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Applications to cryptography

In this lecture we apply some of the theory we have developed to Cryptography, which is
the subject of sending secret messages. Our main application is to describe the RSA cryp-
tosystem, a widely used method for secure data transmission.

We begin with a simple example of a private key cryptosystem, which most people are familiar
with in some form. Let us write each letter from A to Z as a number in Zyg. For convenience
we also write each number with 2 digits. We have the following correspondence:

AAB C D E F G H I J K L M
00 01 02 03 04 05 06 07 08 09 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

Now, suppose we have a message we would like to send in secret: ALGEBRA. We first
write this in numbers as 00110604011700, by replacing A with 00, and so on. Now we
encrypt the message using our private encryption key: the function f : Zog — Zgg given by
f(k) =k + 10 (mod 26), say. Thus 00 gets sent to f(0) = 0+ 10 = 10 (mod 26), 11 is sent
to f(11) =114 10 =21 (mod 26), and so on. Our message 00110604011700 transforms to

10211614110110

We may write this in letters as KVQOLBK. We send the message in this form to a friend.
Once our friend receives the message, to decode it they only need apply f~1, i.e. the function
on Zsg which is k (mod 26) —» k — 10 (mod 26).

The above cryptosystem, which is ancient and used for example by Caesar, is called a private
key cryptosystem because the key (in this case the function f or its inverse) must be kept
private for the system to work effectively. This scheme also has the property that anyone who
has the key, i.e. knowledge of the function f, can easily encode and also decode messages.
This is because the function f~! is easy to find if f is known, and vice versa. In particular,
anyone who can encode messages can also decode messages.

We now describe a more sophisticated cryptosystem which is used in the modern world and
relies on some of the algebra we have developed thus far. It is called RSA, named after
Rivest, Shamir, and Adleman, who described the method in 1978. The algorithm was ac-
tually discovered earlier in 1973 by Clifford Cocks working for British intelligence, but this
information was only declassified in 1997.

To begin, choose two large distinct prime numbers at random, say p and ¢q. These numbers
are meant to be kept secret from the public. Let n =pg and N = (p—1)(¢ —1). Choose an
integer e which satisfies 1 < e < N and ged(e, N) = 1. We know that there exists an integer
d that satisfies ed =1 (mod N), and we compute this. The scheme is as follows:



MTH 461: Survey of Modern Algebra, Spring 2026 Lecture 11

Public information (encryption key): the number n = pg and integer e.
Private information (decryption key): the prime numbers p, ¢ and the integer d.

Note that although n = pq is known to the public, the factorization of n into the prime
numbers p and ¢ is private information. The robustness of RSA is based on the principle
that factoring numbers is hard!

Now we describe the simplest version of the algorithm. Suppose someone from the public,
“Bob”, wants to send an encrypted message to “Alice”, who holds the private information
of the decryption key. Bob knows only the information n,e while Alice knows p,q and d.
Assume Bob’s message is in the format of a number m € Z. The algorithm is as follows:

1. Bob encodes his message m € Z by computing ¢ = m¢ (mod n).
2. Bob sends his encrypted message c € Z to Alice.

3. Alice then uses d to compute ¢? (mod n), which recovers m € Z.

Why does this work? First, we should check that ¢ = m (mod n), i.e. that Alice’s decryp-
tion actually recovers the original message. We need the following:

Let a,b be relatively prime. Then ¢(ab) = ¢(a)p(bh).

To see this, recall that ¢(a) = |Z)|. We define a map from Z), to the Cartesian product
7 x Zy be sending k (mod ab) to the pair (k (mod a),k (mod b)). This is well-defined: if
k is relatively prime to ab it is then certainly relatively prime to each of a and b. It is a 1-1
map: if k, k' € Z), are sent to the same pairs, then k =k’ (mod a) and k =k’ (mod b), and
so k — k' is divisible by both a and b. Since ged(a,b) = 1, it follows that k — k' is divisible
by ab, and so k = k' (mod ab). It is onto: let r,s be such that ar =1 (mod b) and bs = 1
(mod a). Then for any pair (k; (mod a), ks (mod b)) € ZY x Z; consider

k = kibs + ksar

This gives an element of Z, and it reduces mod a to ki, and reduces mod b to ky. Thus the
map is onto. We have thus produced a 1-1 onto map from Z ), to Z; x Z; . In particular
these sets have the same size. Thus ¢(ab) = |Z);| = |Z) x Z;| = ¢(a)p(b).

Now return to the RSA algorithm. Note that N = (p—1)(¢—1) = ¢(p)o(q) = ¢(pq) = ¢(n).
Recall that Alice has Bob’s encrypted message ¢ € Z* and she computed ¢? € ZX. Since
ed=1 (mod N) we have ed — 1 = kN for some k € Z. Then

Cd = (me)d = med = m1+kN =m- (mN)k =m- (m¢(n))k =m-l=m (mod n)

which is of course Bob’s original message m € ZX. Note that in this computation we used
the fact that m?™ =1 (mod n), which is Euler’s Theorem!



MTH 461: Survey of Modern Algebra, Spring 2026 Lecture 11

Example: Suppose p = 43 and ¢ = 97. Then n = pg = (43)(97) = 4171. Note here
N = ¢(n) = (43 —1)(97 — 1) = 4032. Alice chooses the encryption number e = 13, which is
relatively prime to N = 4032. Alice releases the encryption key information

n=4171, e=13

to the public. However, only she knows p = 43 and ¢ = 97. Alice needs to compute her
private decryption key: this is a number d such that ed = 1 (mod 4171). She computes
d = 1861 using the Euclidean algorithm.

Next, Bob wants to send the message m = 3161 to Alice. He wants to compute m¢ = 31613
(mod 4171). To do this he first writes 13 = 23 + 22 + 1 and then

c=m=3161" = 31612°+2°D) = ((3161%)2)% - (3161%)? - 3161 (mod 4171)

Then 31612 = 9991921 = 2376 (mod 4171). Next, (31612)? = 23762 = 5645376 = 2013
(mod 4171), and ((31612)?)? = 20132 = 4052169 = 2128 (mod 4171). He finally computes

c=m° = (2128)(2013)(3161) = 2582 (mod 4171)

Thus ¢ = 2582 is the encrypted message, and Bob sends this to Alice. She can then decipher
the message by using d = 1861 to compute 2582¢ = m (mod 4171). To do this she can write
1861 in binary as 1861 = 210 4 29 + 28 4+ 26 4 22 4+ 1 and proceed as above:

25822" = 1466, 25822° =1091, 25822° =1456, 25822 =133, 25822" = 1005,

25822" = 643, 25822 =520, 2582%° =4356, 2582% =2363, 25822 =2971.

Thus ¢¢ = 25821861 = (2971)(2363)(3456)(643)(1091)(2582) = 3161 (mod 4171), which is ex-
actly Bob’s original message m.

How can someone intercept the message and decipher it? They would have to know d
(mod N). You can compute d (mod N) from the knowledge of e and N using the Euclidean
algorithm, and of course N = (p —1)(¢ — 1). So knowing the prime numbers p and ¢ will
allow for anyone to decipher encrypted messages. However, the public only knows e and
n = pq. And it is very difficult to factor large numbers! So if p and ¢ (and hence n) are very
large, it will be very difficult for people to decipher intercepted messages.
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