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REPRESENTATIONS OF KNOT GROUPS IN SU(2)

ERIC PAUL KLASSEN

Abstract. This paper is a study of the structure of the space R(K) of rep-

resentations of classical knot groups into SU(2). Let R(K) equal the set of

conjugacy classes of irreducible representations.

In §1, we interpret the relations in a presentation of the knot group in terms

of the geometry of SU(2) ; using this technique we calculate R{K) for K equal

to the torus knots, twist knots, and the Whitehead link. We also determine a

formula for the number of binary dihedral representations of an arbitrary knot

group. We prove, using techniques introduced by Culler and Shalen, that if the

dimension of R(K) is greater than 1, then the complement in S of a tubular

neighborhood of K contains closed, nonboundary parallel, incompressible sur-

faces. We also show how, for certain nonprime and doubled knots, R(K) has

dimension greater than one.

In §11, we calculate the Zariski tangent space, T (R{K)), for an arbitrary

knot K , at a reducible representation p, using a technique due to Weil.

We prove that for all but a finite number of the reducible representations,

dim T' (R(K)) = 3. These nonexceptional representations possess neighbor-

hoods in R(K) containing only reducible representations. At the exceptional

representations, which correspond to real roots of the Alexander polynomial,

dim T (R(K)) = 3 + Ik for a positive integer k . In those examples analyzed

in this paper, these exceptional representations can be expressed as limits of arcs

of irreducible representations. We also give an interpretation of these "extra"

tangent vectors as representations in the group of Euclidean isometries of the

plane.

0. Introduction

This paper is a study of the space R(K) of representations of the funda-

mental group of the complement of a knot K into the Lie group SU(2). The

major results are as follows: (1) a calculation of the topological type of R(K)

for K a torus knot, a twist knot, or the Whitehead link, (2) a determination of

the Zariski tangent space to R(K) at a reducible representation for an arbitrary

knot K, and (3) a proposition and some examples relating the dimension of

R(K) to incompressible surfaces in the complement of K.

While the idea of representing 3-manifold groups in SU(2) is a fairly recent

one, the representation of these groups in other groups has a substantial history.

We will not attempt to chronicle this history in detail, but will comment here on
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those developments which we consider most relevant to this paper: In A quick

trip through knot theory [F, pp. 160-163], Fox analyzes cyclic and metacyclic

representations of knot groups. Weil in [W], did important work on calculating

the Zariski tangent space to a variety of representations into a Lie group. Riley

[Ril, Proposition 4] has exhibited specific arcs of representations of 2-bridge

knot groups into SU(2). There is some overlap between Riley's work and

this thesis, since the twist knots and some of the torus knots (the ones of type

(2, q)) considered here are 2-bridge knots. Using methods similar to those

of Riley, Gerhard Bürde [B] has computed R(K) for certain 2-bridge knots

K, including the twist knots. In particular, he independently proved Theorem

3. Culler and Shalen, in [CS], develop a beautiful relationship between curves

of representations in SL(2, C) and incompressible surfaces. Finally, Andrew

Casson has constructed an important new invariant of homology 3-spheres using

their representation spaces in SU(2) (see [AM]).

Organization. Let K c S be a knot and define R(K) to be the space of

representations Hom(7r,(AS - K), SU(2)). Let R(K) be the set of conjugacy

classes of irreducible representations. (These terms will be discussed more fully

in §I.A.) This paper falls naturally into two sections.

§1 is devoted to a geometric understanding of the structure of R(K). In

§I.A, some useful facts about the geometry of SU(2) are stated, and the basic

objects of study are defined. In §I.B the topological type of R(K) is computed

for K equal to a torus knot, and an application is given concerning Casson's

invariant for homology spheres constructed by 1/az surgery on the (3,4)-torus

knot. In §I.C, the topological type of R(K) is computed for K an m-twist

knot. To perform this computation, a basic method is introduced whereby

R(K) is identified with a certain set of geometric immersions of a polygon

(which depends on the projection of the knot K) in S . In §I.D (Theorem

6), the topological type of 7?(WL) is computed, where WL is the Whitehead

link. This computation is of use in computing 7?(doubled knots), an endeavor

which is touched on in §I.F, and which will be explored more fully in a future

paper (see [K]). In §I.E (Theorem 10), a formula is derived for the number of

conjugacy classes of binary dihedral representations (which comprise a special

class of irreducible representations into SU(2)) of an arbitrary knot group. In

§I.F (Proposition 15) we show, using results of Culler and Shalen, that if R(K)

contains a component of dimension greater than one, then S - int(N(K))

contains nonboundary parallel, closed, incompressible surfaces. We also show,

by analyzing composite knots and satellite knots, that incompressible tori in a

knot complement often do, in fact, lead to components of R(K) of dimension

greater than one (Propositions 13 and 14).

§11 is devoted to the computation and interpretation of the Zariski tangent

space to R(K), T (R(K)), at a reducible representation p. In §11.A, we show

how to view R(K) as an algebraic set, and prove the basic lemma (Proposi-

tion 18, stated by Weil in [W, p. 151]) which makes it possible to calculate
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T' (R(K)). In §11.B, we apply these techniques to compute R (R(K)), where p

is reducible. As a result we find (Theorem 19) that, except for a finite number

(up to conjugacy) of exceptions, the reducible representations are 3-manifold

points of R(K). The finite number of exceptional reducible representations,

which correspond to roots of the Alexander polynomial of K, have higher di-

mensional tangent spaces. In the case of the knots analyzed in §1, these extra,

"irreducible" tangent vectors correspond to actual irreducible deformations of

these reducible representations. We also show (Proposition 20) that these "irre-

ducible" tangent vectors can be interpreted as nonabelian representations of the

knot group into the group of isometries of the Euclidean plane. These Euclidean

representations have been analyzed by De Rham [D].

I. Geometric computation of representation spaces

I.A. Preliminaries on SU(2) representations. We will begin by defining the two

Lie groups, SU(2) and >S , with which this paper is most concerned:

su(2) = {(_*£   g):û.*€C,|û|2 + |ôf = l},

S = {quaternions q such that \q\ = 1}.

These two groups are isomorphic via the map given by

{-b   bâ-)"a + bl

Using this isomorphism we will refer to these groups pretty much interchange-

ably, though we will more often use quaternion notation.

Let T be a finitely presented group with presentation

Y = {xx,x2, ... ,xn:wx,w2, ... , wm),

where the relators w¡ are words in the generators x, . Define

7?(r) = Hom(r,.S3),

and define

S(Y) = {pe R(Y)\ im(p) is abelian}.

These abelian representations are often referred to as "reducible" because a

representation of any group in SU(2) is reducible if and only if it has abelian

image. We give S its usual topology and Y the discrete topology; we then

give 7?(r) the compact-open topology.

S3/{±l} = SO(3) acts on R(Y) by conjugation:

(q-p)(x) = qp(x)q~X,

where q e S , x e Y, and p e R(Y). It is easily verified (see, for example,

[AM]), that this action is free when restricted to R(Y) - S(Y). Hence, define

R(Y) = (R(Y) - S(r))/action by SO(3).
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Using the above presentation for Y, we can embed R(Y) in (S3)" via the

map

f(p) = (p(xx),...,p(xn)).

The map / is injective because the x¡ generate Y. We now characterize the

image of /. Let (ax,a2, ... , an) be an element of (S )n . If we substitute ai
■a   „

for each xi in the word w ,, then we can view each w, as a map from (S )

to S3. It follows that

im(f) = Ç]{w;x(l):i=l,...,m}.

The w¡ are polynomials in the ambient coordinates, so im(f) is an algebraic

subset of (S3)". We will henceforth identify R(Y) with im(f). In [LM],

Lubotzky and Magid show how R(Y) may be given the structure of an affine

algebraic scheme which is independent of the particular presentation of Y.

Let K c S be a knot. To simplify notation, we write R(K), S(K), and

R(K) instead of R(nX(S3 - K)), S(nx(S3 - K)), and R(nx(S3 - K)), respec-

tively. R(K) and R(K) will be the main objects of study in this thesis.

Geometry of S . We now state (mostly without proof—see [S] for some of

these computations) some basic geometric facts about the group S . Let q -

a + b\ + c] + dk e S . Define Re(q) = a. Assume q ^ ±1. We can express q

in the form

q = cos 8 + sin 8(a\ + b\ + ck),

where a + b + c = 1. If we fix a, b, and c, while allowing 8 e R to

vary, we obtain a subgroup Sq of S which is isomorphic to S c C. Indeed,

■S^. = S1 c C. Every q / ±1 is contained in a unique such circle subgroup.

