that [p ] € (olzll(t) is a regular point of ¢ K, - By this, we
mean that we can find a smooth arc 4, in E(Kl) containing [p,] such that
the derivative at [p,] of Pk, |4, is nonzero. Suppose that [p,] € qp;zl(t) is a
regular point of ¢ K, in the same sense. Assume, by restricting to smaller arcs
if necessary, that the derivative.of ¢ K1|Ai is nonzero for i = 1, 2. Define

D= {([p|]’ [pz]) € A1 X Azl(p[(l[pl] = (01(2[/’2]},

a smooth arc in 4, x 4,. Then y: t//_'(D) — D is a submersion, and since
w~'([p,], [p,)) is a circle, it follows that w~'(D) is 2-dimensional. The pre-
ceding discussion proves the following proposition.
Proposition 13. Let K| and K, be two knots in S®. Suppose [p,] € ﬁ(Kl)
and [p,] € E(Kz) are regular points of Pk, and Pk, respectively, and that
Pk, [p]1= ("Kz[/’z]‘ Then [p, x p,] is contained in a 2-dimensional component
of R(K,#K,).

In fact, using Proposition 12, together with a knowledge of E(K]) and

E(Kz) , we can form an accurate picture of ﬁ(K  #K,). We illustrate this in
the following two examples.

t=C°$(1T/6)T T

t=cos(T/3) O @
t=-cos(mw/3)

t=-cos(m/6)0

W_/
R(K,) R(K,) R(K #K,)

FIGURE 14. The representation space of the connected
sum of the trefoil and figure 8 knots
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Example 1. Let K, be the trefoil knot and K, the figure eight knot. (In the
notation of §1.C, K, is the 2-twist knot.) In Figure 14, we have diagrammed
R(K,) and R(K,).

In Figure 14, each representation space is pictured in such a way t}lat the
vertical coordinate is ¢ = Re(p(u)). From our pictures of ﬁ(Kl) and R(K,),
we deduce the pictures of R(K  #K,) as follows. For each value of ¢, use
Proposition 12 to construct IQ,(K1 #K,) from ﬁl(Kl) and ﬁt(Kz). Then piece
together these level sets to obtain ﬁ(K #K,). (Figure 14 is inaccurate inasmuch
as each meridian curve of the torus component should be horizontal, i.e., should
correspond to a fixed value of ¢.)

Example 2. K =K, ,#K; , (where K, isa (p, g)-torus knot).

q

ot = cos(w/10) S
cos(m/6)
cos(3m/10)
-cos(3m/10)
-cos(T/6)
6 -cos(m/10) \L/__/
R(K5’2) R(K3’2) R(Ks,z #K3,2)

FIGURE 15. The representation space of the connected
sum of two torus knots

In studying Figure 195, recall that the endpoints of the arcs of nonabelian repre-
sentations in ﬁ(KS’ ,) and ﬁ(K“) correspond to abelian representations. For
this reason, for example, as ¢t — cos(n/6) , the family of circles corresponding
to X,, approaches a single point of R, . This results in the existence of singular
points (i.e., nonmanifold points) in E(KS’2 #K; ).

Doubled knots. Let L be the knot contained in the solid torus V pictured in
Figure 16. Let Z and 2 be the oriented meridian and longitude curves in 8V
pictured in Figure 16.

Let K C S° bea knot, and N(K) a closed tubular neighborhood of K in
S3. Let u and A in ON(K) represent an oriented meridian and a preferred
longitude of K C S If n isan integer, there exists a homeomorphism

9, ON(K) - 8V

satisfying ¢, (1) = and ¢,(A) = 4 + nji, where, as usual, we are also letting
U, A, etc., represent their corresponding fundamental group elements. These
properties determine ¢, up to isotopy. [S3 —int(N(K))] u, V is homeomor-

phic to S3. Hence, we may think of L as a knot K, in this 3-sphere; we will
refer to K, as the n-twisted double of K .
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FIGURE 16. The knot L in the solid torus V

From the construction described above, it is clear that the complement of the
n-twisted double of K can be expressed as

S’ - K, =[S’ - int(N(K))] u, [V-Ll.

By Van Kampen’s theorem, we may express 7, (S3 —K,) as a free product with
amalgamation:

n,(S* - K,) =7n,(S - int(N(K))) *gy. TV = L).

