1. The Galois Group Permutes the Roots. Let $\mathbb{E} \supseteq \mathbb{F}$ be a splitting field for a specific polynomial $f(x) \in \mathbb{F}[x]$. This means that $\mathbb{E}=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some distinct elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{E}$ satisfying

$$
f(x)=\prod_{i}\left(x-\alpha_{i}\right)^{k_{i}}
$$

for some integers $k_{i} \geq 1$. Let $G=\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ be the group of automorphisms $\sigma: \mathbb{E} \rightarrow \mathbb{E}$ satisfying $\sigma(a)=a$ for all $a \in \mathbb{F}$.
(a) For each $\sigma \in G$ and each root α_{i} of $f(x)$, show that $\sigma\left(\alpha_{i}\right)$ is also a root of $f(x)$. Hence for each $\sigma \in G$ and $i \in\{1, \ldots, n\}$ there exists a unique $\pi_{\sigma}(i) \in\{1, \ldots, n\}$ satisfying

$$
\sigma\left(\alpha_{i}\right)=\alpha_{\pi_{\sigma}(i)}
$$

Let $\pi_{\sigma}:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ denote the corresponding function.
(b) Show that the function π_{σ} is a permutation. [Hint: It suffices to show that π_{σ} is injective. Recall that σ is injective by assumption.]
(c) Show that the function $\Pi: G \rightarrow S_{n}$ defined by $\sigma \mapsto \pi_{\sigma}$ is a group homomorphism.
(d) Finally, show that Π is injective. [Hint: A group homomorphism is injective if and only if its kernel is trivial. If $\pi_{\sigma} \in S_{n}$ is the identity permutation, show that $\sigma \in G$ must be the identity automorphism.]
(a): Consider any $\sigma \in G$. Since $f(x)$ has coefficients in \mathbb{F} and since G fixes \mathbb{F} we have

$$
0=\sigma(0)=\sigma\left(f\left(\alpha_{i}\right)\right)=f^{\sigma}\left(\sigma\left(\alpha_{i}\right)\right)=f\left(\sigma\left(\alpha_{i}\right)\right) .
$$

Hence $\sigma\left(\alpha_{i}\right)=\alpha_{j}$ for some j. We define the function $\pi_{\sigma}:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ so that $\sigma\left(\alpha_{i}\right)=\alpha_{\pi_{\sigma}(i)}$. In other words, we have $\pi_{\sigma}(i)=j$ if and only if $\sigma\left(\alpha_{i}\right)=\alpha_{j}$.
(b): If $\pi_{\sigma}(i)=\pi_{\sigma}(j)$ then $\sigma\left(\alpha_{i}\right)=\sigma\left(\alpha_{j}\right)$. Since σ is injective this implies that $\alpha_{i}=\alpha_{j}$, and since the roots are distinct this implies $i=j$.
(c): Define the function $\Pi: G \rightarrow S_{n}$ by $\Pi(\sigma):=\pi_{\sigma}$. (This notation is really piling up!) I claim that Π is a group homomorphism. To see this, consider any $\sigma, \mu \in G$. We wish to show that $\Pi(\sigma \circ \mu)=\Pi(\sigma) \circ \Pi(\mu)$, i.e., $\pi_{\sigma \circ \mu}=\pi_{\sigma} \circ \pi_{\mu}$ as permutations. That is, for any $i \in\{1, \ldots, n\}$ we wish to show that

$$
\pi_{\sigma \circ \mu}(i)=\left[\pi_{\sigma} \circ \pi_{\mu}\right](i) .
$$

This is a lot easier than it looks. Suppose that $\mu\left(\alpha_{i}\right)=\alpha_{j}$ and $\sigma\left(\alpha_{j}\right)=\alpha_{k}$, hence $(\sigma \circ \mu)(i)=k$. This implies that $\pi_{\mu}(i)=j$ and $\pi_{\sigma}(j)=k$, hence $\left[\pi_{\sigma} \circ \pi_{\mu}\right](i)=k$. And it also implies that $\pi_{\sigma \circ \mu}(i)=k$. Done.