These subgroups are just the geodesies through 1 in 5 . Any two of these circle

subgroups are conjugate to each other in S .

Consider the map tp : S —► [-1, 1] given by q>(q) = Re(q). If t ^ ±1,

then <p~l(t) is a 2-sphere. We will use the notation

It = f_1(i).

Note that if q ¿ ±1 e S3 and te (-1, 1), then Sx meets X. in two points,

and they are orthogonal at these points.

We now consider the geometric effect of conjugation in S . Define C : S —>

S3 by Cq(w) = qwq~x. It is easily verified that Cq(lt) = 1, for -1 < t < 1.

In fact, C  acts on Z. as a rotation by angle 28 about the two antipodal points

where Z( is pierced by S . (We are writing

q = cos 0 + sin 8(ai + bj + ck),

where 0 < 8 < n.) The direction of this rotation is determined by which of the

two intersection points is closer to q in S . It is a right-handed rotation about
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j q = cos 8 + sin 8 (ai + bj + ck )

Figure 1. Conjugation by q induces a rotation by an

angle of 28 on X.

this closer intersection point. It follows that the X( are precisely the conjugacy

classes of S3 . Figure 1 illustrates these relationships in 53.

LB. Torus knots. Let (r, s) be any pair of positive, relatively prime integers.

Let Kr s denote the (r, s)-torus knot in S .

Theorem 1. R(Kr s) is the disjoint union of (r - l)(s - l)/2 open arcs.

Proof. In this proof, we assume that r and 5 are odd. The case of r or i

even is handled by the same method. Y = nx(S - Kr s) has a presentation of

the form

Y={x, y\x =y).

Since we are considering classes of nonabelian representations, we consider only

representations p such that [p(x), p(y)] ^ 1. It follows that p(x) ^ ±1 ^

p(y), and that p(x) and p(y) lie in distinct circle subgroups S ., and S , ,,

which we denote simply by Sx and Sy . We know that

(*) p(x)r = p(y)seSxxnSxy = {±l}.

Consider the case p(x)r = p(yf = +1 . It follows that

p(x)e{q\q=l,q¿l} = \J{Lt:txeA},

where A = [cos(2n/r), cos(4n/r), ... , cos((r - l)n/r)} . This gives (r - l)/2

possible conjugacy classes for p(x). Since s is odd as well, there are (s - l)/2

possible conjugacy classes for p(y).  When we choose conjugacy classes X.
x

for p(x) and X    for p(y) we constrain these images to lie in two concentric
y

2-spheres centered at 1 in S . (They are concentric with respect to geodesic

radii emanating from 1 e 5 .) The only remaining conjugacy invariant for the

pair (p(x), p(y)) is the angle a between the shortest geodesic from 1 to p(x)
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p(x)

Figure 2. The angular invariant a for pairs (p(x), p(y))

and the shortest geodesic from 1 to p(y). This is because conjugation of p

induces the "same" rotation on X    and X   .
lx 'y

If a = 0 or q = n , then p is abelian. This leaves an open arc (corresponding

to 0 < a < n) of conjugacy classes of nonabelian representations for each

pair of conjugacy classes (Lt , Xr ) for (p(x), p(y)). It follows that there are

(a--1)(5-1)/4 open arcs of classes of representations for which p(x)r = p(y)s =

+ 1 . A similar computation yields another (r - l)(s - l)/4 open arcs of classes

of representations satisfying p(x)r = p(y)s = -1. The theorem follows.   G

Let Mn be the homology 3-sphere obtained by a Dehn surgery of type 1/az

on 7^3 4 . (For conventions regarding Dehn surgery on knots, see Rolfsen [Ro,

pp. 258-259].) Let

R(Mn) = Wom(nx(Mn), S3)/conjugacy in S3.

Proposition 2. The cardinality of R(Mn) is equal to |10az|.

Note. Casson's invariant for homology 3-spheres, À(M3), is defined to be 1/2

the algebraic intersection number of two manifolds whose geometric intersec-

tion is R(M ).   Hence, for a given homology 3-sphere M   it is natural to
■3 a. -3

ask the question: does \X(M )\ = card(R(M ))/2? The above proposition

answers this question affirmatively for those homology 3-spheres obtained by

Dehn surgery on K3 4, since X(Mn) = nÀ'(K3 4) = azA^   (1) = 5az.   (A^   (t)

is the Alexander polynomial normalized so that the coefficient of / is the

same as the coefficient of t~ for each value of k . See [AM] for details of this

computation.) In [BN], Boyer and Nicas carry out this calculation for homol-

ogy 3-spheres obtained from surgery on (2, i?)-torus knots, and find agreement

there, also, between |A(M3)| and card(R(M3))/2.

Added in proof. The author has learned that Fintushel and Stern have recently

shown that for all Seifert-fibered homology spheres M   with three exceptional
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fibers,

¿(M3) = ±card(R(M3)).

This class of homology spheres includes those obtained by surgery on torus

knots. Their proof uses Floer's recent reformulation of Casson's A-invariant in

terms of gauge theory.

Proof of Proposition 2. In this proof, we shall assume that az > 0.  The case

az < 0 is handled in the same way, and is omitted.

The group Y = nx(S3 - K3 4) has presentation

r = {x, y : x  = y } .

In r, a meridian can be represented by p = xy~ , and a longitude by À =

x3(xy~x)~x2. To obtain nx(Mn), we adjoin the relation pk" = 1 to our pre-

sentation of T. In terms of x and y, this relation takes the form

(xy~X)[x3(xy~X)~X2]n = 1.

In order to obtain the cardinality of R(MJ , we now count the classes of repre-

sentations [p] e R(K3 4) which satisfy this additional relation. (Note that if an

element p of R(K3 4) takes a relator to 1 in S , then so does any conjugate

of P.)

If [p] e R(K3 4), then p(x)3 = p(y)* = ±1.  We consider first the case

p(x)3 = p(y)4 = +1. In this case we must have (p(x), p(y)) e X_1/2 x X0.

(This is because these sets contain the only nontrivial 3rd and 4th roots of 1 in

S .) To satisfy the additional relation, we insist in addition that

P(xy~l)[p(x)3 p(xy~x)~x2]" = 1,

i.e., that p(xy~x)x~X2n = 1. Thus p(xy~x) must be a (12« - l)th root of 1.

Assume, by conjugation, that p(y) = -i, so that p(y~x) = i. As p(x) takes

values in the 2-sphere X_j ,2, we see that p(xy~ ) = p(x)i takes values in the

round but nonlatitudinal 2-sphere (X_1/2)i.

Let QX2n_x = {o e S : a "~ =1}. Then we may write ô12„_i =

U{X. : / = cos(2^ac/(12az- 1)), k = 0, 1, ... , 6az - 1}. Note that (X(_1/2)i)n

Qx2n_x is a disjoint union of circles, at most one of these circles lying in any

latitudinal 2-sphere. The conjugacy classes of representations p in R(Mn) are

in one-to-one correspondence to the conjugacy classes (under simultaneous con-

jugation by an element of S1) of pairs

(p(x),p(y))el_x/2x{-i}

satisfying (p(x)p(y)~ ) "~ = 1. The number of conjugacy classes of these

pairs is equal to the number of circles in ß12„_i H (X_1/2)i. The number of

these circles is, in turn, equal to the number of (12az - l)th roots of 1 of the
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form e   , where -r/6 < 8 < 5n/6.   Thus we need simply to calculate the

number of integers k satisfying the condition

7t/6<2nk/(l2n-l)<5n/6.

An easy computation shows that there are precisely 4a? such integers. Thus we

have 4« classes of representations of Tcx(Mn) satisfying p(x)3 = p(y)4 = 1.

We now consider the case p(x) = p(y) = -1. In this case we must have

p(x) e Xj,2 and p(y) e X,,,^ UX,,,^. After performing computations

analogous to those in the first case, we find 3az classes of representations coming

from

(p(x),p(y))elx/2xl{X/V2),

and another 3az classes coming from

(p(x), p(y))elx/2xl{_x/V2).

Thus we obtain a total of 4« + 3az + 3az = IOaz classes of representations of

7ix(Mn) in S3.   G

Note. The three sets of representations considered in this proof come from the

three separate arcs of representations that make up R(K3 4).

I.C. AM-twist knots. The m -twist knot Km is the knot whose projection is shown

in Figure 3.

In this section we calculate the topological type of the representation space

of the m-twist knot (m = 1,2, 3, ...).

