
Math 562/662 Spring 2024
Homework 6 Drew Armstrong

1. The Galois Group Permutes the Roots. Let E ⊇ F be a splitting field for a specific
polynomial f(x) ∈ F[x]. This means that E = F(α1, . . . , αn) for some distinct elements
α1, . . . , αn ∈ E satisfying

f(x) =
∏
i

(x− αi)ki

for some integers ki ≥ 1. Let G = Gal(E/F) be the group of automorphisms σ : E → E
satisfying σ(a) = a for all a ∈ F.

(a) For each σ ∈ G and each root αi of f(x), show that σ(αi) is also a root of f(x). Hence
for each σ ∈ G and i ∈ {1, . . . , n} there exists a unique πσ(i) ∈ {1, . . . , n} satisfying

σ(αi) = απσ(i).

Let πσ : {1, . . . , n} → {1, . . . , n} denote the corresponding function.
(b) Show that the function πσ is a permutation. [Hint: It suffices to show that πσ is

injective. Recall that σ is injective by assumption.]
(c) Show that the function Π : G→ Sn defined by σ 7→ πσ is a group homomorphism.
(d) Finally, show that Π is injective. [Hint: A group homomorphism is injective if and

only if its kernel is trivial. If πσ ∈ Sn is the identity permutation, show that σ ∈ G
must be the identity automorphism.]

(a): Consider any σ ∈ G. Since f(x) has coefficients in F and since G fixes F we have

0 = σ(0) = σ(f(αi)) = fσ(σ(αi)) = f(σ(αi)).

Hence σ(αi) = αj for some j. We define the function πσ : {1, . . . , n} → {1, . . . , n} so that
σ(αi) = απσ(i). In other words, we have πσ(i) = j if and only if σ(αi) = αj .

(b): If πσ(i) = πσ(j) then σ(αi) = σ(αj). Since σ is injective this implies that αi = αj , and
since the roots are distinct this implies i = j.

(c): Define the function Π : G→ Sn by Π(σ) := πσ. (This notation is really piling up!) I claim
that Π is a group homomorphism. To see this, consider any σ, µ ∈ G. We wish to show that
Π(σ ◦ µ) = Π(σ) ◦ Π(µ), i.e., πσ◦µ = πσ ◦ πµ as permutations. That is, for any i ∈ {1, . . . , n}
we wish to show that

πσ◦µ(i) = [πσ ◦ πµ](i).

This is a lot easier than it looks. Suppose that µ(αi) = αj and σ(αj) = αk, hence (σ◦µ)(i) = k.
This implies that πµ(i) = j and πσ(j) = k, hence [πσ ◦ πµ](i) = k. And it also implies that
πσ◦µ(i) = k. Done.

Remark: The difficulty here is that the function Π sends functions σ to functions πσ. But in
order to check that functions are equal we need to apply them to all possible inputs. There’s
a lot going on. It’s really an exercise in notational hygiene.

(d): To show that the group homomorphism Π is injective it is sufficient to show that ker Π =
{id}, where id is the identity automorphism E → E. So consider any σ ∈ ker Π, i.e., such
that πσ is the identity permutation. Since πσ(i) = i for all i we have σ(αi) = αi for all i.
Since E = F(α1, . . . , αn), a general element of E has the form f(α1, . . . , αn)/g(α1, . . . , αn) for
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polynomials f(x), g(x) with coefficients in F. Since σ preserves field operations and fixes the
coefficients of f and g, we have

σ

(
f(α1, . . . , αn)

g(α1, . . . , αn)

)
=

f(σ(α1), . . . , (αn))

g(σ(α1), . . . , σ(αn))
=
f(α1, . . . , αn)

g(α1, . . . , αn)
.

Since σ fixes every element of E we conclude that σ = id as desired.

Remark: In general, an automorphism of a field extension F(α1, . . . , αn) is determined by its
values on F and α1, . . . , αn.

2. Abstract Galois Connections. Let (P,≤) and (Q,≤) be posets. Let ∗ : P � Q : ∗ be
a pair of functions satisfying the following property:1

(∗) for all p ∈ P and q ∈ Q we have p ≤ q∗ ⇐⇒ q ≤ p∗.
Such a pair is called an abstract Galois connection. Since the following results are symmetric
in P and Q you only need to prove half of them.