Remark: The difficulty here is that the function Π sends functions σ to functions π_{σ}. But in order to check that functions are equal we need to apply them to all possible inputs. There's a lot going on. It's really an exercise in notational hygiene.
(d): To show that the group homomorphism Π is injective it is sufficient to show that ker $\Pi=$ $\{i d\}$, where id is the identity automorphism $\mathbb{E} \rightarrow \mathbb{E}$. So consider any $\sigma \in$ ker Π, i.e., such that π_{σ} is the identity permutation. Since $\pi_{\sigma}(i)=i$ for all i we have $\sigma\left(\alpha_{i}\right)=\alpha_{i}$ for all i. Since $\mathbb{E}=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, a general element of \mathbb{E} has the form $f\left(\alpha_{1}, \ldots, \alpha_{n}\right) / g\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for
polynomials $f(\mathbf{x}), g(\mathbf{x})$ with coefficients in \mathbb{F}. Since σ preserves field operations and fixes the coefficients of f and g, we have

$$
\sigma\left(\frac{f\left(\alpha_{1}, \ldots, \alpha_{n}\right)}{g\left(\alpha_{1}, \ldots, \alpha_{n}\right)}\right)=\frac{f\left(\sigma\left(\alpha_{1}\right), \ldots,\left(\alpha_{n}\right)\right)}{g\left(\sigma\left(\alpha_{1}\right), \ldots, \sigma\left(\alpha_{n}\right)\right)}=\frac{f\left(\alpha_{1}, \ldots, \alpha_{n}\right)}{g\left(\alpha_{1}, \ldots, \alpha_{n}\right)} .
$$

Since σ fixes every element of \mathbb{E} we conclude that $\sigma=\mathrm{id}$ as desired.
Remark: In general, an automorphism of a field extension $\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is determined by its values on \mathbb{F} and $\alpha_{1}, \ldots, \alpha_{n}$.
2. Abstract Galois Connections. Let (P, \leq) and (Q, \leq) be posets. Let $*: P \leftrightarrows Q: *$ be a pair of functions satisfying the following property ${ }^{1}$

$$
\begin{equation*}
\text { for all } p \in P \text { and } q \in Q \text { we have } p \leq q^{*} \Longleftrightarrow q \leq p^{*} \tag{*}
\end{equation*}
$$

Such a pair is called an abstract Galois connection. Since the following results are symmetric in P and Q you only need to prove half of them.
(a) For all $p \in P$ and $q \in Q$ show that $p \leq p^{* *}$ and $q \leq q^{* *}$.
(b) For all $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ show that $p_{1} \leq p_{2} \Rightarrow p_{2}^{*} \leq p_{1}^{*}$ and $q_{1} \leq q_{2} \Rightarrow q_{2}^{*} \leq q_{1}^{*}$.
(c) For all $p \in P$ and $q \in Q$ show that $p^{* * *}=p^{*}$ and $q^{* * *}=q^{*}$.
(d) Let $P^{\prime}=\left\{p \in P: p^{* *}=p\right\}$ and $Q^{\prime}=\left\{q \in Q: q^{* *}=q\right\}$. Show that the maps $*: P \leftrightarrows Q: *$ restrict to a bijection:

$$
*: P^{\prime} \leftrightarrow Q^{\prime}: *
$$

(a): For any $p \in P$ we have $\left(p^{*}\right) \leq(p)^{*}$ by reflexivity of \leq. Then from $(*)$ we get $(p) \leq\left(p^{*}\right)^{*}$.
(b): Consider $p_{1}, p_{2} \in P$ with $p_{1} \leq p_{2}$. From (a) we have $p_{1} \leq p_{2} \leq p_{2}^{* *}$, which implies $p_{1} \leq p_{2}^{* *}$ by transitivity of \leq. Then $(*)$ says that $\left(p_{1}\right) \leq\left(p_{2}^{*}\right)^{*}$ implies $\left(p_{2}^{*}\right) \leq\left(p_{1}\right)^{*}$.
(c): Consider any $p \in P$. By reflexivity of \leq we have $\left(p^{* *}\right) \leq\left(p^{*}\right)^{*}$ and then $(*)$ implies $\left(p^{*}\right) \leq$ $\left(p^{* *}\right)^{*}$. On the other hand, from (a) we have $p \leq p^{* *}$, then from (b) we have $\left(p^{* *}\right)^{*} \leq(p)^{*}$. Since $p^{*} \leq p^{* * *}$ and $p^{* * *} \leq p^{*}$ we conclude from antisymmetry of \leq that $p^{* * *}=p^{*}$.
(d): First note that $*$ sends elements of P^{\prime} to elements of Q^{\prime}. Indeed, consider any $p \in P^{\prime}$ so that $p^{* *}=p$ and let $q=p^{*}$. Then from (c) we have $q^{* *}=p^{* * *}=p^{*}=q$, hence $q \in Q^{\prime}$. To show that $*: P^{\prime} \rightarrow Q^{\prime}$ is injective, suppose that $p_{1}^{*}=p_{2}^{*}$ for some $p_{1}, p_{2} \in P^{\prime}$. Then applying * to both sides gives $p_{1}=p_{1}^{* *}=p_{2}^{* *}=p_{2}$. To show that $*: P^{\prime} \rightarrow Q^{\prime}$ is surjective, consider any $q \in Q^{\prime}$ and define $p:=q^{*}$. This p is in P^{\prime} because $p^{* *}=q^{* * *}=q^{*}=p$ by (c). We also have $p^{*}=q^{* *}=q$, so q is the image of $p \in P^{\prime}$ under $*$.

Remark: Abstract Galois connections between posets are a simple example of adjoint functors between categories ${ }^{2}$ I say that category theory is "empty" because it doesn't care what kind of objects you're working with; only the abstract relations between them. In the sketch of Galois theory linked below, when I say that something is true for "empty reasons", I am referring to Problem 2.
3. The Galois Group of a Cyclotomic Extension. Let $\omega=\exp (2 \pi i / n)$. The splitting field of the polynomial $x^{n}-1$ over \mathbb{Q} is

$$
\mathbb{Q}\left(1, \omega, \ldots, \omega^{n-1}\right)=\mathbb{Q}(\omega) .
$$

[^0]In this problem you will prove that $G:=\operatorname{Gal}(\mathbb{Q}(\omega) / \mathbb{Q}) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$, assuming that the cyclotomic polynomial $\Phi_{n}(x)$ is irreducible over $\mathbb{Q} \cdot{ }^{3}$
(a) For any $\sigma \in G$ show that we must have $\sigma(\omega)=\omega^{k}$ for some $\operatorname{gcd}(k, n)=1$. [Hint: Show that $\Phi_{n}(\omega)=0$ implies $\Phi_{n}(\sigma(\omega))=0$.]
(b) For any $0 \leq k<n$ with $\operatorname{gcd}(k, n)=1$ show that there exists a (unique) element $\sigma \in G$ satisfying $\sigma(\omega)=\omega^{k}$. [Hint: Since ω and ω^{k} are both roots of the irreducible polynomial $\Phi_{n}(x) \in \mathbb{Q}[x]$, the minimal polynomial theorem implies that

$$
\left.\mathbb{Q}(\omega) \cong \frac{\mathbb{Q}[x]}{\Phi_{n}(x) \mathbb{Q}[x]} \cong \mathbb{Q}\left(\omega^{k}\right) .\right]
$$