~

We now show that, generically, R(K,) has 2-dimensional components. Ob-
serve that V — L = S -~ WL , where WL is the Whitehead link, defined in §1.D.
It follows that each representation p € R(K,) can be expressed in the form
p=p, *p,,where p, € R(K), p, € R(WL), and they satisfy

P () =py(9,(1)) and p (4) = p,(p,(4)).

Define A = {(x,y) € S3x 83 [x,y]=1}. S3 acts by conjugation on A.

Let A = A/(action by s? ). Since

A2S'xSY(x,y) ~(x,7),

~

A is a 2-dimensional orbifold. We now define maps ¢,: R(K) — 4 by
0,([p]) = [p(n), p(4)],and g,: R(WL) — 4, by g,([p]) = [p(¢,()), p(9,(A))].
Let [p,] € R(K) and [p,] € R(WL). We can form [p, * p,] € R(K,) if and

only if ¢,[p,]1=g,[p,].

We have used computations involving ﬁ(WL) , as computed in §1.D, to show
that g, is a submersion on the complement of a set of measure zero in R(WL).
We will omit these computations from the present paper, and will present them,
instead, in a forthcoming paper on doubled knots. (See [K].)

Now suppose, as for the examples computed in §§1.B and I.C, that ﬁ(K ) isa
1-manifold. Then, generically, one expects g, 1(im p,) tocontain 1-dimension-
al submanifolds of ﬁ(K ). Let M C q; : (img,) be such a submanifold. By
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definition, for each p, € M, there exists a p, € R(WL) such that q,[p,] =
4,[p,]. By conjugating p, by an element of s , we may assume that p (u) =
p,(9,(1)) and p,(4) = p,(¢,(4)) . For each such pair ([p,], [p,]) , we can form
a circle of classes in ﬁ(Kn) of the form [p, * (apza_')], where ¢ varies in
the circle subgroup containing p,(4) and p,(4). Since ﬁ(Kn) contains such
a circle for each point in the 1-manifold M, it follows that for this generic
case ﬁ(Kn) contains 2-dimensional components. Thus we have the following
proposition.

Proposition 14. Let K C S* be a knot. Suppose that dimﬁ(K ) > 1’.\ Then,
subject to the genericity assumption in the preceding paragraph, dim R(K,) >
2. 0

We have carried out this computation for K, = the untwisted double of the
trefoil, and in this case R(K,) = the union of four tori. For more information,
see [K].

A proposition relating higher-dimensional components of R(K) to incompressible
surfaces. Thus far in this section we have seen that if K is a composite or a
doubled knot, R(K) generally contains components of dimension greater than
one. Note that these two types of knots are examples of nontrivial satellite
knots, which we define to be knots whose complements contain nonboundary
parallel incompressible tori. We now prove a partial converse to Propositions
13 and 14.

Proposition 15. Let K C S° be a knot and N (K) a closed tubular neighborhood
of K in S*. If R(K) contains a component of dimension greater than or equal
to two, then S° — int(N(K)) contains a nonempty system of closed, nonboundary
parallel, incompressible surfaces.

Proof. This proposition, the proof of which will occupy the rest of this section,
is a direct consequence of results in Culler and Shalen’s paper Varieties of repre-
sentations and splittings of 3-manifolds [CS], and we shall follow their notation
as much as possible. Define X (S3 —K) to be the set of characters of representa-
tions of m, (S3 —K) in SL(2, C). Cuiller and Shalen show that X (S3 —K) can
be given the structure of a complex affine algebraic set. Its ambient coordinates
are given by {x(g;)}, where y € X (S3 — K) is a character and {g;} is a finite
subset of 7c1(S3 — K). Because SU(2) is a subgroup of SL(2, C), there is an
obvious map
t: R(K)— X(S’ - K),

which associates to each representation the corresponding character. We claim
that this map induces an injection, which we call 7:

i R(K) — X(S’ - K).

This claim will follow from the following two facts:
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(1) Two irreducible representations in SL(2, C) are conjugate if and only if
they correspond to the same character.

(2) If two irreducible (i.e., nonabelian) representations in SU(2) are con-
jugate by an element of SL(2, C), then they are conjugate by an element of
SU(2).

Culler and Shalen prove (1) [CS, Proposition 1.5.2].