(a) For all p ∈ P and q ∈ Q show that p ≤ p∗∗ and q ≤ q∗∗.
(b) For all p1, p2 ∈ P and q1, q2 ∈ Q show that p1 ≤ p2 ⇒ p∗2 ≤ p∗1 and q1 ≤ q2 ⇒ q∗2 ≤ q∗1.
(c) For all p ∈ P and q ∈ Q show that p∗∗∗ = p∗ and q∗∗∗ = q∗.
(d) Let P ′ = {p ∈ P : p∗∗ = p} and Q′ = {q ∈ Q : q∗∗ = q}. Show that the maps
∗ : P � Q : ∗ restrict to a bijection:

∗ : P ′ ↔ Q′ : ∗.

(a): For any p ∈ P we have (p∗) ≤ (p)∗ by reflexivity of ≤. Then from (∗) we get (p) ≤ (p∗)∗.

(b): Consider p1, p2 ∈ P with p1 ≤ p2. From (a) we have p1 ≤ p2 ≤ p∗∗2 , which implies p1 ≤ p∗∗2
by transitivity of ≤. Then (∗) says that (p1) ≤ (p∗2)

∗ implies (p∗2) ≤ (p1)
∗.

(c): Consider any p ∈ P . By reflexivity of ≤ we have (p∗∗) ≤ (p∗)∗ and then (∗) implies (p∗) ≤
(p∗∗)∗. On the other hand, from (a) we have p ≤ p∗∗, then from (b) we have (p∗∗)∗ ≤ (p)∗.
Since p∗ ≤ p∗∗∗ and p∗∗∗ ≤ p∗ we conclude from antisymmetry of ≤ that p∗∗∗ = p∗.

(d): First note that ∗ sends elements of P ′ to elements of Q′. Indeed, consider any p ∈ P ′ so
that p∗∗ = p and let q = p∗. Then from (c) we have q∗∗ = p∗∗∗ = p∗ = q, hence q ∈ Q′. To
show that ∗ : P ′ → Q′ is injective, suppose that p∗1 = p∗2 for some p1, p2 ∈ P ′. Then applying
∗ to both sides gives p1 = p∗∗1 = p∗∗2 = p2. To show that ∗ : P ′ → Q′ is surjective, consider
any q ∈ Q′ and define p := q∗. This p is in P ′ because p∗∗ = q∗∗∗ = q∗ = p by (c). We also
have p∗ = q∗∗ = q, so q is the image of p ∈ P ′ under ∗.

Remark: Abstract Galois connections between posets are a simple example of adjoint functors
between categories.2 I say that category theory is “empty” because it doesn’t care what kind of
objects you’re working with; only the abstract relations between them. In the sketch of Galois
theory linked below, when I say that something is true for “empty reasons”, I am referring to
Problem 2.

3. The Galois Group of a Cyclotomic Extension. Let ω = exp(2πi/n). The splitting
field of the polynomial xn − 1 over Q is

Q(1, ω, . . . , ωn−1) = Q(ω).

1We write p∗ instead of ∗(p). Because of the symmetry we don’t need to give the functions different names.
2A poset is a simple example of a category.
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In this problem you will prove that G := Gal(Q(ω)/Q) ∼= (Z/nZ)×, assuming that the cyclo-
tomic polynomial Φn(x) is irreducible over Q.3

(a) For any σ ∈ G show that we must have σ(ω) = ωk for some gcd(k, n) = 1. [Hint: Show
that Φn(ω) = 0 implies Φn(σ(ω)) = 0.]

(b) For any 0 ≤ k < n with gcd(k, n) = 1 show that there exists a (unique) element
σ ∈ G satisfying σ(ω) = ωk. [Hint: Since ω and ωk are both roots of the irreducible
polynomial Φn(x) ∈ Q[x], the minimal polynomial theorem implies that

Q(ω) ∼=
Q[x]

Φn(x)Q[x]
∼= Q(ωk).]