(c) For any $0 \leq k<n$ with $\operatorname{gcd}(k, n)=1$ let $\sigma_{k} \in G$ we the unique element satisfying $\sigma_{k}(\omega)=\omega^{k}$. Show that the map $(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow G$ defined by $k \mapsto \sigma_{k}$ is a group isomorphism. [Hint: First show that $\left(\sigma_{k} \circ \sigma_{\ell}\right)(\omega)=\sigma_{k \ell}(\omega)$. Then use the fact that every element of $\mathbb{Q}(\omega)$ has the form $f(\omega) / g(\omega)$ for some $f(x), g(x) \in \mathbb{Q}[x]$ with $g(\omega) \neq 0$.]
(a): Consider any $\sigma \in G$. Since $\Phi_{n}(\omega)=0$ and since σ fixes the coefficients of $\Phi_{n}(x)$ (because they are in \mathbb{Q}) we have

$$
0=\sigma(0)=\sigma\left(\Phi_{n}(\omega)\right)=\Phi_{n}(\sigma(\omega)) .
$$

This implies that $\sigma(\omega)$ is also a root of $\Phi_{n}(x)$, which implies that $\sigma(\omega)=\omega^{k}$ for some integer $1 \leq k \leq n$ with $\operatorname{gcd}(k, n)=1 \|^{4}$
(b): For any integer k we have $\omega^{k} \in \mathbb{Q}(\omega)$ and hence $\mathbb{Q}\left(\omega^{k}\right) \subseteq \mathbb{Q}(\omega)$. If $\operatorname{gcd}(k, n)=1$ then I claim that we also have $\omega \in \mathbb{Q}\left(\omega^{k}\right)$, and hence $\mathbb{Q}(\omega) \subseteq \mathbb{Q}\left(\omega^{k}\right)$. Indeed, since $\operatorname{gcd}(k, n)=1$ we can write $k a+n b=1$ for some $a, b \in \mathbb{Z}$. Then we have

$$
\omega=\omega^{k a+n b}=\left(\omega^{k}\right)^{a}\left(\omega^{n}\right)^{b}=\left(\omega^{k}\right)^{a}(1)^{b}=\left(\omega^{k}\right)^{a} \in \mathbb{Q}\left(\omega^{k}\right) .
$$

We have shown that $\Omega(\omega)=\Omega\left(\omega^{k}\right)$ when $\operatorname{gcd}(k, n)=1$. In this case we also know that ω and ω^{k} are both roots of $\Phi_{n}(x)$. Assuming that $\Phi_{n}(x)$ is irreducible over \mathbb{Q} (which it is), we obtain ring isomorphisms $\varphi: \mathbb{Q}(\omega) \cong \mathbb{Q}[x] / \Phi_{n}(x) \mathbb{Q}[x]$ and $\psi: \mathbb{Q}\left(\omega^{k}\right) \cong \mathbb{Q}[x] / \Phi_{n}(x) \mathbb{Q}[x]$ with $\varphi(\omega)=[x]$ and $\psi\left(\omega^{k}\right)=[x]$. Hence $\sigma_{k}:=\psi^{-1} \circ \varphi$ is a ring isomorphism of $\mathbb{Q}(\omega) \rightarrow \mathbb{Q}\left(\omega^{k}\right)$ sending ω to ω^{k}. But $\mathbb{Q}\left(\omega^{k}\right)=\mathbb{Q}(\omega)$, so σ_{k} is an automorphism of $\mathbb{Q}(\omega)$ as desired.
(c): Note that an element of G is uniquely determined by its action on ω. This implies that

$$
\sigma_{k}=\sigma_{\ell} \quad \Longleftrightarrow \quad \omega^{k}=\omega^{\ell} \quad \Longleftrightarrow \quad k \equiv \ell \bmod n
$$

Combining this with (a) and (b) gives us a bijection ($\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow G$ defined by $\sigma \mapsto \sigma_{k}$. I claim that this map is also a group homomorphism. To see this we must show that $\sigma_{k} \circ \sigma_{\ell}=\sigma_{k \ell}$ and for this it suffices to show that the two maps do the same thing to $\omega .5$ Indeed, we have

$$
\sigma_{k \ell}(\omega)=\omega^{k \ell}=\left(\omega^{k}\right)^{\ell}=\sigma_{k}(\omega)^{\ell}=\sigma_{k}\left(\omega^{\ell}\right)=\sigma_{k}\left(\sigma_{\ell}(\omega)\right)=\left[\sigma_{k} \circ \sigma_{\ell}\right](\omega) .
$$

