
MTH 461: Survey of Modern Algebra, Spring 2026 Lecture 10

Consequences of Lagrange’s Theorem

Last lecture we discussed Lagrange’s Theorem: for any finite group G, and subgroup H Ă G,
we have rG ∶Hs “ |G|{|H|. Recall here that rG ∶Hs is the number of right cosets of H in G.
The most useful consequence of this theorem is the following:

§ If G is a finite group, and H is a subgroup of G, then |H| divides |G|.

This of course greatly constrains the possibilities for which subsets of G can be subgroups.
A particular case is the following. Let a P G and consider the cyclic subgroup xay Ă G
generated by a. Recall that ordpaq is equal to the size of this subgroup. We obtain:

§ If G is a finite group and a P G then ordpaq divides |G|.

For example, S3 can only have elements of orders t1,2,3,6u, and 6 does not occur because S3

is not cyclic. In fact, we know all of this from direct computation. But now we understand
more about why the orders of elements are constrained to these numbers.

§ If G is a finite group and a P G then a|G| “ e.

Indeed, writing |G| “ ordpaq ¨ n, we have a|G| “ aordpaq¨n “ paordpaqqn “ en “ e, as claimed.

Next, we apply this last result to the group pZˆ
n ,ˆq where n is a positive integer. Define

ϕpnq “ |Zˆ
n | “ #tk P Z ∶ 1 ď k ď n,gcdpk,nq “ 1u

The function ϕpnq is called Euler’s ϕ-function, and sometimes Euler’s totient function. For
example, Zˆ

7 “ t1,2,3,4,5,6u so ϕp7q “ 6, while Zˆ
10 “ t1,3,7,9u and so ϕp10q “ 4. Below

we show a graph of Euler’s ϕ-function.
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§ (Euler’s Theorem) For any integer k relatively prime to n, we have

kϕpnq ” 1 pmod nq

This result follows from the previous one: just view k pmod nq as an element of Zˆ
n , and

note that the order of the group is by definition ϕpnq.

For example, let n “ 30. We list the integers from 1 to 30 which are relatively prime to 30:

Zˆ
30 “ t1,7,11,13,17,19,23,29u

Thus ϕp30q “ |Zˆ
30| “ 8. Furthermore, Euler’s Theorem tells us that for any one of the above

8 integers k (and their congruence classes mod 30) we have k8 ” 1 pmod 30q.

A special case of Euler’s Theorem is when n is a prime number p. For in this case we have

Zˆ
p “ t1,2,⋯, p ´ 1u

so in particular ϕppq “ p ´ 1. Therefore we obtain:

§ (Fermat’s Little Theorem) For a prime p and integer k relatively prime to p:

kp´1 ” 1 pmod pq

The conclusion of this result is often written as kp ” k pmod pq.

For example, 97 is a prime number. Let’s compute 599 pmod 97q. Fermat’s Little Theorem
tells us that 596 ” 1 pmod 97q. Using this we compute:

599 ” 596`3 ” 59653 ” 1 ¨ 53 ” 125 ” 28 pmod 97q

Without the help of Fermat’s Little Theorem, this would have taken much longer!

Another important consequence of Lagrange’s Theorem is the following.

§ Suppose G is a finite group of prime order. Then G is cyclic.

Let H Ă G be a subgroup of G. Then Lagrange’s Theorem tells us that |H| divides |G|.
Since |G| is prime, |H| must be 1 or |G|. In the first case, we must have H “ teu, and in
the latter case, H “ G. In particular, G has no non-trivial proper subgroups. Let a P G be
a non-identity element. Then xay is a non-trivial subgroup and thus must be all of G. In
particular, G “ xay and so G is cyclic and generated by a.

We make two important remarks about Lagrange’s Theorem. First, we could have used
the notion of a left coset instead of a right coset: these are subsets aH “ tah ∶ h P Hu.
Lagrange’s Theorem holds for left cosets, by the same arguments. A consequence is that the
number of left cosets is equal to rG ∶Hs, the number of right cosets.
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Second, the converse to Lagrange’s Theorem is false: if a positive integer d divides |G|, then
it is not necessarily true that there is a subgroup of order d within G. The first instance of
this phenomenon is the following:

§ In the alternating group A4 of order 12, there is no subgroup of order 6.

Let us prove this. First we write out the 12 elements of A4:

A4 “ te, p123q, p132q, p124q, p142q, p134q, p143q, p234q, p243q, p12qp34q, p13qp24q, p14qp23qu

Note we have 8 cycles of length 3, which have order 3, and 3 elements which are pairs of
disjoint transpositions, each of order 2. Now suppose there is a subgroup H Ă A4 of order
6. Let σ P A4 be a cycle of length 3. Consider the right cosets

H, Hσ, Hσ2

Lagrange’s Theorem tells us that rA4 ∶Hs “ |A4|{|H| “ 12{6 “ 2, so there are exactly 2 right
cosets. So two of the cosets above must be equal. If H “ Hσ, then σ P H, and similarly if
H “ Hσ2 then σ2 P H. But since σ2 “ σ´1 and H is a subgroup, we must have σ P H. The
other possibility is that Hσ “ Hσ2. Multiplying on the right by σ gives Hσ2 “ H, and again
we conclude σ P H. In conclusion, every length 3 cycle in A4 must be in H. But there are
8 such cycles. Thus 6 “ |H| ě 8, which is a contradiction. Thus A4 cannot have a subgroup
of order 6, as we claimed.
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