Proof of (2). Let p,, p,: ' = SU(2) be two nonabelian representations and
suppose that AplA_1 = p,, where 4 € SL(2, C). Assume that 4 is not in
SU(2). Think of the elements of SL(2, C) as acting on hyperbolic 3-space,
H*, via the double cover SL(2,C) — PSL(2,C). Then SU(2) is just the
subgroup of SL(2, C) fixing a particular point p € H?. Since p,([) fixes
p, p(I) = Apl(l")A'1 fixes A(p). Since A4 is not in SU(2), A(p) # p.
Since p,(I') € SU(2) fixes two distinct points, p and A(p), it fixes an entire
hyperbolic line. It follows that p,(I") is abelian, a contradiction that implies
that our assumption that A4 is not in SU(2) was false. O

~

Having proven the claim, we identify R(K) with a subset of X (S3 —K) via
the map 7. Since traces of elements of SU(2) are real, R(K) is made up of
real points of X (S3 -K).

Lemma 16. If E(K ) has a component of real dimension greater than or equal
to two, then X (S3 — K) has a component of complex dimension greater than or
equal to two.

Proof. Let V be a component of R(K) such that dimg(V) > 2. Let [p]eV
be a regular (i.e., nonsingular) point. Then there is a map f: RSV, given by
a power series, which is an embedding near O (i.e., its first partials are nonzero),
and which satisfies f(0) = [p]. Since the power series for f formally satisfies
the polynomials defining X (S3 — K), we may extend f to a function c’ -
X (S3 — K) given by the same power series. This extension, which we also call
f, is also locally an embedding, since its first partials are nonzero. It follows
that [p] is contained in a component of X (S3 — K) of complex dimension
greater than or equal to two. O

Hatcher, in [H], proves that only a finite number of isotopy classes of sim-
ple closed curves in 8 N(K) can occur as boundary components of properly
embedded incompressible surfaces in s3 - int(N(K)). We may conclude that
there exists a simple closed curve y in d N(K) which does not occur as one of
the boundary components of any incompressible surface. We use y to denote
the corresponding element of nl(S3 —int(N(K))), as well. Let VcXx (S3 -K)
denote a component with dimC(I7) > 2 (which we have just shown to exist).
Define I: V - C by L(x)=x(y). Let C c V be a complex affine curve on

which I, is constant. Let C be a desingularized projective curve with function
field isomorphic to that of C (see [CS] for details). Let X be an ideal point
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of C. Since I}, is constant on C, the corresponding function fy on C does
not have a pole at X. It follows from Theorems 2.2.1 and 2.3.1 of [CS] that
we can associate to X a nonempty system X =S, U---US, of properly em-
bedded, nonboundary parallel, incompressible surfaces in s3 - int(N(K)) such
that yNZ = . Since any boundary circles of §; must be disjoint from 7,
they must be parallel to and, hence, in the same isotopy class as y. Since this
contradicts the choice of y not to be a boundary curve, we conclude that X isa
system of closed incompressible surfaces, completing the proof of Proposition

15. O

II. TANGENT SPACE COMPUTATIONS

IL.A. The Zariski tangent space to R(I'). Let I' be a finitely presented group
with presentation

C={x,x,...,x,:w,w,,...,w,}.

In this section we set up a framework (due to Weil [W]) for computing the
Zariski tangent space to R(I') at a particular representation p.
Let g be the Lie algebra of s It qE€ S3, recall that C,: S 8% s given

by C, (o) = gog~'. Let (aqu)1 denote the differential of C, at the point

1€S®. DefineAd: S° — Aut(g) by
Ad(g)(z) = (dC,),(z) forzeg.
If pe R(I'), define p: I' — Aut(g) by
p(x)(z) = Ad(p(x))(z), x€eT, zeg.

p 1is known as the adjoint representation to p.

Lubotzky and Magid [LM, p. 62] show that we may calculate the scheme-
theoretic Zariski tangent space, TpR(F) ,to R(I") at a representation p, by the
formula

T,R(T) = {ker(dw,),:i=1,..., m}.