[^1]4. Finite Dimensional Field Extensions. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$ where \mathbb{E} is finite-dimensional as a vector space over \mathbb{F}, i.e., $[\mathbb{E} / \mathbb{F}]<\infty$.
(a) Prove that every element $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F}, i.e., is the root of some polynomial $f(x) \in \mathbb{F}[x]$. [Hint: Since \mathbb{E} is finite-dimensional over \mathbb{F}, the infinite list of elements $1, \alpha, \alpha^{2}, \ldots$ must be linearly dependent over \mathbb{F}.]
(b) Prove that $\mathbb{E}=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some finite list of elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{E}$. [Hint: Use induction on dimension. If $[\mathbb{E} / \mathbb{F}]=1$ then $\mathbb{E}=\mathbb{F}$ and there is nothing to show so suppose that $[\mathbb{E} / \mathbb{F}] \geq 2$, i.e., $\mathbb{E} \neq \mathbb{F}$. Choose any element $\alpha_{1} \in \mathbb{E} \backslash \mathbb{F}$ and consider the fields $\mathbb{E} \supseteq \mathbb{F}\left(\alpha_{1}\right) \supseteq \mathbb{F}$. Dedekind's Tower Law says
$$
[\mathbb{E} / \mathbb{F}]=\left[\mathbb{E} / \mathbb{F}\left(\alpha_{1}\right)\right] \cdot\left[\mathbb{F}\left(\alpha_{1}\right) / \mathbb{F}\right] .
$$

Since $\mathbb{F}\left(\alpha_{1}\right) \neq \mathbb{F}$ we have $\left[\mathbb{F}\left(\alpha_{1}\right) / \mathbb{F}\right] \geq 2$, hence $\left[\mathbb{E} / \mathbb{F}\left(\alpha_{1}\right)\right]$ is strictly less than $\left.[\mathbb{E} / \mathbb{F}].\right]$
(a): Let $\mathbb{E} \supseteq \mathbb{F}$ be a field extension with $[\mathbb{E} / \mathbb{F}]=n<\infty$. Then for any $\alpha \in \mathbb{E}$ the set $1, \alpha, \ldots, \alpha^{n}$ of $n+1$ elements must be linearly dependent over \mathbb{F}. That is, we can find some $a_{0}, \ldots, a_{n} \in \mathbb{F}$, not all zero, such that

$$
a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}=0 .
$$

Then α is algebraic over \mathbb{F} because it is a root of the nonzero polynomial $f(x)=a_{0}+a_{1} x+$ $\cdots+a_{n} x^{n} \in \mathbb{F}[x]$.
(b): Let $[\mathbb{E} / \mathbb{F}]<\infty$. If $[\mathbb{E} / \mathbb{F}]=1$ then we have $\mathbb{E}=\mathbb{F}$. So let $[\mathbb{E} / \mathbb{F}] \geq 2$ and pick any $\alpha_{1} \in \mathbb{E} \backslash \mathbb{F}$. Since $\mathbb{F}\left(\alpha_{1}\right) \neq \mathbb{F}$ we have $\left[\mathbb{F}\left(\alpha_{1}\right) / \mathbb{F}\right] \geq 2$. Combining this with the Tower Law $[\mathbb{E} / \mathbb{F}]=\left[\mathbb{E} / \mathbb{F}\left(\alpha_{1}\right)\right]\left[\mathbb{F}\left(\alpha_{1}\right) / \mathbb{F}\right]$ shows that $\left[\mathbb{E} / \mathbb{F}\left(\alpha_{1}\right)\right]<[\mathbb{E} / \mathbb{F}]$. By induction on dimension, we may assume that there exist $\alpha_{2}, \ldots, \alpha_{n} \in \mathbb{E}$ such that

$$
\mathbb{E}=\mathbb{F}\left(\alpha_{1}\right)\left(\alpha_{2}, \ldots, \alpha_{n}\right)
$$

