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Alternating groups

In this lecture we continue studying even and odd permutations. We introduce and study the
alternating groups An which consist of even permutations. We then consider the rotational
symmetries of the tetrahedron, which are closely related the group A4.

Recall that a permutation σ P Sn is even if σp∆nq “ ∆n and odd if σp∆nq “ ´∆n. Here ∆n

is the polynomial
ś

1ďiăjďnpxi ´ xjq introduced last lecture. Define

An “ tσ P Sn ∶ σ is evenu Ă Sn

§ The subset An Ă Sn is a subgroup, called the nth alternating group.

To prove this we first record a useful relation. Given any permutations σ,σ1 P Sn we have

pσσ1qp∆nq “ σpσ1p∆nqq

This just follows by writing out what each side means explicitly:

pσσ1qp∆nq “
ź

1ďiăjďn

pxpσσ1qpiq ´ xpσσ1qpjqq “
ź

1ďiăjďn

pxσpσ1piqq ´ xσpσ1pjqqq

“ σ

˜

ź

1ďiăjďn

pxσ1piq ´ xσ1pjqq

¸

“ σpσ1p∆nqq

Similarly, σp´∆nq “ ´σp∆nq. Now suppose σp∆nq “ p´1qk∆n and σ1p∆nq “ p´1ql∆n. Then

pσσ1qp∆nq “ σpσ1p∆nqq “ σpp´1ql∆nq

“ p´1qlσp∆nq “ p´1qlp´1qk∆n

“ p´1ql`k∆n

From this computation we see the same rules as for adding even and odd integers:

σ σ1 σσ1

even even even

odd even odd

even odd odd

odd odd odd

In particular, if σ,σ1 P An (σ,σ1 are both even) then σσ1 P An (σσ1 is even). Also the identity
is even, so it is in An. Further, if σ P An (σ is even), then since σσ´1 “ e P An (σσ´1 is even)
we must have σ´1 P An (σ´1 is even). Thus An is a subgroup of Sn.

An alternative characterization of the parity of a permutation is as follows:
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§ If σ “ τ1⋯τk where τi are transpositions, then σ is odd if and only if k is odd.

To prove this we first show that every transposition is odd. First consider the transposition
σ “ p12q P Sn. There are four kinds of factors in ∆n:

px1 ´ x2q, px1 ´ xjq pj ą 2q, px2 ´ xjq pj ą 2q, pxi ´ xjq pj ą i ą 2q

Now σ “ p12q only swaps 1 and 2. So it sends the first type of factor to its negative
px2 ´ x1q “ ´px2 ´ x1q. It interchanges the second and third types (preserving signs), and
fixes all factors of the fourth type. Taking the product we conclude σp∆nq “ ´∆n, where
the sign comes from the effect of σ “ p12q on the factor px1 ´ x2q. Next, we use:

§ Let σ “ pa1 a2 ⋯ akq P Sn be a cycle and τ P Sn any other permutation. Then

τστ´1 “ pτpa1q τpa2q ⋯ τpakqq

A special case is when σ “ pi jq a transposition different from p12q with j ą i. Setting
τ “ pi 1qpj 2q we get τ´1στ “ p12q. If i “ 1, interpret pi 1q as e.

Now let σ be any transposition and choose τ as above such that τστ´1 “ p12q. Then
σ “ τ´1p12qτ . Let τp∆nq “ p´1qk∆n. Note also τ´1p∆nq “ p´1qk∆n. We then compute

σp∆nq “ pτ´1p12qτqp∆nq

“ τ´1pp12qpτp∆nqqq

“ τ´1pp12qp´1qk∆nqq

“ p´1qkτ´1pp12qp∆nqq

“ p´1qkτ´1p´∆nq

“ p´1qk`1τ´1p∆nq

“ p´1q2k`1∆n “ ´∆n

This completes our claim that every transposition is odd. Then to prove the claim about
σ “ τ1⋯τk for a product of transpositions, we use the rules of the table we determined above.

Let us look at some examples. As S1 “ teu we of course have A1 “ teu. Next, S2 “ te, p12qu,
and p12q is odd, so in fact A2 “ teu as well. The 3rd symmetric group is

S3 “ te, p12q, p23q, p31q, p123q, p132qu

The three transpositions p12q, p23q, p31q are odd, so they are not in A3. On the other hand
p123q “ p13qp12q and p132q “ p12qp13q, so these are even. Thus

A3 “ te, p123q, p132qu

Note that p123q2 “ p132q and p123q3 “ e, so A3 is a cyclic (hence abelian) group of order 3.
This is in contrast to S3. However:

§ The alternating group An is non-abelian if and only if n ě 4.
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Symmetries of the tetrahedron

The first non-abelian alternating group, A4, is closely related to the rotational symmetries
of the tetrahedron in 3-dimensional space.

A tetrahedron is a solid in 3-dimensional Euclidean space which has 4 vertices and 4 sides,
each an equilateral triangle. On the next page we list the symmetries of the tetrahedron.
There are 2 types of non-identity symmetries. The first type pR˘1

1 ,R˘1
2 ,R˘1

3 ,R˘1
4 q fixes a

vertex and rotates the tetrahedron around an axis passing through the fixed vertex by 120˝

in one of two directions. The second kind of symmetry pA,B,Cq is a 180˝ rotation through
an axis which passes through the centers of two opposite edges.

If we label the vertices of the tetrahedron by t1,2,3,4u we can associate a permutation to
each symmetry. Magically, the subgroup of S4 corresponding to the symmetries of the tetra-
hedron is A4! Below we include the Cayley table.

e R1 R´1
1 R2 R´1

2 R3 R´1
3 R4 R´1

4 A B C

e e R1 R´1
1 R2 R´1

2 R3 R´1
3 R4 R´1

4 A B C

R1 R1 R´1
1 e A R4 B R2 C R3 R´1

3 R´1
4 R´1

2

R´1
1 R´1

1 e R1 R´1
3 C R´1

4 A R´1
2 B R2 R3 R4

R2 R2 C R´1
4 R´1

2 e R1 B R´1
3 A R´1

1 R4 R3

R´1
2 R´1

2 R3 A e R2 C R4 B R´1
1 R´1

4 R´1
3 R1

R3 R3 A R´1
2 R´1

4 B R´1
3 e R1 C R4 R´1

1 R2

R´1
3 R´1

3 R4 B C R´1
1 e R3 A R2 R1 R´1

2 R´1
4

R4 R4 B R´1
3 R1 A R´1

2 C R´1
4 e R3 R2 R´1

1

R´1
4 R´1

4 R2 C B R3 A R´1
1 e R4 R´1

2 R1 R´1
3

A A R´1
2 R3 R4 R1 R´1

1 R´1
4 R2 R´1

3 e C B

B B R´1
3 R4 R3 R´1

4 R2 R1 R´1
1 R´1

2 C e A

C C R´1
4 R2 R´1

1 R´1
3 R4 R´1

2 R3 R1 B A e
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