Theorem 3. R(Km) is the disjoint union of [m/2] circles and, if m is odd, one

open arc.

Figure 3. The AAZ-twist knot K,
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Figure 4. Wirtinger generators for nx(S3 - Km)

Proof. We prove the theorem for the case in which m is even. The computa-

tions are completely analogous when aaz is odd. Define az by m = 2n -2.

Using the pictured Wirtinger generators, we write:

1   = TTj (Km) = \XX , X2, ... , X2n\X2   XXX2 = X3

, -1 _

I  -I        _
I -^4       3   4 —     5

I   •      •

i —i   _
\X2n-lX2n-2X2n-l ~ X2n

\X2n X\X2n = X2> •

Notational convention. Suppose p: Y —> S is a nonabelian representation.

Since the p(x/) are all conjugate to each other, they all lie in a common latitu-

dinal Xr. From now on we will use x¡ both for the generators of Y, and for

their images in X. under p. For 1 < i < 2n — 1, connect x¡ to xi+x in X,

by the shorter geodesic connecting them. (We will soon see that xt and xi+x

are not antipodal, hence this procedure is not ambiguous.) This gives rise to a

geodesic immersion of the following polygon, Pm , in X( :

This immersion satisfies the following metric constraints:

(A) d(xi,xi+x) = d(xi+x,xi+2).

(B) ¿xtxi+xxi+2 = -¿xi+xxi+2xi+3.

(C) d(x2,x2n) = d(xx,x2n).
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X2 x4 X2n-2 x2n

Pm

*1 *3 x2n-3 X2n-1

Figure 5. The polygon Pm

Because p is nonabelian, the angles in condition (B) are well defined and

nonzero.

Define immit(Pm , X0) to be the set of those geodesic immersions of Pm in

X0 which satisfy (A), (B), and (C).

Proposition 4. There is a one-to-one correspondence between immt(Pm,X0) and

R(Y) - S(Y) (i.e., nonabelian representations).

Proof. Given a nonabelian representation p, the corresponding immersion is

obtained by first connecting the points xi and xi+x of X( by the shortest

geodesic of X( between them. There is no ambiguity; xi and xi+x cannot

be antipodal. If they were, it would be impossible to satisfy the additional

requirement

a(xx, x2n) = a(x2, x2n),

which is implied by the last relation. Now project X. onto X0 along the

geodesies connecting +1 to -1 in S3. This composition is the desired im-

mersion. The fact that it satisfies the metric constraints (A), (B), and (C) is a

consequence of the geometry of conjugation in S   discussed in §I.A.

Suppose, conversely, that we are given such an immersion Pm -» X0. We

then use projection along geodesies to map X0 onto X,, where

t = cos(2-¿x3x2xx).

By the geometry discussed in §I.A, it follows that we have a representation

p : Y —► S   as soon as we verify the following lemma.

Lemma 5. If P2n_2 is immersed satisfying conditions (A), (B), and (C) zaz X0,

then it also satisfies

¿x2x2nxx = ¿-X2n_2x2n_xx2n.

Proof of Lemma 5. In this proof, "X = Y" means that X is related to Y by

an orientation-preserving isometry of X0 , where X and Y are any geometric

figures. "X = - Y" means they are related by an orientation-reversing isometry.

By symmetry, it is clear that

Hence,

^X2n-\X2nX2 ~     ^X2n-2-X2«-lXl

¿X2n-\X2nX2 ~      ¿-X2n-2X2n-\Xl
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a-axis

805

8-axis

Figure 6. The image of Pm in a spherical coordinate

system

By isosceles triangles,

¿-Xxx2nx2n_x—    ¿-Xxx2n_xx2n.

Adding these equations gives

¿xxx2nx2 = ¿-x2nx2n_xx2n_2,

which completes the proof of the lemma and of the proposition.   G

Continuing with the proof of Theorem 3, we will now give a canonical way

to choose a representative of each oriented congruence class in immt(Pm, X0).

By elementary geometry (using symmetry), the midpoints of xxx2, x2x3, ... ,

x2n_xx2n all lie on and, in fact, determine a great circle in X0. Consider the

directed geodesic path a that traces from midpoint^, a:2) to midpoint(x2x3)

to •■• to midpoint (x2n_xx2n) (possibly traversing the great circle several times).

Rotate the immersion so that a lies on the ij-equator, midpoint(x/Ix;i+1) lies

at i, and a runs in the direction {i —> j —► -i} . This prescription uniquely

determines a representative of each oriented congruence class, and we shall say

the resulting immersion is in "standard position".

Consider the coordinate system:

Rx (-n/2, n/2) ^X0

given by

(8, a) —> cosa((cos0)i + (sin0)j) + (sina)k.

Assuming our immersion is in standard position, we can pull it back to the

8a-plane to obtain the graph pictured in Figure 6.

We write i-j-k coordinates for some of these points in terms of the spherical

coordinates aQ and 8Q :

xx = cos(-a0)[cos((l -2n)80)i + sin((l - 2n)80)\] + sin(-a0)k,

x2 = cos(a0)[cos((3 - 2aj)0o)í + sin((3 - 2az)0o)j] + sin(a0)k,

x2n = cos(a0)[cos((2AZ - l)0o)i + sin((2AZ - l)0o)j] + sin(a0)k.

Let ( , ) denote the usual inner product on R3 = Ri + Rj + Rk. Then for

points x, y on X0 , we have (x, y) = cos(dist(x, y)). Since 0 < dist(x, y) <

ti , the inner product (x, y) gives an unambiguous measure of distance. The
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n-1 components

oc   T

Figure 7. R(KJ

immersion of Pm pulled back in Figure 6 automatically satisfies conditions A

and B. We may assume that -n/2 < a0 < n/2 and that 0 < 0O < n/2 (by

the use of shortest geodesies in constructing the immersion and the fact that

xn and xn+x are not antipodal). We now calculate the conditions imposed on

(0O, q0) by condition C. Using the above formulae we compute:

2 2
(xx, x2n) = cos a0 cos((4az - 2)0O) - sin a0,

2 2
(x2, x2n) = cos a0 cos((4az - 4)0O) + sin a0.

Setting these equal, we obtain

(*) 2tan2a0 = cos((2Az- 1)0') - cos((2az - 2)0'),

where 0' = 20o (hence we allow 0 < 0' < n).

Given a value of 0' for which the right-hand side (RHS) of (*) is greater than

zero, we obtain two different allowable values of a0, and hence two allowable

immersions. When RHS(*) = 0, we obtain q0 = 0, hence a single allowable

immersion. If RHS(*) < 0, there is no solution. When we examine the right-

hand side we find that RHS(*) > 0 for values of 0' in (az - 1) closed subarcs

of [0, 7t]. RHS(*) = 0 precisely at the endpoints of these subarcs. Thus for

each closed subarc we have two arcs of immersions, and they share endpoints,

as shown in Figure 7.

Since each of these immersions corresponds to a distinct conjugacy class of

representations, we find that, topologically,

R(Km) = n - 1 disjoint circles,

as was to be proved.   G

Away from the points where q0 = 0, we can smoothly parametrize R(Km)

using 0' as a parameter, because the derivative with respect to q0 of LHS(*)

is nonzero. When aQ = 0, the derivative with respect to 0' of RHS(*) is

nonzero and, hence, near those points we may smoothly parametrize R(Km)

using a0 as a parameter. It follows that under this embedding in ao0'-space,

R(Km) is a smooth 1-manifold.

I.D. The Whitehead link. The Whitehead link (WL) is the two-component link

in S   with the projection shown in Figure 8.
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Figure 8. The Whitehead link WL

Using the pictured Wirtinger generators, its fundamental group is presented

as follows:

nx(S3 - WL) = {xx ,x2,x3,yx, y2\x3xxx~l = x2,

\yxx2y~x =x3,

\y2lx3y2 = xx,

\x2y2x2X =yx,

\xxy2xxX =yx).

Theorem 6. 7Î(WL) is a punctured S x S .

The proof of Theorem 6 will occupy the rest of this section.    Let  p:

nx(S3 - WL) -► S   be a representation.

Lemma 7. (a) [p(xx), p(yx)] = 1 •» p is abelian.

(b) p(yx) = p(y2) «■ p is abelian.

Proof of Lemma, (a) (<i=) is obvious, so assume [p(xx), p(yx)] = 1. Then, by

the relations, p(yx) = p(y2) and p(xx) = p(x2) = p(x3), so p is abelian.

