Math 562/662 Spring 2024
Homework 5 Drew Armstrong

1. Formal Derivatives. For any field F we consider the F-linear function D : F[z] — F|x]
defined on the basis 1, z,z2,... by Dz" := nz"~!. That is, we define

Z ak:rk = Z /mk:rk_l

k>0 k>1

(a) For all f(z),g(x) € Flz] prove that D[f(x)g(x)] = f(x)Dg(z) + D f(x)g(z).
(b) For all f(x) € Flx] and n > 1 prove that D[f(z)"] = nf(z)" ' Df(x). [Hint: Use part

(a) and induction.]

(a): First we prove it using brute force. If f(z) = 3 axz® and g(z) = 3 by’ then we have

z[f(x)Dg(x) + Df(x)g(x)]
= f(x)zDy(x) + 2D f(x)g(x)
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= aD[f(x)g(x)].

Then cancel z from both sides to get the result. Here is a fancier proof. Let U, V, W be vector
spaces over F. A function (—,—) : U x V. — W is called F-bilinear if it is F-linear in each
coordinate. Being linear in the first coordinate means that for any fixed vector v € V, and
for any vectors ui € U and scalars a; € F we have

<Z arz®, v> = Z ag(ug, v

Then for any vectors vy € V and scalars by € F using linearity in the second coordinate gives
<Z agug, bzve> = arbi(ug, vo).
k0

If ug and vy are bases for U and V, respectively, then we see that the function (—,—) is
completely determined by the values (ug,vy). It is easy to check that the two functions
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(f,9) = D[f(x)g(x)] and [f,g] := f(x)Dg(x) + Df(x)g(x) from Flz] x F[z] — Flz] are F-

bilinear. Finally, in order to prove (f, g) = [f, g| for all f(x), g(x) € F[z] we only need to check
that (z™,z™) = [2™,2"] for all m,n € N since the powers of = are a basis for F|z|. Indeed:

(™, 2"y = D[z™z"]

= D[z™"™"]

= (m +n)z™!

and

I think the fancy proof is easier.

(b): The result is true for n = 1, so assume n > 2. Then we have

D[f(z)"] = D[f () f ()" "]
= f(@)D[f(x)" Y] + Df(x) f(x)" (a)
= f(@)(n — 1) f(x)" 2Df(z) + Df(x)f(z)" 1 induction
= (n—1)f(«)"'Df(x) + f(z)" ' Df ()
=[(n = 1) +1]f(2)" ' Df(x)
=nf(z)" ' Df(x).

2. Invariance of GCD. Consider a field extension E O F and two polynomials f(x),g(z) €
Flz]. Let d(x) € F[z] be the (monic) GCD of f(z) and ¢g(z) in Flz] and let D(z) € E[z| be
the (monic) GCD of f(z) and g(x) in E[z]. Prove that d(x) = D(x). [Hint: The Euclidean
Algorithm produces a(z),b(x) € Flz] and A(x), B(z) € E[z] such that f(x)a(x) + g(x)b(x) =
d(z) and f(x)A(x) + g(x)B(x) = D(z). Use this to show that d(z)|D(z) and D(x)|d(z) in
E[x], which implies that d(x) and D(x) are associate in E[z].]

Given anyE| two polynomials f(z),g(z) € F[x] there exists a unique monic polynomial d(z) €
F[z] with the properties:

e d(2)|f(x) and d(z)|g(x) in Flz],

e if e(x)|f(x) and e(x)|g(x) in Flz]| then e(x)|d(x) in Flz].
Furthermore, the Euclidean algorithm gives polynomials a(z), b(x) € F[x] such that f(z)a(z)+
g(x)b(z) = d(x). Similarly, since f(x),g(x) € E[z] there exists a unique monic polynomial
D(x) € E[x] with the properties

* D(x)|f(z) and D(x)|g(x) in E[x],

o if E(x)|f(x) and E(x)|g(x) in E[x] then E(x)|D(z) in F[x].