(c) For any 0 ≤ k < n with gcd(k, n) = 1 let σk ∈ G we the unique element satisfying
σk(ω) = ωk. Show that the map (Z/nZ)× → G defined by k 7→ σk is a group isomor-
phism. [Hint: First show that (σk ◦ σ`)(ω) = σk`(ω). Then use the fact that every
element of Q(ω) has the form f(ω)/g(ω) for some f(x), g(x) ∈ Q[x] with g(ω) 6= 0.]

(a): Consider any σ ∈ G. Since Φn(ω) = 0 and since σ fixes the coefficients of Φn(x) (because
they are in Q) we have

0 = σ(0) = σ(Φn(ω)) = Φn(σ(ω)).

This implies that σ(ω) is also a root of Φn(x), which implies that σ(ω) = ωk for some integer
1 ≤ k ≤ n with gcd(k, n) = 1.4

(b): For any integer k we have ωk ∈ Q(ω) and hence Q(ωk) ⊆ Q(ω). If gcd(k, n) = 1 then I
claim that we also have ω ∈ Q(ωk), and hence Q(ω) ⊆ Q(ωk). Indeed, since gcd(k, n) = 1 we
can write ka+ nb = 1 for some a, b ∈ Z. Then we have

ω = ωka+nb = (ωk)a(ωn)b = (ωk)a(1)b = (ωk)a ∈ Q(ωk).

We have shown that Ω(ω) = Ω(ωk) when gcd(k, n) = 1. In this case we also know that ω
and ωk are both roots of Φn(x). Assuming that Φn(x) is irreducible over Q (which it is), we
obtain ring isomorphisms ϕ : Q(ω) ∼= Q[x]/Φn(x)Q[x] and ψ : Q(ωk) ∼= Q[x]/Φn(x)Q[x] with
ϕ(ω) = [x] and ψ(ωk) = [x]. Hence σk := ψ−1 ◦ ϕ is a ring isomorphism of Q(ω) → Q(ωk)
sending ω to ωk. But Q(ωk) = Q(ω), so σk is an automorphism of Q(ω) as desired.

(c): Note that an element of G is uniquely determined by its action on ω. This implies that

σk = σ` ⇐⇒ ωk = ω` ⇐⇒ k ≡ ` mod n.

Combining this with (a) and (b) gives us a bijection (Z/nZ)× → G defined by σ 7→ σk. I claim
that this map is also a group homomorphism. To see this we must show that σk ◦ σ` = σk`
and for this it suffices to show that the two maps do the same thing to ω.5 Indeed, we have

σk`(ω) = ωk` = (ωk)` = σk(ω)` = σk(ω
`) = σk(σ`(ω)) = [σk ◦ σ`](ω).

3This is fairly difficult to prove in general. On the previous homework you (almost) proved that Φp(x) is
irreducible over Q when p is prime.

4Indeed, we defined Φn(x) as the product of (x − ωk) over integers 1 ≤ k ≤ n with gcd(k, n) = 1. Then
from this we had to prove that the coefficients are in Q (in fact, in Z).

5For any two ϕ,ψ ∈ G with ϕ(ω) = ψ(ω) we must have ϕ = ψ, since for any element α = f(ω)/g(ω) ∈ Q(ω)
with f(x), g(x) ∈ Q[x] we must have

ϕ(α) =
f(ϕ(ω))

g(ϕ(ω))
=
f(ψ(ω))

g(ψ(ω))
= ψ(α).
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4. Finite Dimensional Field Extensions. Consider a field extension E ⊇ F where E is
finite-dimensional as a vector space over F, i.e., [E/F] <∞.

(a) Prove that every element α ∈ E is algebraic over F, i.e., is the root of some polynomial
f(x) ∈ F[x]. [Hint: Since E is finite-dimensional over F, the infinite list of elements
1, α, α2, . . . must be linearly dependent over F.]

(b) Prove that E = F(α1, . . . , αn) for some finite list of elements α1, . . . , αn ∈ E. [Hint:
Use induction on dimension. If [E/F] = 1 then E = F and there is nothing to show so
suppose that [E/F] ≥ 2, i.e., E 6= F. Choose any element α1 ∈ E \ F and consider the
fields E ⊇ F(α1) ⊇ F. Dedekind’s Tower Law says

[E/F] = [E/F(α1)] · [F(α1)/F].