(b) Clearly, [p(xx), p(yx)] = 1 & p(yx) = p(y2). Then, by (a), the lemma is

proved.   G

We use the fact that the conjugacy classes in S are precisely the latitudinal

2-spheres Xr of constant real part t. Since yx and y2 are conjugate, p(yx)

and p(y2) lie in a single latitudinal 2-sphere. p(xx), p(x2), and p(x3) also lie

in a single latitudinal 2-sphere.

We now examine the set of nonabelian representations, p . Up to conjugacy,

p(yx) and p(y2) are determined by two real parameters: their real part t (the

same for both), and their angular separation within the latitudinal 2-sphere X..

We use one-half this separation as our second parameter a.

1st parameter: -1 < t < 1.

2nd parameter: 0 < a < n/2 .

Note. We exclude / = ± 1 and a = 0, because these would result in abelian

representations by Lemma 7.
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Figure 9. The ij-equator of X0

Case 1. a = n/2. In this case p(yx) and p(y2) are antipodal in their latitu-

dinal 2-sphere. Since xxy2xx = yx, we see that conjugation by p(xx) must

correspond to rotation by 180°. It follows that p(xx) (and, hence, all p(x¡))

must lie in the equatorial 2-sphere X0 . We may assume (by conjugation) that

(p(yx), p(y2)) = (cos0 - sin0k, cos0 + sin0k),

where t = cos0 and 0 < 0 < n . Since xxy2xx~ = yx, p(xx) must lie in the

ij-equator of X0 . Thus we may assume (by conjugation) that p(xx) = i. Now,

the relations y2lx3y2 = xx and yxx2yx~x = x3 determine the positions of the

p(x/), as pictured in Figure 9.

Thus for each of these antipodal positions of (p(yx), p(y2)) we obtain pre-

cisely one class of representations:

p(yx) = cos 0 - sin 0k,        p(y2) - cos 0 + sin 0k,

p(xx) = i,        p(x2) = cos40i + sin40j,

p(x3) = cos 20i + sin 20j.

It is easy to verify that these images satisfy the relations.

Case 2. 0 < a < n/2. By conjugation, assume p(yx) and p(y2) are in the

following standard position:

2  1/2
P(y\) = t + (l - t )    (cosai - sinak),

2  1/2
p(y2) = t + (I - t )    (cosai + sinak).

The following lemma gives information about the positions of the p(x¡) in Case

2.

Lemma 8. Let p be a nonabelian representation such that (p(yx), p(y2)) are

in the above standard position, and 0 < a < n/2. Then there exist 8, ß, and
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Figure 10. The points p(x¡) and p(xf), as given in

Lemma 8, projected onto X0

y such that

p(xx )= cos 0 + sin 0(cos ß\ + sin ß\),

p(x2) = cos 0 + sin 0(- cos ß'\ + sin ß'j),

p(x3) = cos 0 + sin 0(cos yj + sin yk).

Before continuing with the proof of this lemma, please consider Figure 10,

a diagram of the relative positions of these points. In making this diagram,

we have projected the images of all the generators onto X0 along the geodesies

connecting +1 to -1 in 5 . This enables us to see the images of all the

generators on a single 2-sphere. We will refer to the images of the generators

under this projection by the symbols x¡ and y¡.

Proof of Lemma 8. The relations xxy2xx~ = yx and x2y2x2 = yx imply that

xx and x2 are each equidistant from yx and y2 ; hence Jc. and x2 both lie on

the ij-equator. We also know that the angle of rotation about Jc, taking y2 to

yx is equal to the angle of rotation about x2 taking y2 to yx . (This is because

p(xx) and p(x2) both lie in the same latitudinal 2-sphere.) Once we have fixed

Jc,, this leaves only two possibilities for x2. Either

(i) xx = x2, or

(ii) x2 is obtained from Jc, by reflecting through the jk-plane (i.e., changing

the sign of its i-coordinate, as asserted in the lemma). Note that if we reflected

xx through the ik-plane, we would get an angle of rotation of opposite sign.

We need to show that (ii) holds. If ß = ±n/2, then (i) and (ii) coincide,

so assume ß ¿ ±n/2. Suppose that (i) holds, so p(xx) = p(x2). Then, since

x3xxx3x = x2, we conclude that x3 commutes with xx. It follows that x3 =

±xx   (p(x3) = p(xx)±x). If p(x3) = p(xx), then p(xx) commutes with p(yx),



no

j-axis

Figure ll.A projection of X0 along the j-axis

so p is abelian by Lemma 7, giving a contradiction. If x3 = -jc,, please

consider Figure 11. This figure is a planar projection of X0 along the j-axis.

The equation y2x3y2x =x, implies that Jc, is obtained from x3 by a rotation

about y2. However, a rotation about y2 must keep x3 on the circle C (seen

from the side as a line in the figure), which cannot intersect Jc, ! So we again

have a contradiction. This eliminates possibility (i) above, and establishes that

p(xx) andp(x2) are as claimed in Lemma 8.

All that remains is to show that x3 lies on the jk-equator. If ß ^ ±n/2,

then, since x3xxx3 = x2 , x3 is equidistant from xx and x2 ; hence, x3 is on

the jk-equator. If ß = ±n/2, then x, = x2 = ±j, so p(x3) commutes with

p(xx). It follows that x3 = ±xx , so x3 is on the jk-equator. This completes

the proof of Lemma 8.   G

Using Lemma 8, we can associate to each nonabelian p such that p(yx) ^

p(y2)~X (i.e., in Case 2, above), a well-defined triple (a, ß, y), where 0 < a <

n/2 and ß, y e R/2nZ. Note that for p(yx) = p(y2)~ (i.e., in Case 1), we

can also represent p by (a, ß, y) as in Lemma 8, with a = n/2. However,

instead of getting a well-defined triple, we get a choice of two possible triples,

one with y = 0 and one with y = n . This is the only ambiguity. Thus we can

identify R(WL) with a subset of aßy-space, with identifications corresponding

to the ambiguity in Case 1. We just need a simple criterion for deciding which

triples (a, ß, y) correspond to representations. First, note that for (a, ß, y)

to correspond with a representation, we must have either

(i) ß e [-n/2, n/2] and y e [0, n], or

(ii) ß e [n/2, 3n/2] and ye[-n,0].

This can be seen from Figure 10. The fact that xx is related to x3 by a rotation

about y2 implies that (i) or (ii) holds.
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k

y2

j-axis

Figure 12. Another planar projection of X0

Thus, our representations are to be sought in the union of two boxes:

(a, ß, y) eBx L\B2, where

Bx = (0, n/2] x [-n/2, n/2] x [0, n],

B2 = (0, n/2] x [n/2, 3n/2] x [-n, 0].

Lemma 9. If (a, ß, y) e Bx U7?2, then (a, ß, y) corresponds to a representation

■& cos a cos ß = sin a sin y.

Proof. (1) d(y2,xx) = d(y2,x3) <$■ (2) (y2, xx) = (y2,x3), because these

points lie on the unit 2-sphere. (( , ) is the usual inner product on R .) When

we write out (2) using the formulae in Lemma 8, we obtain precisely

cos a cos ß = sin a sin y.

It follows immediately from y2xxy2x = x3 that this condition is necessary. For

sufficiency, assume we have (a, ß,y) satisfying

cos a cos ß = sin a sin y.

Then the angle of rotation about y2 taking x3 to xx determines the real part

of the p(yt) , and the angle of rotation about x3 taking xx to x2 determines

the real part of the p(x¡). It then follows from elementary geometric arguments

that all the relations are satisfied, so we have a representation. This completes

the proof of Lemma 9.   G

We now set about analyzing the set of triples satisfying

cos a cos ß = sin a sin y.

It is easy to verify that this equation defines smooth surfaces (in fact, discs) in

Bx and 7i2. These surfaces in a/?y-space are pictured in Figure 13. (Note that

in order to allow a clear view of the boundaries of the surfaces, the perspective
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in these diagrams is somewhat distorted, so that the front face of each B is

drawn smaller than the rear face. The y-axis is intended to point out of the

page, and the arrows on the ends of the coordinate axes point in the direction

of higher coordinate values.)

When we take the union of these two surfaces, while making the indicated

identifications of their boundaries, we obtain 7?(WL). It is left to the reader to

verify that the resulting complex is a punctured torus. This completes the proof

of the theorem.   G

-»a

surface
in 5}

ae (0. tt/2]

ß € [-Tt/2. TT/2]

Y €   [0. it]

a€ (0. tt/2]

ß 6 [ïï/2. 3ïï/2]

Y€ [-ïï. 0]

The meaning of the markings on the subarcs of the boundaries of the above

discs is as follows:

h—i—h

These points correspond to abelian representations, hence

are excluded.