But $\mathbb{F}\left(\alpha_{1}\right)\left(\alpha_{2}, \ldots, \alpha_{n}\right)=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
5. Characteristic Zero Fields are Perfect. A field \mathbb{F} is called perfect if irreducible polynomials $f(x) \in \mathbb{F}[x]$ have no repeated roots in any field extension $\mathbb{E} \supseteq \mathbb{F}$. Prove that fields of characteristic zero are perfect. [Hint: Since \mathbb{F} has characteristic zero we know that $\operatorname{deg}(D f)=\operatorname{deg}(f)-1$. In particular, $D f(x) \neq 0$. Use the fact that $f(x)$ is irreducible to show that $\operatorname{gcd}(f, D f)=1$ in $\mathbb{F}[x]$. On the other hand, if $f(x)$ has a repeated root $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ in some field extension show that we must have $\operatorname{deg}(f, D f) \neq 1$ in $\mathbb{E}[x]$.]

Let \mathbb{F} have characteristic zero and let $f(x) \in \mathbb{F}[x]$ be any irreducible polynomial. If $f(x)$ has a repeated root $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ then we can write $f(x)=(x-\alpha)^{2} g(x)$ with $g(x) \in \mathbb{E}[x]$ and then taking the derivative shows that $x-\alpha$ divides $\operatorname{gcd}(f, D f)$ in $\mathbb{E}[x]$. But you showed on the last homework that $\operatorname{gcd}(f, D f) \neq 1$ in $\mathbb{E}[x]$ implies $\operatorname{gcd}(f, D f) \neq 1$ in $\mathbb{F}[x]$. Since $f(x)$ is irreducible in $f(x)$ this is only possible if $f(x)$ divides $D f(x)$. But this is impossible because $\operatorname{deg}(D f)<\operatorname{deg}(f)$.
6. The Primitive Element Theorem. Let \mathbb{F} be any subfield of \mathbb{C}, so \mathbb{F} has characteristic zero ${ }^{[6]}$ Given any two numbers $\alpha, \beta \in \mathbb{C}$ that are algebraic over \mathbb{F}, we will prove that there exists a number $\gamma \in \mathbb{C}$ (also algebraic over \mathbb{F}) satisfying

$$
\mathbb{F}(\alpha, \beta)=\mathbb{F}(\gamma)
$$

[^2]More precisely, we will show that there exists a scalar $c \in \mathbb{F}$ such that $\gamma:=\alpha+c \beta$ satisfies the desired property.
(a) Show that every field of characteristic zero is infinite.
(b) Let $f(x), g(x) \in \mathbb{F}[x]$ be the minimal polynomials of α, β. Since \mathbb{F} is infinite we may choose an element $c \in \mathbb{F}$ such that $c \neq\left(\alpha^{\prime}-\alpha\right) /\left(\beta-\beta^{\prime}\right)$ for all roots $\alpha^{\prime}, \beta^{\prime} \in \mathbb{E}$ of $f(x), g(x)$, respectively. Define $\gamma:=\alpha+c \beta$ and consider the polynomial

