MTH 461: Survey of Modern Algebra, Spring 2026 Lecture 8

Alternating groups

In this lecture we continue studying even and odd permutations. We introduce and study the
alternating groups A, which consist of even permutations. We then consider the rotational
symmetries of the tetrahedron, which are closely related the group Ajy.

Recall that a permutation o € S, is even if 0(A,) = A, and odd if o(A,) = —A,. Here A,
is the polynomial [ ], j <n(®i — x;) introduced last lecture. Define

A, ={oeS,:0iseven} c S,

The subset A, c S,, is a subgroup, called the nt" alternating group.

To prove this we first record a useful relation. Given any permutations o, 0’ € .S,, we have
(00")(An) = o(0'(An))
This just follows by writing out what each side means explicitly:

(00)(An) = ] @eone —Twomi) = ] @otwiy) = Toin)

I<i<j<n 1<i<jsn
=0 ( H (xa’(i) — Ial(j))> = U(U,(An))
I<i<j<n

Similarly, o(—A,) = —0(A,). Now suppose d(4,) =

From this computation we see the same rules as for adding even and odd integers:

/ /

o o o0

even even | even
odd even | odd
even odd | odd
odd odd | odd

In particular, if 0,0’ € A, (0,0’ are both even) then oo’ € A,, (00’ is even). Also the identity
is even, so it is in A,,. Further, if 0 € A,, (0 is even), then since o=t = e € A,, (607! is even)
we must have 0=t € A, (67! is even). Thus A, is a subgroup of S,,.

An alternative characterization of the parity of a permutation is as follows:
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If 0 = 7y---7, where 7; are transpositions, then ¢ is odd if and only if £ is odd.

To prove this we first show that every transposition is odd. First consider the transposition
o = (12) € S,,. There are four kinds of factors in A,:

(21— 2), (1 — ;) (j>2), (x2 — ;) (4 >2), (i —x5) (j>1>2)

Now o = (12) only swaps 1 and 2. So it sends the first type of factor to its negative
(x9 —x1) = —(22 — x1). It interchanges the second and third types (preserving signs), and
fixes all factors of the fourth type. Taking the product we conclude o(A,) = —A,,, where
the sign comes from the effect of 0 = (12) on the factor (z; — z3). Next, we use:

Let 0 = (a; as --- ax) € S,, be a cycle and 7€ S,, any other permutation. Then

Tor ! = (7(a1) 7(az) - 7(ax))

A special case is when o = (ij) a transposition different from (12) with j > i. Setting
7= (i1)(j2) we get 77loT = (12). If i = 1, interpret (i 1) as e.

Now let o be any transposition and choose 7 as above such that 7o7=! = (12). Then
o=71"1(12)1. Let 7(A,) = (—1)*A,. Note also 771(A,) = (—1)*A,,. We then compute

= (-1 2k+1An _ _An

This completes our claim that every transposition is odd. Then to prove the claim about
o = 11---T} for a product of transpositions, we use the rules of the table we determined above.

Let us look at some examples. As S; = {e} we of course have A; = {e}. Next, Sy = {e, (12)},
and (12) is odd, so in fact Ay = {e} as well. The 3rd symmetric group is

Sy = {e, (12), (23), (31), (123), (132)}

The three transpositions (12), (23), (31) are odd, so they are not in As. On the other hand
(123) = (13)(12) and (132) = (12)(13), so these are even. Thus

Az = {e,(123),(132)}

Note that (123)? = (132) and (123)3 = e, so Az is a cyclic (hence abelian) group of order 3.
This is in contrast to S3. However:

The alternating group A, is non-abelian if and only if n > 4.
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Symmetries of the tetrahedron

The first non-abelian alternating group, Ay, is closely related to the rotational symmetries
of the tetrahedron in 3-dimensional space.

A tetrahedron is a solid in 3-dimensional Euclidean space which has 4 vertices and 4 sides,
each an equilateral triangle. On the next page we list the symmetries of the tetrahedron.
There are 2 types of non-identity symmetries. The first type (Ri', Ry', R3', Ry') fixes a
vertex and rotates the tetrahedron around an axis passing through the fixed vertex by 120°
in one of two directions. The second kind of symmetry (A, B,C) is a 180° rotation through
an axis which passes through the centers of two opposite edges.

If we label the vertices of the tetrahedron by {1,2,3,4} we can associate a permutation to

each symmetry. Magically, the subgroup of S corresponding to the symmetries of the tetra-
hedron is A4! Below we include the Cayley table.

(& R1 Rl_l R2 R2_1 R3 Rgl R4 RZI A B C

e e R R' R Ry Ry R;' Ry RI' A B C
RA | R R ¢ A R, B PR C 'Ry R;' R;' R;!
R' R' e R R' C R' A R' B R R R,
R, | Ry C R' RR' e R B R' A R' Ry R
R'\R* Re A e R C R, B R R' R' R
Ry | Ry A R RI' B R' e R C R R' Ry
RZ'\R3' Ry B C R' e | R3 A R R R R;'
R, | R+ B Ry R, A R' C R/ e Ry Ry R’
RI'WR;(' 'Ry C B Ry A R' e R Ry R R;'
A| A R R R, R R' R' R R;' ¢ C B
B | B R' Ry, Ry R’ R R R' R' C e A

C C R4_1 R2 Rl_l Rgl R4 R2_1 R3 Rl B A €
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