Lhot both zero



And the Euclidean algorithm produces A(x), B(z) € E[z| satisfying f(x)A(x) + g(z)B(z) =
D(z). I claim that d(xz) = D(z), which implies that D(z) € F[z]. Indeed, since d(z)|f(x) and
d(z)|g(z) in F[z], the same holds in E[z]. Hence the equation f(z)A(z) + g(z)B(x) = D(z)
implies that d(z)|D(x) in E[z]. Furthermore, since D(x)|f(x) and D(z)|g(z) in E[z] the
equation f(z)a(z) + g(x)b(x) = d(z) implies that D(z)|d(x) in E[z]. Since E[z] is a domain
this implies that d(x) and D(zx) are associate, and since d(x) and D(x) are both monic this
implies that d(z) = D(x).

Remark: Sometimes people just say that “this is obvious”, without giving a proof. It’s similar
to fact fact that f(z) = g(x)q(z) with f(z),g(x) € Flz] and ¢(z) € Elz| implies ¢(x) € F[z]
by the existence and uniqueness of quotient and remainder over any field.

3. Repeated Factors of Polynomials. If F is a field then we know that F[z] is a unique
factorization domain. That is, for all f(z),p(x) € F[z] with p(z) irreducible, there is a well-
defined multiplicity v,(f) € N, which is the number of times that p(z) occurs in the prime
factorization of f(x). We say that p(x) is a repeated factor when v,(f) > 2.

(a) If f(x) € Flx] has a repeated prime factor, show that ged(f, Df) # 1. [Hint: Suppose
that f(z) = p(z)%g(z). Apply Problem 1 to show that p(z) also divides Df(z).]

(b) If ged(f, Df) # 1, show that f(x) has a repeated prime factor. [Hint: Suppose that
p(z) is a common prime divisor of f(z) and Df(z). Say f(x) = p(z)g(x). Apply
Problem 1 to show that p(x) divides Dp(x)g(x). Then use Euclid’s Lemma and the
fact that deg(Dp) < deg(p) to show that p(x) divides g(x).]

(¢) Tt follows from (a) and (b) that

f(z) has no repeated prime factor in Flz] < ged(f,Df) =1 in Fx].

We will apply this result to roots. We say that f(z) € Flz] is separable if it has no
repeated root in any field extension. Show that

f(z) is separable < ged(f,Df) =1 in Flx].
[Hint: For any field extension E D F, Problem 2 says that
ged(f,Df)=1inFlz] <= gcd(f,Df)=11in E[z]]

(a): Suppose that f(x) = p(z)?g(x) for some non-constant p(z) € F[m]ﬂ From 1 we have
Df(x) = 2p(x)g(x) + p(z) Dg(x) = p(x)[29(x) + p(z) Dg(z)].
Then since p(x)|f(x) and p(z)|Df(x) we have ged(f, Df) # 1.
(b): Suppose that ged(f, Df) # 1 and let p(z) be a prime divisor of ged(f, Df), so we also
)

have p(z)|f(z) and p(z)|D f(x). Write f(z) = p(z)g(z) and Df(z) = p(x)h(x). Then from
Problem 1 we have

Df(x) = Dp(x)g(x) + p(x)Dg(x)
( )h(z) = Dp(x)g(x) + p(z) Dg(x)
p(x)[h(z) — Dg(x)] = Dp(z)g(z),

hence p(z) divides Dp(x)g(z). Slnce p( ) is prime, Euclid’s Lemma in the ring F[z] implies
that p(z) divides Dp(z) or g(x). But p(x) cannot divide Dp(z) because deg(Dp) < deg(p),
hence g(x) = p(x)q(z) for some g(z ) € F[z] and

f(@) = p(a)g(z) = p(z)p(x)a(z) = p(z)*q(z).

2For this argument we do not need to assume that p(z) is prime.



Hence f(z) has a repeated prime factor.

(c): First suppose that ged(f, Df) # 1 in Flx]. By part (b) this implies that f(z) = p(x)?g(x
for some prime p(z) € Flz]. Let & € E D FF be a root of f(x) in some field extension E[m]é
so that f(z) = (v — a)?h(z) for some h(x) € E[z]. The other direction is harder and uses
Problem 2. Let f(x) € F[x] have a repeated root a € E D F in some field extension E, so f(x)
has the repeated factor x — « in E[z]. This implies that ged(f, Df) # 1 in E[z] and hence
ged(f, Df) # 1 in Flz] from Problem 2.