(In this formula, we are thinking of R(I') as a subset of (S3)" , by identify-

ing p with the point (p(x,), ..., p(x,)) in (S3)". The words w,; are being

considered as maps from (S3)" to S°, as discussed in §I.A.) We shall need an

algorithm for computing this tangent space. The formula (Proposition 18) that

we derive appears in Weil [W, p. 151], and is also derived by Lubotzky and

Magid in [LM]. For convenience, a slightly different derivation is included here.
We begin by sharpening our notation. Define

g, (S3)n R S3

to be projection on the ith factor, for i=1,..., n. Define

qi—l: (SS)n o8

3
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to be ¢, followed by inversion in the group s3. Suppose we are given a word
w in the n letters {x,..., x,},

w=x".. . x*
- jl jk’

where ¢, =+l and 1 < j; <n,for i=1,..., k. The corresponding map
w: (S%)" — §° is then given by the product

— A8 .8 &
W=4;4;"""9,-

k

$* acts on its own tangent bundle from the left and from the right by trans-
lation. We indicate this action by the appropriate juxtaposition gv or vo,
where v € TmS3 and o € S°. Let

g=(0,,...,0,)€(S)".

n

We wish to compute the composition

g = T,((8)") = T, ,(S) — g,

where the first and last maps are right translatlons, and the middle map is
dw, . For the purpose of the following lemma, we will denote this composition
by dw ; thereafter, by abuse of notation, we will always denote it simply dw, .

Lemma 17. Let z=(z,,...,z,) €g". Then

k
dw,(z) = y,(z,)
i=1

where, for each i,

y; = Ad(ajl ~--aj’_|) € Aut(g) ife; =1,

or
yi= —Ad(g; ---0;) € Aut(g) ife;=—

Proof. Let v = (v, vy, ..., v,) € T,(($*)") = Tals3 x---xT, §°. We assume
the basic facts (true in any Lie group)
(i) (dq,.)?(v) =, amli 1
(i) (dq; ),(v) = -0, v,0; .
By the product rule,
&iny dq ) ( )O' '“’“O’f-:k.

Jis1 Jk

dw,(v) =

I.M»

We then compute
dw,(z )=(dw (zo))w(o)

1

(*)

= Z . X !(dg; ) (za)ajl'*l' -..aj:w(a)
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Using facts (i) and (ii), and the fact that

-1 —& —&
w(o) =0 "~-~aj] ',

the expression (x) simplifies to the statement in the lemma. O

Suppose p € R(I'), and w = xj.l' xf: is one of the relations in our pre-

sentation of I'. Then the coordinates of p in (S3)" are (p(x;), ..., p(x,)).
The following proposition, which is an immediate consequence of Lemma 17,
enables us to compute 7 (R(l")) .

Proposition 18. Let z = (z,, z,, ..., z,) be an element of g". Then
k
)=> ulz
i=1

where, for each i,
U = ﬁ(x’j‘l xj’:]‘) € Aut(g) lfs,' = 1’

or
u = —ﬁ(x'?l‘ xfl) € Aut(g) ife,=-

This proposition enables us to express TpR(F) as the space of solutions to a
specific system of linear equations, i.e., as the null space of a specific matrix.

Note. As Weil [W] and others have observed, this is the same system of equa-
tions that defines the space of 1-cocycles of I with coefficients in g, which is
viewed as a I"-module via /.

ILI.B. The tangent space at an abelian representation. Let K C S> be a knot.
Recall that S(K) denotes the space of abelian representations. The main result
of this section is the following theorem.

Theorem 19. Let p € R(K) be an abelian representation. Let u € 7:1(S3 -K)
be a meridian of K. Assume (by conjugation in s ) that p(u) € C. Let Ay (t)
be the Alexander polynomial of K . Then:

i) If AK(p(u)z) #0, then dim T,(R(K))=3 and a sufficiently small neigh-
borhood of p in R(K) consists entirely of points of the 3-manifold S(K).

(i) If Ag(p(u)*) =0, then

dim T,(R(K)) = 3 + 2dimg (ker A (p(1)"),

where A (t) is obtained from an Alexander matrix of K by deleting a column,
and has the property that Ay (t) = det(Ag(1)).

Note. This theorem has been discovered independently by Steve Boyer jointly
with Andrew Nicas, and also by Charles Frohman. However, we know of no
reference for it in the literature.
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Proofof Theorem 19. Let I = 7z1(S3 —K). Then I" has a Wirtinger presentation
of the form
F={x,....x,:w,...,w,_,}.

The relators w; are words in the x i of the form

- -1
w; = (x;)"x,06) " (X ) T
where ¢, = +1 and j, € {1,2,...,n} foreach i = 1,...,n—1. Let
W: (S3)" = ($%)""! be the function whose ith component is w; . Then
-1 .
T,(R(K)) =ker(dW,:g" — 8" ) =({ker(dw,),: i=1,..., n}.