These identifications are a consequence of the ambiguity in

assigning a triple to a representation in Case 1 above.

-»»-

These identifications are a consequence of equality (mod 2n)

for ß and for y .

Figure 13. Two surfaces whose union (with identifica-

tions) is J?(WL)



REPRESENTATIONS OF KNOT GROUPS IN SU(2) 813

I.E. Binary dihedral representations. Define the binary dihedral group N c S3

by N = SXAUSXB, where

S\ = {a + bi:a2 + b2 = 1}

and

SxB = {c) + dk:c2 + d2= 1}.

Topologically, N is the disjoint union of two circles. SA is a subgroup of

/Y of index 2. Let K c S3 be a knot. Let Y = nx(S3 - K) have Wirtinger

presentation

Y={xx,...,xn: (xpx^xj*') = xl+x,  1 < i < n - 1},

where e. = ±1 for all i. The following theorem is the main result of this

section.

Theorem 10. The number of conjugacy classes of nonabelian homomorphisms

Y —> N is equal to

(|^^(-1)| - l)/2,

where AK(t) is the Alexander polynomial of K.

Note that A^-l) is always an odd integer (see, for example, Rolfsen [Ro,

p. 213]).

Corollary 11. If |A^(-1)| ^ 1, then there exist nonabelian representations of

nx(S3-K) into N c S3.

As an example the torus knots of type (p, q), where p and q are both odd,

are knots without nonabelian representations into N. The groups of these torus

knots do, however, have nonabelian representations into S .

Proof of Theorem 10. The idea of this proof is closely related to the study of

metacyclic representations in Fox [F, pp. 160-163].

Suppose p: Y —> N has nonabelian image. Since the xt are all conjugate,

and since SXA is normal in N, we know that either all the p(xt) are contained

in SA or all are contained in SB. If {p(x/)} is contained in SA then p is

abelian, so assume {p(x¡)} is contained in SB. Each element of SXB can be

expressed as
if?

e j = cos 0j + sin 0k

for some 8 e R/2nZ. Any two elements of SB are conjugate in N because

ia,   ¡0.N   — \a i((9+2a).
e  (e ¡)e     =ey      ').

Hence, by conjugation, we can assume that p(xn) = j. For each i, 1 < i < n ,

define 8¡ e R/2nZ by p(x¡) = ew>j.
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To see what conditions are imposed on the 8i by the relations in our presen-

tation for T, we substitute this expression for p(x¡) into those relations. The

result is the following system of linear equations over R/2nZ for the 0. :

Ö, + Ö1+1-20,=O,

where 1 < / < n - 1 and 8n = 0. It follows that the set of Az-tuples

(8x,82,...,8n_x,0)e(R/2nZ)n

satisfying this system of equations is in one-to-one correspondence with the

set J of representations of Y into N taking xn to j. In the z'th row of the

(n - 1) x Az matrix corresponding to this system, we have the following nonzero

entries:
column :   i    i+l    j,

entry :    1       1-2

We wish to count the set of solutions to this system over R/2nZ having 8n = 0 ;

thus we may drop the last column of the matrix. The z'th row of the resulting

matrix, which we call A, is the same, up to sign, as the z'th row of AK(-l),

where AK(t) is obtained from the Alexander matrix corresponding to our orig-

inal group presentation by removing its last column. Since

detA = ±AK(-l)

is always an odd integer, we know A is nonsingular.

Think of A as a linear transformation R"~ ->R"" . The number of solu-

tions mod 2nZ is equal to

card{A~l (2nZn~X)/(2nZn~X)}

= card{(2nZn~X)/A(2nZ"~X)}

= card(Zn~x /A(Zn~x)) = I det(yi)| = ^(-1)1.

There is precisely one abelian representation taking xn —» j, namely, the one

taking all x¡ —> j. Each nonabelian representation in J has precisely one

distinct conjugate in J : the one obtained from conjugating by j. It fol-

lows that the number of conjugacy classes of nonabelian representations is

(lA^(-1)| - l)/2 . This completes the proof of Theorem 10.   G

I.F. Incompressible surfaces and dim(R(K)). In this section we explore the re-

lationship between incompressible surfaces in knot complements, and higher

dimensional components in R(K). We begin by using composite and doubled

knots to show how incompressible annuli and tori can lead to components of

R(K) whose dimension is greater than one. A proposition is then proved which

states that a component of R(K) whose dimension is greater than one always

leads to closed, nonboundary parallel, incompressible surfaces in the comple-

ment of K.
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Composite knots. Let K c S3 be a knot, and let p e nx(S3 - K) be a group

element corresponding to a meridian of K. Define <pK: R(K) -+[-1,1] by

<PK([p]) = MP(P)) ■ Define Rt(K) = <pKx(t) = {[p] : p(p) e XJ .

Let Kx and K2 be oriented knots in S3, and let K = KX#K2 denote their

connected sum. Let /z( e n¡(S3 - K¡), i = 1, 2, be meridians of these knots.

Van Kampen's theorem allows us to express nx(S - K) as a free product with

amalgamation

nx(S3 -K) = nx(S3 - Kx) *f nx(S3 - K2),

where the amalgamating homomorphism f:(px)^(p2) is given by f(px) =

p2. Let p = px = p2 e nx(S3 - K) be a meridian of K. The following

proposition expresses R¡(K) in terms of Rt(Kx) and 7?((7C2).

Proposition 12. R,(K) = Xx u X2 U XX2 (a disjoint union), where

Xx=Rt(Kx),        X2 = Rt(K2),

and there is a surjective map

ip:Xx2^Rt(Kx)xRt(K2)

with the property that v~x([px], [p2]) is a circle for all [px] e R¡(KX) and

[p2]eRt(K2).

Proof. The intuitive idea behind this proof is that the circles which make up XX2
•3

are obtained by pivoting representations of nx(S - K2) about representations
3 3

of nx(S - Kx) using conjugation in S .

Suppose p e R(K) is nonabelian. Define pi e R(K¡) by p¿ = p\nx(S3 - K¡)

for i = 1, 2. We then write p = px* p2. Conversely, given px e R(KX) and

p2 e R(K2), we can form p = px * p2 if and only if px(px) = p2(p2). Now

define

x\ = {[P\ * P2\ g B-t(K) : p2 is abelian},

X2 = {[P\ * P2I € P-ÁK) '■ Pi is abelian},

and

Xx2 = {[px * p2] e Rt(K) : px and p2 are nonabelian}.

Clearly, ^U^UXX2 is a disjoint union.

Note. If px  and p2 are both abelian, then so is px * p2.   However, we are

assuming px*p2 is nonabelian, so it follows that either px or p2 is nonabelian.

Given  px  with  [px] e Rt(Kx), there is a unique abelian representation
-Î -3

p2: nx(S - K2) —> S satisfying px(px) = p2(p2). It follows that Xx is home-

omorphic to Rt(Kx) and, by the same argument, that X2 is homeomorphic to

Rt(K2).
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Define the map y/: Xx2 -> R,(KX) x Rt(K2) by

¥([Px*P2]) = ([Pl\, [P2])-

One easily checks that y/ is well defined. To see that y/ is surjective, observe

that if ([/?,], [/a2]) £ Rt(Kx) x Rt(K2), then there exists ct € -S3  such that

ap2(p2)a~x = px(px). Hence í¿/([/J, * ((T/>2cr_1)]) = ([^j], [p2]).

To see that point inverses under y/ are circles, note that the set of all cosets

[t] € S3/{±1} satisfying rp2(p2)r~x = px(px) is a coset of the circle subgroup

containing [p2(p2)]e S /{±1} and is, therefore, a circle. Since S /{±1} acts

freely on the nonabelian representations, this implies that y/~ ([px], [p2]) is a

circle.   G

If t e im(tpK )C\im(q>K ) then, by the previous proposition, dim(Rt(K)) > 1.

Suppose, in addition, that [px] e q>^ (t) is a regular point of <pK . By this, we

mean that we can find a smooth arc Ax in R(KX) containing [px] such that

the derivative at [px] of q>K \AX is nonzero. Suppose that [p2] e y>^x(t) is a

regular point of <pK in the same sense. Assume, by restricting to smaller arcs

if necessary, that the derivative of (pK \Ai is nonzero for i = 1, 2. Define

D = {([P1], [P2])£A{ xA2\(pK[px] = (pK\\p2]},

a smooth arc in Ax x A2. Then y/: y/~ (D) -> D is a submersion, and since

V~l([p\]AP2]) is a circle, it follows that y/~x(D) is 2-dimensional. The pre-

ceding discussion proves the following proposition.

