
MTH 461: Survey of Modern Algebra, Spring 2026 Lecture 9

Cosets and Lagrange’s Theorem

In this lecture we introduce the notion of a coset and prove the famous result of Lagrange
regarding the divisibility of the order of a group by the orders of its subgroups.

Fix a group G and a subgroup H Ă G. Define a relation „ on the set G such that for a, b P G:

a „ b ðñ ab´1 P H

Keep in mind that „ depends on H. We show that this is an equivalence relation.

1. (Reflexivity) a „ a because aa´1 “ e and the identity is in any subgroup.

2. (Symmetry) a „ b implies ab´1 P H. Since H is a subgroup, the inverse of this element
is also in H: we have pab´1q´1 “ ba´1 P H. Thus b „ a.

3. (Transitivity) a „ b and b „ c imply ab´1 P H and bc´1 P H. Since H is a subgroup, it
is closed under the group operation. Thus pab´1qpbc´1q “ ac´1 P H, and a „ c.

We have seen this construction before in a special case. Let G “ pZ,`q and for a fixed
positive integer n take the subgroup H “ nZ “ tnk ∶ k P Zu Ă Z. Then a „ b if and only if
“ab´1” “ a ´ b P nZ, i.e. a ” b pmod nq. This motivates the following general notation:

a „ b ðñ a ” b pmod Hq

§ For a P G, let Ha “ tha ∶ h P Hu. Then Ha is called a right coset of H in G.

The right cosets of H in G are the equivalence classes of the above relation:

Ha “ tb P G ∶ a ” b pmod Hqu

To see this, consider some b P Ha. Then b “ ha where h P H. From this we then find
ab´1 “ h´1 P H and so a ” b pmod Hq. Thus Ha is a subset of the equivalence class of a.
Conversely consider any b P G such that a ” b pmod Hq. Then ab´1 P H, so ab´1 “ h for
some h P H, and so b “ h´1a P Ha.

§ There is a 1-1 correspondence between any two right cosets of H in G.

Let Ha be a right coset. It suffices to show that Ha is in 1-1 correspondence with H itself.
For this, we note that each h P H determines the element ha P Ha, and every element in Ha
is of this form. Thus the only thing to check is that if ha “ h1a then h “ h1, and this just
follows from multiplying by a´1 on the right.

We define the index of a subgroup H in G, written rG ∶Hs, as follows:

rG ∶Hs “ #tdistinct right cosets of H in Gu

Of course it is possible that rG ∶Hs is infinite.
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§ (Lagrange’s Theorem) If G is a finite group, and H is a subgroup of G, then

rG ∶Hs “ |G|{|H|

In particular, if G is finite, the order of any subgroup H divides the order of the group G.
The proof follows from our discussion above: the right cosets in G are equivalence classes,
and partition the set G into rG ∶ Hs distinct subsets, each of which has size |H|. From this
it follows that |G| “ rG ∶Hs ¨ |H|.

Let’s see all of this in action. Take the symmetric group S3 of orer 6:

S3 “ te, p12q, p23q, p31q, p123q, p132qu

Let H be the order 2 cyclic subgroup te, p12qu. Then the right cosets are

He “ te, p12qu, Hp23q “ tp23q, p123qu, Hp31q “ tp31q, p132qu

Any other right coset is one of the above 3: we have Hp12q “ He “ H, Hp123q “ Hp23q and
Hp132q “ Hp31q. The number of distinct right cosets is rS3 ∶ Hs “ 3. We directly observe
Lagrange’s Theorem: 6{2 “ |S3|{|H| “ rS3 ∶Hs “ 3.

For another example, consider the symmetric group S4. This has order |S4| “ 4! “ 24. We
saw last lecture that the alternating group A4 Ă S4 has order 12. Thus

rS4 ∶ A4s “ |S4|{|A4| “ 24{12 “ 2

In particular, there are exactly two right cosets: A4 “ A4e and A4σ where σ is any odd
permutation, say, a transposition.

Assume n ě 2. For the symmetric group Sn, and the subgroup An Ă Sn, there are exactly
two right cosets. To see this, we note that a ” b pmod Anq if and only if ab´1 is even. Thus
the two equivalence classes, i.e. right cosets, are the sets of even and odd permutations.
(Assuming n ě 2 ensures that these two cosets are both nonempty.) We conclude

|An| “ |Sn|{rSn ∶ Ans “ n!{2.

Thus the alternating group An has order n!{2.
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