4. Counting Reduced Fractions. For any n > 1 we consider the following subsets of Q:

F,:={k/n:0<k<n},
F :={k/n:0<k<nand ged(k,n) =1}

Note that #F,, =n and #F = ¢(n). In this problem we will show that

F, =[] F

dln
which implies that n =3_,,, ¢(d).

(a) Show that F), is a subset of Ug, Fyy. [Hint: Every fraction can be reduced.]

(b) Show that UgF} is a subset of F,.

(c) Show that d # e implies F; N F, = (. [Hint: Suppose for contradiction that « is
in Fj and F/, so we can write @ = k/d = (/e with 0 < k < d, 0 < £ < e and
ged(k,d) = ged(¢,e) = 1. Use this to show that d|e and e|d.]

(a): Consider any k/n € F,, and let d = ged(k, n) with k = dk’ and n = dn’. By the Euclidean
algorithm there exist z,y € Z with d = kx + ny = dk’z + dn’y. Then canceling d from both
sides gives 1 = k’x + n'y which implies that ged(k’,n’) = 1. Hence k/n = k’'/n’ is in F/T/n,.

(b): Consider any d|n and k/d € F); (i.e. with 0 < k < d and ged(k,d) = 1). If n = dn’ then
we have k/d = kn'/dn' = kn'/n with 0 < kn’ < dn’ = n. Hence k/d € F,.

(c): Suppose that F; N F. # () so that k/d = {/e for some 0 < k < £ and 0 < £ < e with
ged(k,d) = ged(4,e) = 1. The equation ek = d¢ implies that d|ek. But since ged(d, k) = 1 we
must have dleﬂ Similarly, since e|d¢ and ged(e, £) = 1 we have e|d. Since d|e and e|d we have
d = +e, which implies that d = e because d,e € N.

5. The Primitive Root Theorem. If E is a finite field then we will prove that (E*,-, 1) is
a cyclic group. Suppose that #E = p", and hence #E' = p" — 1.
(a) If a € EX has order d, use Lagrange’s Theorem to show that d|(p" — 1).
(b) Let d|(p™ — 1). Show that E* contains either 0 or ¢(d) elements of order d. [Hint: If
a € EX is an element of order d then {1,a,...,a% '} is the full solution of z% = 1.
But recall that o has order d/ gcd(d, k). Use this to show that the full set of elements
of order d is {a¥ : 0 < k < d and ged(k,d) = 1}.]

3For example, let E := F[z]/p(x)F[z] and a = [z].
4Proof: Take dz + ky = 1 and multiply both sides by e to get dex + key = e, hence dex + dly = e, hence d|e.



(c) Combine (b) with Problem 4 to show that that E* contains exactly ¢(d) elements of
order d for each d|(p™ — 1). In particular, E* contains at least one element « of
order p" — 1, hence E* = (a) is a cyclic group. [Hint: Let Ny be the number of
elements of order d in E* and observe that p" — 1 = Zden_l) Ng4. We know that
Ny < ¢(d) for all d. But if Ny < ¢(d) for some d then we have

= > Na< ) é(d)=p"-1]
dl(p"—1) dl(pm—1)

(d) Corollary. Prove that there exist irreducible polynomials in Fp[z] of all degrees. [Hint:
For any prime power p" we already know that a field of size p" exists. Let E D F,
have size p" and let « € E* be a primitive root, which exists by part (c). Show that
the minimal polynomial of v over F), has degree n.]

(a): Let #E = p" and let (E*, x, 1) be the group of units, so that #E* = p™ — 1. Let a € E*
be an element of order d so that

#(a) =#{": ken}=d.

According to Lagrange’s Theorem, the size of any subgroup divides the size of the group.
Since (@) is a subgroup of E* this implies that d divides p" — 1.

(b): Hence any element of the group E* has order dividing p" — 1. For any d|p" — 1 that
the number of elements of order d is either zero or ¢(d). Indeed, if the number of elements
of order d is zero then we are done. Otherwise, let a € E* be an element of order d and
consider the d distinct elements 1, a, o2, ...,a% . Each of these is a root of the polynomial
2% — 1 because (a¥)? = (a?)¥ = 1¥ = 1. Since the polynomial z% — 1 has degree d, this is the
complete solution of the equation % —1 = 0. If § € EX is any other element of order d it
follows that 8 = a* for some k. But not every k occurs. Recall, if o has order d then o has
order d/ ged(k,d), hence o has order d if and only if ged(k,d) = 1. It follows that the set of
elements of order d is exactly {a* : 1 <k <d — 1,ged(k,d) = 1}, which has size ¢(d).