$$
h(x):=f(\gamma-c x) \in \mathbb{F}(\gamma)[x] .
$$

Show that the greatest common divisor of $g(x)$ and $h(x)$ in $\mathbb{F}(\gamma)[x]$ has degree ≤ 1. [Hint: Note that β is a common root of $g(x)$ and $h(x)$. If the gcd of $g(x)$ and $h(x)$ in $\mathbb{F}(\gamma)[x]$ has degree ≥ 2, use Problem 5 to show that $g(x)$ and $h(x)$ have another common root $\beta^{\prime} \neq \beta$, which contradicts the definition of c.]
(c) Let $p(x) \in \mathbb{F}(\gamma)[x]$ be the minimal polynomial of β over $\mathbb{F}(\gamma)$. Prove that $p(x)=x-\beta$, and hence $\beta \in \mathbb{F}(\gamma)$. [Hint: Since $g(x), h(x) \in \mathbb{F}(\gamma)[x]$ have β as a common root, show that $p(x)$ divides the gcd of $g(x)$ and $h(x)$ in $\mathbb{F}(\gamma)[x]$. Then use part (b).]
(d) Finally, use (c) to show that $\mathbb{F}(\alpha, \beta)=\mathbb{F}(\gamma)$.
(e) Corollary. Let $\mathbb{E} \supseteq \mathbb{F}$ be any finite-dimensional extension of characteristic zero fields. Use Problem 4 to show that $\mathbb{E}=\mathbb{F}(\gamma)$ for some $\gamma \in \mathbb{E}$.
(a): For any field \mathbb{F} and for any integer $n \geq 1$ we recall that $n \cdot 1:=1+\cdots+1$ (n times). If \mathbb{F} has characteristic zero then $n \cdot 1 \neq 0$ for all $n \geq 1$. Furthermore, if $m \cdot 1=n \cdot 1$ with $m<n$, then subtracting $m \cdot 1$ from both sides gives $(n-m) \cdot 1=0$, which is a contradiction. Hence \mathbb{F} contains the infinitely many distinct elements $n \cdot 1$ with $n \in \mathbb{N} / \sqrt{7}$
(b): This is the hard part. Let \mathbb{F} have characteristic zero and let $f(x), g(x) \in \mathbb{F}[x]$ be the minimal polynomials of $\alpha, \beta \in \mathbb{E} \supseteq \mathbb{F}$, respectively. Let's say

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots \quad \text { and } \quad g(x)=\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \cdots
$$

in $\mathbb{C}[x]^{8}$ with $\alpha_{1}=\alpha$ and $\beta_{1}=\beta$. Since $f(x)$ and $g(x)$ are irreducible over \mathbb{F}, it follows from Problem 5 that $\alpha_{i} \neq \alpha_{j}$ and $\beta_{i} \neq \beta_{j}$ for $i \neq j$. Since $f(x)$ and $g(x)$ have finitely many roots and since \mathbb{F} is infinite from part (a), we may choose $c \in \mathbb{F}$ such that $c \neq\left(\alpha_{i}-\alpha\right) /\left(\beta-\beta_{j}\right)$ for all i, j. Define $\gamma:=\alpha+c \beta$ and $h(x):=f(\gamma-c x) \in \mathbb{F}(\gamma)[x]$. Let $d(x)=\operatorname{gcd}(g, h)$ in the ring $\mathbb{F}(\gamma)[x]$. I claim that $\operatorname{deg}(d) \leq 1$. Indeed, since $g(\beta)=0$ and $h(\beta)=f(\gamma-c \beta)=f(\alpha)=0$ we know that $x-\beta$ divides $d(x)$ in $\mathbb{C}[x]$. Furthermore, since $d(x)$ divides $g(x)$ we know that $d(x)=\prod_{j \in J}\left(x-\beta_{j}\right) \in \mathbb{C}[x]$ for some set J containing 1. If $\operatorname{deg}(d) \geq 2$ this implies that $d(x)$ has another root $d\left(\beta_{j}\right)=0$ with $j \neq 1$. Since $d(x)$ divides $h(x)$ we would have $0=h\left(\beta_{j}\right)=f\left(\gamma-c \beta_{j}\right)$, which implies that $\gamma-c \beta_{j}=\alpha_{i}$ for some i. But this contradicts the definition of c because

$$
\gamma-c \beta_{j}=\alpha_{i} \quad \Longrightarrow \quad c=\left(\alpha_{i}-\alpha\right) /\left(\beta-\beta_{j}\right) .
$$

We conclude that $\operatorname{deg}(d) \leq 1$.
(c): Let $p(x)$ be the minimal polynomial over β over $\mathbb{F}(\gamma)[x]$. Since $g(x), h(x) \in \mathbb{F}(\gamma)[x]$ both have β as a root we see that $p(x) \mid g(x)$ and $p(x) \mid h(x)$, hence $p(x) \mid \operatorname{gcd}(g, h)$, in $\mathbb{F}(\gamma)[x]$. From part (b) this implies that $\operatorname{deg}(p)=1$, say $p(x)=a+b x$ with $a, b \in \mathbb{F}(\gamma)$. But then since $p(\beta)=0$ we have $\beta=-a / b \in \mathbb{F}(\gamma)$.