Since F(α1) 6= F we have [F(α1)/F] ≥ 2, hence [E/F(α1)] is strictly less than [E/F].]

(a): Let E ⊇ F be a field extension with [E/F] = n < ∞. Then for any α ∈ E the set
1, α, . . . , αn of n + 1 elements must be linearly dependent over F. That is, we can find some
a0, . . . , an ∈ F, not all zero, such that

a0 + a1α+ · · ·+ anα
n = 0.

Then α is algebraic over F because it is a root of the nonzero polynomial f(x) = a0 + a1x +
· · ·+ anx

n ∈ F[x].

(b): Let [E/F] < ∞. If [E/F] = 1 then we have E = F. So let [E/F] ≥ 2 and pick any
α1 ∈ E \ F. Since F(α1) 6= F we have [F(α1)/F] ≥ 2. Combining this with the Tower Law
[E/F] = [E/F(α1)][F(α1)/F] shows that [E/F(α1)] < [E/F]. By induction on dimension, we
may assume that there exist α2, . . . , αn ∈ E such that

E = F(α1)(α2, . . . , αn).

But F(α1)(α2, . . . , αn) = F(α1, . . . , αn).

5. Characteristic Zero Fields are Perfect. A field F is called perfect if irreducible
polynomials f(x) ∈ F[x] have no repeated roots in any field extension E ⊇ F. Prove that
fields of characteristic zero are perfect. [Hint: Since F has characteristic zero we know that
deg(Df) = deg(f)−1. In particular, Df(x) 6= 0. Use the fact that f(x) is irreducible to show
that gcd(f,Df) = 1 in F[x]. On the other hand, if f(x) has a repeated root α ∈ E ⊇ F in
some field extension show that we must have deg(f,Df) 6= 1 in E[x].]

Let F have characteristic zero and let f(x) ∈ F[x] be any irreducible polynomial. If f(x) has
a repeated root α ∈ E ⊇ F then we can write f(x) = (x − α)2g(x) with g(x) ∈ E[x] and
then taking the derivative shows that x − α divides gcd(f,Df) in E[x]. But you showed on
the last homework that gcd(f,Df) 6= 1 in E[x] implies gcd(f,Df) 6= 1 in F[x]. Since f(x) is
irreducible in f(x) this is only possible if f(x) divides Df(x). But this is impossible because
deg(Df) < deg(f).

6. The Primitive Element Theorem. Let F be any subfield of C, so F has characteristic
zero.6 Given any two numbers α, β ∈ C that are algebraic over F, we will prove that there
exists a number γ ∈ C (also algebraic over F) satisfying

F(α, β) = F(γ).

6This proof works more generally for any perfect field F; e.g., for any finite field. Then we replace C with
any field large enough to contain all the roots of the minimal polynomials of α and β.
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More precisely, we will show that there exists a scalar c ∈ F such that γ := α + cβ satisfies
the desired property.

(a) Show that every field of characteristic zero is infinite.
(b) Let f(x), g(x) ∈ F[x] be the minimal polynomials of α, β. Since F is infinite we may

choose an element c ∈ F such that c 6= (α′ − α)/(β − β′) for all roots α′, β′ ∈ E of
f(x), g(x), respectively. Define γ := α+ cβ and consider the polynomial

h(x) := f(γ − cx) ∈ F(γ)[x].

Show that the greatest common divisor of g(x) and h(x) in F(γ)[x] has degree ≤ 1.
[Hint: Note that β is a common root of g(x) and h(x). If the gcd of g(x) and h(x)
in F(γ)[x] has degree ≥ 2, use Problem 5 to show that g(x) and h(x) have another
common root β′ 6= β, which contradicts the definition of c.]

(c) Let p(x) ∈ F(γ)[x] be the minimal polynomial of β over F(γ). Prove that p(x) = x−β,
and hence β ∈ F(γ). [Hint: Since g(x), h(x) ∈ F(γ)[x] have β as a common root, show
that p(x) divides the gcd of g(x) and h(x) in F(γ)[x]. Then use part (b).]

(d) Finally, use (c) to show that F(α, β) = F(γ).
(e) Corollary. Let E ⊇ F be any finite-dimensional extension of characteristic zero fields.