Proposition 13. Let Kx and K2 be two knots in S3. Suppose [px] e R(KX)

and [p2] e R(K2) are regular points of <pK and q>K , respectively, and that

9k [P\\ = Vk [Pf{ • Then [px * p2] is contained in a 2-dimensional component

o/r(Kx#K2).

In fact, using Proposition 12, together with a knowledge of R(KX) and

R(K2), we can form an accurate picture of 7^(7^ #K2). We illustrate this in

the following two examples.

t=cos(ir/6) 9

t=cos(ir/3)

t=-cos(ir/3)

t=-cos(ir/6)A

R(KX) R(K2) R(KX#K2)

Figure 14. The representation space of the connected

sum of the trefoil and figure 8 knots
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Example 1. Let Kx be the trefoil knot and K2 the figure eight knot. (In the

notation of §I.C, K2 is the 2-twist knot.) In Figure 14, we have diagrammed

R(KX) and 7*(7c"2).

In Figure 14, each representation space is pictured in such a way that the

vertical coordinate is t = Re(p(p)). From our pictures of R(KX) and R(K2),

we deduce the pictures of R(KX#K2) as follows. For each value of t, use

Proposition 12 to construct 7^(7^ #7sf2) from Rt(Kx) and Rt(K2). Then piece

together these level sets to obtain R(KX # K2). (Figure 14 is inaccurate inasmuch

as each meridian curve of the torus component should be horizontal, i.e., should

correspond to a fixed value of t.)

Example 2.  K = 7C¡ ,# K3 , (where Kn a is a (p, i7)-torus knot).

ot = cos(t/10)

tcos(3t/10)

P,Q

9 cos(t/6)

A-cos(3ir/10)

A -cos(ir/6)

A -cos(ir/10)

*(*5,2) *(*3 2) R(K52*K32)

Figure 15. The representation space of the connected

sum of two torus knots

In studying Figure 15, recall that the endpoints of the arcs of nonabelian repre-

sentations in R(K5 2) and R(K3 2) correspond to abelian representations. For

this reason, for example, as t —► cos(^/6)~ , the family of circles corresponding

to Xx2 approaches a single point of Rx. This results in the existence of singular

points (i.e., nonmanifold points) in R(K5 2#K3 2).

Doubled knots. Let L be the knot contained in the solid torus V pictured in

Figure 16. Let p and k be the oriented meridian and longitude curves in dV

pictured in Figure 16.

Let K c S   be a knot, and N(K) a closed tubular neighborhood of K in
•3

aS . Let p and k in dN(K) represent an oriented meridian and a preferred

longitude of K c S . If n is an integer, there exists a homeomorphism

<pn:dN(K)-*dV

satisfying y>n(p) = p and <pn(k) = k + np, where, as usual, we are also letting

p, k, etc., represent their corresponding fundamental group elements. These

properties determine <pn up to isotopy. [S3 - int(N(K))] U    K is homeomor-
™AJ

phic to S3. Hence, we may think of L as a knot Kn in this 3-sphere; we will

refer to K„ as the az -twisted double of K .
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Figure 16. The knot L in the solid torus V

From the construction described above, it is clear that the complement of the

Az-twisted double of K can be expressed as

S3-Kn = [S3-int(N(K))]U9n [V-L].

By Van Kampen's theorem, we may express nx (S3 - Kn) as a free product with

amalgamation:

nx(S3 -Kn) = nx(S3 - int(N(K))) *(^ nx(V - L).

We now show that, generically, R(Kn) has 2-dimensional components. Ob-

serve that V - L = S3 - WL, where WL is the Whitehead link, defined in §I.D.

It follows that each representation p e R(Kn) can be expressed in the form

p = px* p2, where px e R(K), p2 e 7?(WL), and they satisfy

P\(P) = P2(<Pn{P-))   and   px(k) = p2(<pn(k)).

Define A = {(x, y) e S x S : [x, y] = 1}. S3 acts by conjugation on Ä.

Let A = ^/(action by S3). Since

A*SxxSx/(x,y)~(x,y),

A  is a  2-dimensional orbifold.    We now define maps  qx : R(K) —*• A  by

?,([/>]) = [P(P) > PW]. and q2 : 7?(WL) - ¿1, by q2([p]) = [p(<pn(p)), p(<PnW)].

Let [px] e R(K) and [p2] e RÇWL). We can form [px * p2] e R(Kn) if and

only if qx[px] = q2[p2].

We have used computations involving 7?(WL), as computed in §I.D, to show

that q2 is a submersion on the complement of a set of measure zero in 7?(WL).

We will omit these computations from the present paper, and will present them,

instead, in a forthcoming paper on doubled knots. (See [K].)

Now suppose, as for the examples computed in §§1.B and I.C, that R(K) is a

1-manifold. Then, generically, one expects qx~ (imp2) to contain 1-dimension-

al submanifolds of R(K).  Let M c qx~ (im<72) be such a submanifold.  By
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definition, for each px e M, there exists a p2 e 1?(WL) such that qx[px] =

q2[p2]. By conjugating p2 by an element of S3, we may assume that px(p) =

p2((pn(p)) and px(k) = p2(<pn(k)). For each such pair ([px], [p2]), we can form

a circle of classes in R(Kn) of the form [px * (ap2a~ )], where a varies in

the circle subgroup containing px(p) and px(k). Since R(Kn) contains such

a circle for each point in the 1-manifold M, it follows that for this generic

case R(Kn) contains 2-dimensional components. Thus we have the following

proposition.

Proposition 14. Let K c S be a knot. Suppose that dim R(K) > 1. Then,

subject to the genericity assumption in the preceding paragraph, dimR(Kn) >

2.    G

We have carried out this computation for Kn = the untwisted double of the

trefoil, and in this case R(Kn) = the union of four tori. For more information,

see [K].

A proposition relating higher-dimensional components of R(K) to incompressible

surfaces. Thus far in this section we have seen that if AT is a composite or a

doubled knot, R(K) generally contains components of dimension greater than

one. Note that these two types of knots are examples of nontrivial satellite

knots, which we define to be knots whose complements contain nonboundary

parallel incompressible tori. We now prove a partial converse to Propositions

13 and 14.

Proposition 15. Let K c S be a knot and N(K) a closed tubular neighborhood

of K in S . If R(K) contains a component of dimension greater than or equal

to two, then S3 -int(N(K)) contains a nonempty system of closed, nonboundary

parallel, incompressible surfaces.

Proof. This proposition, the proof of which will occupy the rest of this section,

is a direct consequence of results in Culler and Shalen's paper Varieties of repre-

sentations and splittings of 3-manifolds [CS], and we shall follow their notation
•3

as much as possible. Define X(S - K) to be the set of characters of representa-

tions of nx(S3 - K) in SL(2, C). Culler and Shalen show that X(S3 -K) can

be given the structure of a complex affine algebraic set. Its ambient coordinates

are given by {x(g¡)}. where x € X(S - K) is a character and {g¡} is a finite

subset of nx(S3 - K). Because SU(2) is a subgroup of SL(2, C), there is an

obvious map

t:R(K)^X(S3 -K),

which associates to each representation the corresponding character. We claim

that this map induces an injection, which we call t :

i: R(K) -► X(S3 - K).

This claim will follow from the following two facts:
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(1) Two irreducible representations in SL(2, C) are conjugate if and only if

they correspond to the same character.

(2) If two irreducible (i.e., nonabelian) representations in SU(2) are con-

jugate by an element of SL(2, C), then they are conjugate by an element of

SU(2).
Culler and Shalen prove (1) [CS, Proposition 1.5.2].

Proof of (2). Let px, p2: Y —► SU(2) be two nonabelian representations and

suppose that ApxA~x = p2, where A e SL(2, C). Assume that A is not in

SU(2). Think of the elements of SL(2, C) as acting on hyperbolic 3-space,

773, via the double cover SL(2, C) -» PSL(2, C). Then SU(2) is just the

subgroup of SL(2, C) fixing a particular point p e 77 . Since px(Y) fixes

p, p2(Y) = Apx(Y)A~ fixes A(p). Since A is not in SU(2), A(p) ^ p.

