MTH 461: Survey of Modern Algebra, Spring 2026 Lecture 10

Consequences of Lagrange’s Theorem
Last lecture we discussed Lagrange’s Theorem: for any finite group G, and subgroup H < G,
we have [G : H| = |G|/|H|. Recall here that [G : H] is the number of right cosets of H in G.
The most useful consequence of this theorem is the following:

If G is a finite group, and H is a subgroup of G, then |H| divides |G|.
This of course greatly constrains the possibilities for which subsets of G can be subgroups.
A particular case is the following. Let a € G and consider the cyclic subgroup (a) ¢ G
generated by a. Recall that ord(a) is equal to the size of this subgroup. We obtain:

If G is a finite group and a € G then ord(a) divides |G|.
For example, S5 can only have elements of orders {1,2, 3,6}, and 6 does not occur because S3

is not cyclic. In fact, we know all of this from direct computation. But now we understand
more about why the orders of elements are constrained to these numbers.

If G is a finite group and a € G then a/¢ = e.
Indeed, writing |G| = ord(a) - n, we have al¢l = gord(@n = (gord@))n = en = ¢, as claimed.

Next, we apply this last result to the group (Z, x) where n is a positive integer. Define
6(n) = 2] = #1k € Z: 1 < k < n,ged(k,n) = 1}
The function ¢(n) is called Euler’s ¢-function, and sometimes Fuler’s totient function. For

example, Z> = {1,2,3,4,5,6} so ¢(7) = 6, while Z;, = {1,3,7,9} and so ¢(10) = 4. Below
we show a graph of Euler’s ¢-function.
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(Euler’s Theorem) For any integer k relatively prime to n, we have
E*™ =1 (mod n)

This result follows from the previous one: just view k (mod n) as an element of ZX, and

note that the order of the group is by definition ¢(n).

For example, let n = 30. We list the integers from 1 to 30 which are relatively prime to 30:
Ly, ={1,7,11,13,17,19, 23,29}

Thus ¢(30) = |Z3,| = 8. Furthermore, Euler’s Theorem tells us that for any one of the above
8 integers k (and their congruence classes mod 30) we have k% =1 (mod 30).

A special case of Euler’s Theorem is when n is a prime number p. For in this case we have
Z; = {1,27"',]7 - 1}
so in particular ¢(p) = p — 1. Therefore we obtain:

(Fermat’s Little Theorem) For a prime p and integer k relatively prime to p:
EP~'=1 (mod p)

The conclusion of this result is often written as k» = k£ (mod p).

For example, 97 is a prime number. Let’s compute 5 (mod 97). Fermat’s Little Theorem
tells us that 5% =1 (mod 97). Using this we compute:

5% = 59013 = 5953 = 1.53=125=28 (mod 97)

Without the help of Fermat’s Little Theorem, this would have taken much longer!
Another important consequence of Lagrange’s Theorem is the following.
Suppose G is a finite group of prime order. Then G is cyclic.

Let H < G be a subgroup of G. Then Lagrange’s Theorem tells us that |H| divides |G]|.
Since |G| is prime, |H| must be 1 or |G|. In the first case, we must have H = {e}, and in
the latter case, H = G. In particular, G has no non-trivial proper subgroups. Let a € G be
a non-identity element. Then (a) is a non-trivial subgroup and thus must be all of G. In
particular, G = {a) and so G is cyclic and generated by a.

We make two important remarks about Lagrange’s Theorem. First, we could have used
the notion of a left coset instead of a right coset: these are subsets aH = {ah : h € H}.
Lagrange’s Theorem holds for left cosets, by the same arguments. A consequence is that the
number of left cosets is equal to [G : H], the number of right cosets.
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Second, the converse to Lagrange’s Theorem is false: if a positive integer d divides |G|, then
it is not necessarily true that there is a subgroup of order d within GG. The first instance of
this phenomenon is the following:

In the alternating group A, of order 12, there is no subgroup of order 6.

Let us prove this. First we write out the 12 elements of Ay:
Ay = {e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}

Note we have 8 cycles of length 3, which have order 3, and 3 elements which are pairs of
disjoint transpositions, each of order 2. Now suppose there is a subgroup H < Ay of order
6. Let 0 € A4 be a cycle of length 3. Consider the right cosets

H, Ho, Ho?

Lagrange’s Theorem tells us that [A4 : H| = |A4|/|H| = 12/6 = 2, so there are exactly 2 right
cosets. So two of the cosets above must be equal. If H = Ho, then ¢ € H, and similarly if
H = Ho? then 02 € H. But since 02 = 0~ and H is a subgroup, we must have 0 € H. The
other possibility is that Ho = Ho?. Multiplying on the right by o gives Ho? = H, and again
we conclude o € H. In conclusion, every length 3 cycle in A4 must be in H. But there are
8 such cycles. Thus 6 = |H| = 8, which is a contradiction. Thus A4 cannot have a subgroup
of order 6, as we claimed.
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