Using Proposition 18, we now calculate (dw,), as follows: If ¢, = 1, then

p

(dw,),(z,, .., 2,)

1 -1
(X)) )z

= (using the relations for F)p(xji)zi -zt U~ ﬁ(xm))zjl ,

" < -1 < -
=z + p(le)z,. - p(lexile )z; - p(lexixj‘

i

where (z,,...,2,)€g". If ¢,=—1, then we obtain
< -1 =1 N =1
(dw,')p(zl seees Zy) = p(xf,' )z, =zt (P(le x;) - p(in ))Zji .
Since p is abelian we may assume, by conjugation, that
i0
p(x) =-=p(x,)=e".

Using {i, j, k} as a basis for g, an easy computation shows that

1 0 0
px)=-=px,) = (O cos 20 —sinZO) .
0 sin26 cos26
We denote this matrix by 7.
dw,: g” — g"' is described by an (n — 1) x n matrix A , With entries in
GL(g) = GL(3, R), the ith row of 4, being (dw,.)p. Thus, if ¢, =1, the ith
row of A p is given by

column number: i i+1 - Ji
entry: T -1 ... I-T
with all other entries in this row equal to zero. If ¢, = —1, the ith row of 4 p
is given by
column number: i i+1 --- J;
entry: T°' -1 ... I-T"!

with all other entries equal to zero. Note that A p is just the Alexander matrix,
as computed from the same projection as our original Wirtinger presentation,
only with the real number 1 and the variable ¢ replaced by the 3 x 3 matrices
I and T.
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Since the sum of the columns of A4 P is zero, the kernel of d Wp contains all

vectors of the form (z, ..., z) €g", i.e., the diagonal A(g"). This reflects the
fact that

while
A(S*)" = S(K) C R(K)

is precisely the set of abelian representations.
Let us now examine ker(A4 ) /A(g") . Define

L,={(z;,...,2,,0) €ker(4,)}.
We then have L, 2 ker(4,)/A(g") by the inclusion composed with the quotient
n
L, — ker(4,) — ker(4,)/A(g").

Observe that L ) is just the kernel of the matrix obtained by removing the last
column from A4 e This matrix, which we call 4 p> isan (n—1)x(n—1) matrix
with entries in GL(3, R), or a 3(n — 1) x 3(n — 1) matrix with entries in R.
If i<n-1 and ¢, =1, the ith row of Ap becomes:

column : i i+1 J;
0 cos26 —sin26 0 -1 0 |0 1-cos20 sin 26

1 0 0]-1 0 010 0 0
|
|

0 sin260  cos20 0 0 -1 |0 —sin20 1-cos26

The other entries in this row are equal to zero. If ¢ = —1, the ith row is
similar, and the following discussion applies to both. The entry in column J;
is, of course, omitted if j, = n. Row n—1 is similar, but without the entry in
column i+ 1.

Suppose the null space of 4 P contains a vector with transpose (q,, b, , ¢,

s @,_y,b,_,,c,_,). (Weare writing this vector as a vector in R D o g""
using the basis {i, j, k} for each copy of g.) Row i of /fp ,fori<n-1,
tells us that g, = a, ,. Row n—1 tells us that a,_, = 0. So we know that

a=--=a, =0.

Now consider the (n—1)x(n—1) matrix over C obtained from A , by replacing
I by 1l and T by cos26+isin 26, in each of the nonzero entries —I, I-T, etc.
Denote this matrix by A . Note that 4 is just the Alexander matrix with Pl
substituted for ¢, and the last column removed. It is immediate that the vector
with transpose (0, b,,¢,,0,b,,¢,,...,0,b,_,,c,_,) isin the null space of
A p if and only if the vector with transpose

(b +icy, ..., b,_, +ic,_,)
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is in the nullspace of A’ . Note that the latter nullspace is a vector space over
C. It follows that

dimg L, = dimg(ker(4 ) = 2dim¢(ker 4).
Since A’ = AK(p(/z)z) , it follows that
dim T, (R(K)) = 3+ dim L, = 3+ 2dim(ker 4, (p(1)*)),

which proves part (ii) of the theorem.