Use Problem 4 to show that E = F(γ) for some γ ∈ E.

(a): For any field F and for any integer n ≥ 1 we recall that n · 1 := 1 + · · ·+ 1 (n times). If F
has characteristic zero then n · 1 6= 0 for all n ≥ 1. Furthermore, if m · 1 = n · 1 with m < n,
then subtracting m · 1 from both sides gives (n−m) · 1 = 0, which is a contradiction. Hence
F contains the infinitely many distinct elements n · 1 with n ∈ N.7

(b): This is the hard part. Let F have characteristic zero and let f(x), g(x) ∈ F[x] be the
minimal polynomials of α, β ∈ E ⊇ F, respectively. Let’s say

f(x) = (x− α1)(x− α2) · · · and g(x) = (x− β1)(x− β2) · · ·
in C[x],8 with α1 = α and β1 = β. Since f(x) and g(x) are irreducible over F, it follows from
Problem 5 that αi 6= αj and βi 6= βj for i 6= j. Since f(x) and g(x) have finitely many roots
and since F is infinite from part (a), we may choose c ∈ F such that c 6= (αi − α)/(β − βj) for
all i, j. Define γ := α + cβ and h(x) := f(γ − cx) ∈ F(γ)[x]. Let d(x) = gcd(g, h) in the ring
F(γ)[x]. I claim that deg(d) ≤ 1. Indeed, since g(β) = 0 and h(β) = f(γ − cβ) = f(α) = 0
we know that x − β divides d(x) in C[x]. Furthermore, since d(x) divides g(x) we know
that d(x) =

∏
j∈J(x − βj) ∈ C[x] for some set J containing 1. If deg(d) ≥ 2 this implies

that d(x) has another root d(βj) = 0 with j 6= 1. Since d(x) divides h(x) we would have
0 = h(βj) = f(γ − cβj), which implies that γ − cβj = αi for some i. But this contradicts the
definition of c because

γ − cβj = αi =⇒ c = (αi − α)/(β − βj).
We conclude that deg(d) ≤ 1.

(c): Let p(x) be the minimal polynomial over β over F(γ)[x]. Since g(x), h(x) ∈ F(γ)[x] both
have β as a root we see that p(x)|g(x) and p(x)|h(x), hence p(x)| gcd(g, h), in F(γ)[x]. From
part (b) this implies that deg(p) = 1, say p(x) = a + bx with a, b ∈ F(γ). But then since
p(β) = 0 we have β = −a/b ∈ F(γ).

7Or you can just quote the fact, proved on a previous homework, that every field of characteristic zero
contains Q as as its smallest subfield.

8Here we use the fact that C is algebraically closed. In the general case we would take a field extension
E ⊇ F that contains all the roots of f(x) and g(x).
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(d): Since c ∈ F and γ = α + cβ ∈ F(α, β) we have F(γ) ⊆ F(α, β). On the other hand, we
showed in (c) that β ∈ F(γ). Then we also have α = γ − cβ ∈ F(γ), hence F(α, β) ⊆ F(γ).

(e): For any α, β ∈ C algebraic over a subfield F, we have shown that there exists γ ∈ C
such that F(α, β) = F(γ). For any C ⊇ E ⊇ F with [E/F] < ∞ we proved in Problem 4 that
E = F(α1, . . . , αn) where α1, . . . , αn ∈ E are algebraic over F. Since αn−1, αn are also algebraic
over F(α1, . . . , αn−2) there exists some γ such that

F(α1, α2, . . . , αn) = F(α1, . . . , αn−2)(αn−1, αn)

= F(α1, . . . , αn−2)(γ)

= F(α1, . . . , αn−2, γ).

Now the result follows by induction.

Remark: The Primitive Element Theorem is the first step in the proof of the Fundamental
Theorem of Galois Theory. Here is a note that sketches the rest of the proof: http://math.

miami.edu/~armstrong/562sp24/562sp24galois_sketch.pdf

http://math.miami.edu/~armstrong/562sp24/562sp24galois_sketch.pdf
http://math.miami.edu/~armstrong/562sp24/562sp24galois_sketch.pdf