Since p2(Y) e SU(2) fixes two distinct points, p and A(p), it fixes an entire

hyperbolic line. It follows that p2(Y) is abelian, a contradiction that implies

that our assumption that A is not in SU(2) was false.   G

Having proven the claim, we identify R(K) with a subset of X(S3 -K) via

the map t. Since traces of elements of SU(2) are real, R(K) is made up of

real points of X(S3 - K).

Lemma 16. If R(K) has a component of real dimension greater than or equal

to two, then X(S - K) has a component of complex dimension greater than or

equal to two.

Proof. Let V be a component of R(K) such that dimK(F) > 2. Let [p] e V

be a regular (i.e., nonsingular) point. Then there is a map /: R —> V, given by

a power series, which is an embedding near 0 (i.e., its first partials are nonzero),

and which satisfies /(0) = [p]. Since the power series for / formally satisfies
■3 2

the polynomials defining X(S - K), we may extend / to a function C —>

X(S — K) given by the same power series. This extension, which we also call

/, is also locally an embedding, since its first partials are nonzero. It follows

that [p] is contained in a component of X(S - K) of complex dimension

greater than or equal to two.   G

Hatcher, in [H], proves that only a finite number of isotopy classes of sim-

ple closed curves in dN(K) can occur as boundary components of properly

embedded incompressible surfaces in S - int(N(K)). We may conclude that

there exists a simple closed curve y in dN(K) which does not occur as one of

the boundary components of any incompressible surface. We use y to denote

the corresponding element of nx(S3 - int(N(K))), as well. Let V c X(S3 - K)

denote a component with dimc(F) > 2 (which we have just shown to exist).

Define I : V —► C by Iy(x) = x(y) ■ Let C c V be a complex affine curve on

which I is constant. Let C be a desingularized projective curve with function

field isomorphic to that of C (see [CS] for details). Let x be an ideal point
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of C. Since Iy is constant on C, the corresponding function Iy on C does

not have a pole at Jc. It follows from Theorems 2.2.1 and 2.3.1 of [CS] that

we can associate to x a nonempty system X = Sx U • • • U .S^ of properly em-

bedded, nonboundary parallel, incompressible surfaces in S -int(N(K)) such

that y n X = 0. Since any boundary circles of aS'/ must be disjoint from y,

they must be parallel to and, hence, in the same isotopy class as y. Since this

contradicts the choice of y not to be a boundary curve, we conclude that X is a

system of closed incompressible surfaces, completing the proof of Proposition

15.    G

II. Tangent space computations

ILA. The Zariski tangent space to 7?(r). Let T be a finitely presented group

with presentation

r = {xl,x2,...,x„:wl,w2,..., wj.

In this section we set up a framework (due to Weil [W]) for computing the

Zariski tangent space to R(Y) at a particular representation p.

Let g be the Lie algebra of S3. If q e S3, recall that Cq : S3 -+ S3 is given

by C (o) = qoq~ . Let (dCq)x denote the differential of Cq at the point

1 e S3. Define Ad: S3 -+ Aut(g) by

Ad(q)(z) = (dCq)x(z)   for z eg.

If p e R(Y), define p: Y -» Aut(g) by

p(x)(z) = Ad(p(x))(z),       xeY,zeg.

p is known as the adjoint representation to p .

Lubotzky and Magid [LM, p. 62] show that we may calculate the scheme-

theoretic Zariski tangent space, T R(Y), to 7?(r) at a representation p, by the

formula

TpR(Y) = f]{ker(dwi)p:i=l,...,m}.

(In this formula, we are thinking of 7?(r) as a subset of (S )n, by identify-

ing p with the point (p(xx), ... , p(xn)) in (S )". The words wi are being

considered as maps from (S3)n to aS3 , as discussed in §I.A.) We shall need an

algorithm for computing this tangent space. The formula (Proposition 18) that

we derive appears in Weil [W, p. 151], and is also derived by Lubotzky and

Magid in [LM]. For convenience, a slightly different derivation is included here.

We begin by sharpening our notation. Define

qr-(s3)n^s3

to be projection on the z'th factor, for i = I, ... , n . Define

qi   :(S)   -^S



822 E. P. KLASSEN

to be q¡ followed by inversion in the group S . Suppose we are given a word

w in the az letters {xx, ... , xn) ,

W = X,1 •• -x¡  ,
h h

where e- = ±1 and 1 < j¿ < n, for i = I, ... , k. The corresponding map

w : (S )" -» 5   is then given by the product

S acts on its own tangent bundle from the left and from the right by trans-

lation. We indicate this action by the appropriate juxtaposition av or va,

where v e TtS3 and a e S3. Let

a = (ax,...,an)e(S3)n.

We wish to compute the composition

g"^T(7((S3)n)^Tw{a)(S3)^g,

where the first and last maps are right translations, and the middle map is

dwa . For the purpose of the following lemma, we will denote this composition

by dwa ; thereafter, by abuse of notation, we will always denote it simply dwa .

Lemma 17. Let z = (zx, ... , zn) eg" . Then

k

dwa(z) = j2yÁzj)'
i=i

where, for each i,

y, = Ad(ajt ■ ■ ■ o^__ ) e Aut(g)    ifei = 1,

or

y, = - Ad(a;i • • • «r;. ) G Aut(g)   ifei = -1.

Proof. Let v = (vx,v2,... , vn) e Ta((S3)n) = Ta S3 x---xTa S3. We assume

the basic facts (true in any Lie group)

(i) (dqi)a(v) = vi,and

(ii) (dq-x)a(v) = -o-xv¡o;x.

By the product rule,

dwa(v) = j^ol-..^(dqJ)a(v)o^---ol.

We then compute

dwa(z) = (dwa(za))w(ayx

w =t^:---^d^(^::---^w(a)-x.
i=i
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Using facts (i) and (ii), and the fact that

w(a)~  = er"** • ■ • cr~E|,
h h

the expression (*) simplifies to the statement in the lemma.   G

Suppose p e R[T), and w = x)' • • • x,* is one of the relations in our pre-

sentation of Y. Then the coordinates of p in (S3)n are (p(xx), ... , p(xn)).

The following proposition, which is an immediate consequence of Lemma 17,

enables us to compute T (R(Y)).

Proposition 18. Let z = (z,, z2, ... , zn) be an element of g" . Then

k

dwp(z) = YJUi(z}),
i=\

where, for each i,

ui = />(*'[ '• 'x£\) e Aut(g)   ifsi = l '

or

ui = -P(x'l ' ' ' *'[} e Aut(g)   ifei = -1-

This proposition enables us to express T R(Y) as the space of solutions to a

specific system of linear equations, i.e., as the null space of a specific matrix.

Note. As Weil [W] and others have observed, this is the same system of equa-

tions that defines the space of 1-cocycles of Y with coefficients in g, which is

viewed as a T-module via p.

II.B. The tangent space at an abelian representation. Let K c S3 be a knot.

Recall that S(K) denotes the space of abelian representations. The main result

of this section is the following theorem.

Theorem 19. Let p e R(K) be an abelian representation. Let p e nx(S3 - K)

be a meridian of K. Assume (by conjugation in S ) that p(p) e C. Let AK(t)

be the Alexander polynomial of K. Then:

(i) If AK(p(p)2) ̂  0, then dim T (R(K)) = 3 and a sufficiently small neigh-

borhood of p in R(K) consists entirely of points of the 3-manifold S(K).

(ii) If AK(p(p)2) = 0, then

dim Tp(R(K)) -3 + 2 dimc(ker AK(p(p)2)),

where AK(t) is obtained from an Alexander matrix of K by deleting a column,

and has the property that AK(t) = det(AK(t)).

Note. This theorem has been discovered independently by Steve Boyer jointly

with Andrew Nicas, and also by Charles Frohman. However, we know of no

reference for it in the literature.
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Proof of Theorem 19. Let Y = nx(S -K). Then Y has a Wirtinger presentation

of the form

Y={xx,...,xn:wx,...,wn_x}.

The relators wi are words in the x, of the form

wi = (xj)£'xi(xjyE'(xi+xyx,

where e( = ±1  and j¡ e {1,2, ... , n}  for each  i = 1, ... ,n - 1.   Let

W: (S3)" -» (S3)"-1 be the function whose z'th component is wi. Then

Tp(R(K)) = ker(dWp : g" -» g""1) = p^ker^u/^ : * = 1,...,«}.