If AK(p(ﬂ)z) #0, then A is nonsingular, so dim T,(R(K))=3. Since this
means that dW, has maximal rank, it follows that R(K) is a 3-manifold in
a small neighborhood of p. Since S(K) C R(K) is a 3-manifold containing
p, this small neighborhood must consist only of abelian representations. This
proves part (i) of the theorem. O

In the cases of the torus and twist knots analyzed in §I of this thesis, those
abelian representations p for which dim TpR(K ) > 3, i.e., those for which

Ag( p(,u)z) = 0, are precisely those abelian representations which can be ex-
pressed as limits of arcs of nonabelian representations. The above theorem im-
plies that, for an arbitrary knot, abelian representations p satisfying A, (p( u)z)
= 0 are the only abelian representations which could possibly be expressible as
limits of nonabelian representations. The question of whether these singular
(ie., Ag( p(,u)2 ) = 0) abelian representations can always be expressed as limits
of nonabelian representations is a question of when infinitesimal deformations
can be realized by actual deformations. It has now been proven (see [FK]) that
if p is an abelian representation and p(;t)2 is a simple root of A, , then p is
a limit of an arc of nonabelian representations.

T,(R(K)) and Euclidean isometries. We will now give an interpretation of the
tangent space at an abelian representation in terms of Euclidean representa-
tions of I'. Define Isom_(C) to be the set of orientation-preserving Euclidean
isometries of C. These are the maps of the form # — au + b, where a and
b are elements of C and |a| = 1. The conjugacy classes in this group are of
three types: {Id.}, X, (r a positive real), and Y, (a € S', a# 1), where

X,={u—-u+b:|b|=r}
and

Y, ={u—au+b:beC}.
Consider a homomorphism

¢: I — Isom_(C).

Since the generators x; are conjugate to each other, their images

o(x;)(u) = au + (b, +ic,)

all have the same multiplicative factor a. Fixing a, we consider the set of
representations of the form ¢(x,) = (v — au+ (b, +ic;)) . Suppose, in addition,
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we impose the condition that ¢(x,) fixes the origin, i.e., that b, +ic, = 0. De
Rham [D, pp. 188-189] shows that the set of (n — 1)-tuples

(b, +ic,, by +icy, ..., b,_, +ic,_,)

making ¢ a homomorphism is precisely the null-space of the matrix A, (a).
(As above, A(t) is obtained by removing the nth column from the Alexan-
der matrix associated with the Wirtinger presentation of I" used in the above
proof.) It follows that we can identify these Euclidean representations with
certain tangent vectors.

To make this precise, let p € R(K) be an abelian representation. Assume,
by conjugation, that p(u) € C. Recall the subspace L , C TP(R(K )) defined in
the last proof. Define a map

fp: Lp — Hom(T', Isom _(C))

given by
0,b,,¢,,...,0,b,_,,¢,,,0,0,0) =9,

where ¢(x;)(u) = p(,u)zu + (b; +ic;) . De Rham’s result with a = p(;t)2 com-
bines with the proof of Theorem 19 to prove the following proposition.

Proposition 20. f, induces an isomorphism L, = {9 € Hom(I', Isom (C)) : ¢
has multiplicative factor equal to p(u)z, and ¢(x,) fixes the origin in C}. O

To conclude, we give a geometric interpretation of this isomorphism. Recall
from §1.C that one can associate to a representation of I in S a geodesic image
in % of a certain polygon P, , whose vertices correspond to the generators
of I'. This image must also satisfy certain geometric constraints imposed by
the relations between the x;. Let v € L ) be a Zariski tangent vector which is
actually tangent to an arc of representations, say p . We are assuming that p, =
p is abelian, while the other p, are not necessarily abelian. As s approaches 0,
the vertices of the corresponding images of P, in s? approach a single point.
But as the diameter of the image of P, in s? approaches 0, that image more
and more closely approximates a Euclidean image of P, . After multiplying by
an appropriate scaling factor we can see that the spherical images of P, actually
approach a Euclidean image satisfying the same geometric constraints. This
Euclidean image, in turn, corresponds to a representation of I" in Isom (O,
by letting the images of the vertices correspond to the centers of rotation of the
images of the generators of I'. This gives us a geometric interpretation of the
map fp , for those vectors which are realizable by arcs of representations.

Let p € R(K) be an abelian representation with p(u) € C. A corollary of
this discussion is the following:

Proposition 21. dim T ,(R(K)) > 3 if and only if there exists a nonabelian repre-
sentation of T in Isom_(C) which takes the generators x; to rotations of angle

arg(p(u)’). O
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