[^3](d): Since $c \in \mathbb{F}$ and $\gamma=\alpha+c \beta \in \mathbb{F}(\alpha, \beta)$ we have $\mathbb{F}(\gamma) \subseteq \mathbb{F}(\alpha, \beta)$. On the other hand, we showed in (c) that $\beta \in \mathbb{F}(\gamma)$. Then we also have $\alpha=\gamma-c \beta \in \mathbb{F}(\gamma)$, hence $\mathbb{F}(\alpha, \beta) \subseteq \mathbb{F}(\gamma)$.
(e): For any $\alpha, \beta \in \mathbb{C}$ algebraic over a subfield \mathbb{F}, we have shown that there exists $\gamma \in \mathbb{C}$ such that $\mathbb{F}(\alpha, \beta)=\mathbb{F}(\gamma)$. For any $\mathbb{C} \supseteq \mathbb{E} \supseteq \mathbb{F}$ with $[\mathbb{E} / \mathbb{F}]<\infty$ we proved in Problem 4 that $\mathbb{E}=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{E}$ are algebraic over \mathbb{F}. Since α_{n-1}, α_{n} are also algebraic over $\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n-2}\right)$ there exists some γ such that
\[

$$
\begin{aligned}
\mathbb{F}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n-2}\right)\left(\alpha_{n-1}, \alpha_{n}\right) \\
& =\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n-2}\right)(\gamma) \\
& =\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n-2}, \gamma\right) .
\end{aligned}
$$
\]

Now the result follows by induction.
Remark: The Primitive Element Theorem is the first step in the proof of the Fundamental Theorem of Galois Theory. Here is a note that sketches the rest of the proof: http://math. miami.edu/~armstrong/562sp24/562sp24galois_sketch.pdf

[^0]: ${ }^{1}$ We write p^{*} instead of $*(p)$. Because of the symmetry we don't need to give the functions different names.
 ${ }^{2} \mathrm{~A}$ poset is a simple example of a category.

[^1]: ${ }^{3}$ This is fairly difficult to prove in general. On the previous homework you (almost) proved that $\Phi_{p}(x)$ is irreducible over \mathbb{Q} when p is prime.
 ${ }^{4}$ Indeed, we defined $\Phi_{n}(x)$ as the product of $\left(x-\omega^{k}\right)$ over integers $1 \leq k \leq n$ with $\operatorname{gcd}(k, n)=1$. Then from this we had to prove that the coefficients are in \mathbb{Q} (in fact, in \mathbb{Z}).
 ${ }^{5}$ For any two $\varphi, \psi \in G$ with $\varphi(\omega)=\psi(\omega)$ we must have $\varphi=\psi$, since for any element $\alpha=f(\omega) / g(\omega) \in \mathbb{Q}(\omega)$ with $f(x), g(x) \in \mathbb{Q}[x]$ we must have

 $$
 \varphi(\alpha)=\frac{f(\varphi(\omega))}{g(\varphi(\omega))}=\frac{f(\psi(\omega))}{g(\psi(\omega))}=\psi(\alpha) .
 $$

[^2]: ${ }^{6}$ This proof works more generally for any perfect field \mathbb{F}; e.g., for any finite field. Then we replace \mathbb{C} with any field large enough to contain all the roots of the minimal polynomials of α and β.

[^3]: ${ }^{7}$ Or you can just quote the fact, proved on a previous homework, that every field of characteristic zero contains \mathbb{Q} as as its smallest subfield.
 ${ }^{8}$ Here we use the fact that \mathbb{C} is algebraically closed. In the general case we would take a field extension $\mathbb{E} \supseteq \mathbb{F}$ that contains all the roots of $f(x)$ and $g(x)$.