Using Proposition 18, we now calculate (dw/)   as follows: If e, = 1, then

(i/t^.yz,,..., zj

= z;. + p(x;_)z. - piXjXiXj*)!^ - p(xjxix~x(xi+x)~x)zi+x

= (using the relations for Y)p(xj)zj - z/+1 + (7 - p(xi+l))Zj ,

where (z,, ... , zj e g" . If e, = -1, then we obtain

(dwi)p(zx, ... , zn) = p(x~l)zt - zi+x + (p(xjxxi) - p(x~X))zh .

Since p is abelian we may assume, by conjugation, that

P(xx) = ■ ■ ■ = p(xn) = eW .

Using {i, j, k} as a basis for g, an easy computation shows that

(I       0 0      \

P(xx) = ■■■ = P(xn) =    0   cos20   -sin20

\0   sin 20     cos 20 J

We denote this matrix by T.

dW : g" —> g"~ is described by an (n - l) x n matrix A with entries in

GL(g) = GL(3, R), the z'th row of Ap being (dw^ . Thus, if e( = 1, the z'th

row of A   is given by

column number :    i    i + 1    • • • j.

entry:    T     -1     •••    I-T

with all other entries in this row equal to zero. If e(. = -1, the z'th row of A

is given by
column number :      i      i + I    ■ ■■ j.

entry:    T~x     -I     ■■■    I - T~x

with all other entries equal to zero. Note that A is just the Alexander matrix,

as computed from the same projection as our original Wirtinger presentation,

only with the real number 1 and the variable t replaced by the 3x3 matrices

7 and T.
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Since the sum of the columns of Ap is zero, the kernel of dW contains all

vectors of the form (z, ... , z) eg" , i.e., the diagonal A(g"). This reflects the

fact that
A(gn) = T(A(S3)n),

while

A(aS3)" = S(K) C R(K)

is precisely the set of abelian representations.

Let us now examine ker(^4 )/A(g"). Define

Lp = {(zx,...,zn_x,0)eker(Ap)}.

We then have L  = ker(A )/A(gn) by the inclusion composed with the quotient

Lp^ker(Ap)^ker(Ap)/A(gn).

Observe that L   is just the kernel of the matrix obtained by removing the last

column from A . This matrix, which we call A , is an (az - 1) x (az - 1) matrix

with entries in GL(3, R), or a 3(az - 1) x 3(az - 1) matrix with entries in R.

If i < n - 1 and e; = 1, the z'th row of A   becomes:

column : i i + 1 j-

1 0 0   |  — 1 0      0   | 0 0 0
0 cos20   -sin20   |      0      -1      0   |0   l-cos20 sin20

0 sin20      cos20   |      0        0   -1    | 0      -sin20    l-cos20

The other entries in this row are equal to zero. If e, = -1, the z'th row is

similar, and the following discussion applies to both. The entry in column ji

is, of course, omitted if j¡ = n . Row az - 1 is similar, but without the entry in

column i + 1.

Suppose the null space of A   contains a vector with transpose (ax, bx, cx,

• •• , an_x, bn_x, cn_x). (We are writing this vector as a vector in R3("_1) ̂  g"~x

using the basis {i, j, k} for each copy of g.) Row i of A , for i < n — 1,

tells us that at = ai+x. Row az - 1 tells us that an_x = 0. So we know that

ax=-- = an_x=0.

Now consider the (az-I)x(az-I) matrix over C obtained from A by replacing

7 by 1 and T by cos20+isin20 , in each of the nonzero entries -7,1-T, etc.

Denote this matrix by Ä'. Note that A' is just the Alexander matrix with e '

substituted for t, and the last column removed. It is immediate that the vector

with transpose (0, bx, cx, 0, b2, c2, ... , 0, bn_x, cn_x) is in the null space of

A   if and only if the vector with transpose

(/31+ic1,...,/3„_1+ic„_1)
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is in the nullspace of Ä. Note that the latter nullspace is a vector space over

C. It follows that

dimi Lp = dimR(ker(^)) = 2 dimc(ker^) •

Since A = AK(p(p) ), it follows that

dim Tp(R(K)) = 3 + dimLp = 3 + 2 dimc(ker^(/A(/i)2)),

which proves part (ii) of the theorem.

If AK(p(p)2) / 0, then Ä' is nonsingular, so dim T (R(K)) = 3 . Since this

means that dW has maximal rank, it follows that R(K) is a 3-manifold in

a small neighborhood of p. Since S(K) c R(K) is a 3-manifold containing

p, this small neighborhood must consist only of abelian representations. This

proves part (i) of the theorem.   G

In the cases of the torus and twist knots analyzed in §1 of this thesis, those

abelian representations p for which dim T R(K) > 3, i.e., those for which

AK(p(p)2) = 0, are precisely those abelian representations which can be ex-

pressed as limits of arcs of nonabelian representations. The above theorem im-

plies that, for an arbitrary knot, abelian representations p satisfying AK(p(p) )

= 0 are the only abelian representations which could possibly be expressible as

limits of nonabelian representations. The question of whether these singular

(i.e., AK(p(p) ) = 0) abelian representations can always be expressed as limits

of nonabelian representations is a question of when infinitesimal deformations

can be realized by actual deformations. It has now been proven (see [FK]) that

if p is an abelian representation and p(p) is a simple root of A^., then p is

a limit of an arc of nonabelian representations.

T (R(K)) and Euclidean isometries. We will now give an interpretation of the

tangent space at an abelian representation in terms of Euclidean representa-

tions of T. Define Isom+(C) to be the set of orientation-preserving Euclidean

isometries of C. These are the maps of the form u —► au + b , where a and

b are elements of C and \a\ = 1. The conjugacy classes in this group are of

three types:  {Idc}, Xr  (r a positive real), and Ya  (a e S1, a ^ 1), where

Xr = {u-+u + b:\b\ = r}

and

Ya = {u ->• au + b : b e C}.

Consider a homomorphism

(p: Y -+ Isom+(C).

Since the generators x¡ are conjugate to each other, their images

ç>(x,)(m) = au + (bt + ic¡)

all have the same multiplicative factor a. Fixing a, we consider the set of

representations of the form (p(x¡) = (u -* au + ib^ic/)). Suppose, in addition,
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we impose the condition that <p(xn) fixes the origin, i.e., that bn + \cn = 0. De

Rham [D, pp. 188-189] shows that the set of (az - l)-tuples

(bx+icx,b2 + ic2,... ,bn_x+icn_x)

making y> a homomorphism is precisely the null-space of the matrix AK(a).

(As above, AK(t) is obtained by removing the nth column from the Alexan-

der matrix associated with the Wirtinger presentation of Y used in the above

proof.) It follows that we can identify these Euclidean representations with

certain tangent vectors.

To make this precise, let p e R(K) be an abelian representation. Assume,

by conjugation, that p(p) e C. Recall the subspace L c T (R(K)) defined in

the last proof. Define a map

/,:L,-+Hom(r,Isom+(C))

given by

(0,bx,cx,... ,0,bn_x,cn_x,0, 0,0) —p,

where <p(xt)(u) = p(p)2u + (bt + ic¡). De Rham's result with a = p(p)2 com-

bines with the proof of Theorem 19 to prove the following proposition.

Proposition 20. f induces an isomorphism L = {<p e Hom(r, Isom+(C)) : <p

has multiplicative factor equal to p(p) , and y>(xn) fixes the origin in C}.   G

To conclude, we give a geometric interpretation of this isomorphism. Recall

from §I.C that one can associate to a representation of Y in S a geodesic image

in aS2 of a certain polygon PK, whose vertices correspond to the generators

of T. This image must also satisfy certain geometric constraints imposed by

the relations between the x¡. Let v e L be a Zariski tangent vector which is

actually tangent to an arc of representations, say ps. We are assuming that p0 =

p is abelian, while the other ps are not necessarily abelian. As s approaches 0,

the vertices of the corresponding images of PK in S approach a single point.

But as the diameter of the image of PK in S approaches 0, that image more

and more closely approximates a Euclidean image of PK . After multiplying by

an appropriate scaling factor we can see that the spherical images of PK actually

approach a Euclidean image satisfying the same geometric constraints. This

Euclidean image, in turn, corresponds to a representation of Y in Isom+(C),

by letting the images of the vertices correspond to the centers of rotation of the

images of the generators of Y. This gives us a geometric interpretation of the

map f , for those vectors which are realizable by arcs of representations.

Let p e R(K) be an abelian representation with p(p) e C. A corollary of

this discussion is the following:

Proposition 21. dim T (R(K)) > 3 if and only if there exists a nonabelian repre-

sentation of Y in Isom+(C) which takes the generators x¡ to rotations of angle

arg(p(p)2).   G
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