(c): For any d|(p™ — 1) let Ng be the number of elements of order d in E*, so that N; =0 or
Ng = ¢(d). Since each of the p™ — 1 elements of E* has some order, we have

Z Nda

d|(pm~—1)

Y. 9
dl(pn—1)
If at least one of the N, is zero then we obtain a contradiction

pt—1= Z Ny < Z o(d) =p" — 1.

pn_l p’n_l

and from Problem 4 we have

Hence we must have Ny = ¢(d) for all d|(p™ — 1). In particular, we have
Npno1 =o(p" = 1) 2 1,
which shows that E* is a cyclic group.
Remark: This is an indirect proof. For example, it tells us that the field of size 173 has exactly

(173 — 1) = 2448 primitive roots, but it does not tell us how to find one. I don’t know a
better algorithm than “guess and check”.



(d): Let E be a field of size pnﬁ Note that E must be an n-dimensional vector space over F,,
so [E/Fp] = n. In (c) we showed that there exists a € E* such that EX = («), and hence

E={0}NE*={0,1,q,...,a" 2} = Fy(a).

Let m(x) € Fp(x) be the minimal polynomial of a/IF,,, which is irreducible over F,,. Then from
the Minimal Polynomial Theorem we have deg(m) = [F,(a)/F,] = [E/F,] = n.

6. The Frobenius Automorphism. Let p > 2 be prime and let E O F,, be a field of size
p" for some n > 1. Let ¢ : E — E denote the function ¢(«a) := oP.
(a) Prove that ¢ is a ring homomorphism.
(b) Prove that ¢ is injective. Since E is finite this implies that ¢ is also surjective. In
other words, every element of E has a unique p-th root. [Hint: A ring homomorphism
¢ is injective if and only if ker ¢ = {0}.]
(c) Show that ¢" : E — I is the identity function. If 0 < k < n, show that ¥ is not
the identity function. [Hint: If £ < n and o' = a for all a € E then the polynomial
2P" — 2 has too many roots in E.]
(d) For all « € E, show that o € F), if and only if p(a) = o
(e) Harder. Show that every invertible ring homomorphism o : E — E has the form
o = ¢F for some k. [Hint: From the Primitive Root Theorem we know that EX = (o)
for some a. Let S = {a, p(a), p*(a),..., " H(a)} and let

f@) =] (~5) €ELl.
BeS
Note that ¢ permutes the roots of f(x), hence it fixes the coefficients of f(x). By (d)
this implies that f(z) € Fp[z]. Use this to show that f(o(a)) = o(f(a)) = 0, and
hence o(a) € S. Let’s say o(a) = ©F(a). In this case show that o = ¢* ]

(a): Let E D F), be a field of size p" for some prime p. Let ¢ : E — E denote the Frobenius
map ¢(«) := oP. To see that this is a ring homomorphism we first note that ¢(1) = 17 =1
and ¢(0) = 0P = 0. Then for any «, 5 € E we note that

p(aB) = (ap)l = o’V = p(a)p(B)
and
pla+B)=(a+ )P =a”+ " =p(a) + ¢(B).
This last identity follows from the Freshman’s Binomial Theorem, which you proved on the
previous homework.

(b): Recall that a ring homomorphism is injective if and only if its kernel is Zeroﬂ In our case,
if a? = p(a) = 0 then we must have a = 0 because E is a domain. Hence a € ker ¢ implies
a = 0. Hence ¢ is injective. It follows from injectivity and the finiteness of E that ¢ is also
surjective.

(c): For any a € EX note that o”"~! = 1 because #E* = p" — 1 (see 5a). Multiplying both
sides by « gives o?" = «, which also holds when o = 0. Thus for any o € E we have

" (a) = " = a,

5For example, let E be a splitting field for 2P — x over Fp.

6Thanks to Qiaochu Yuan for this proof.

"Indeed, if ¢ : R — S is injective then for any a € kery we have ¢(a) = 0 = ¢(0) and hence a = 0.
Conversely, if ker ¢ = {0} then for any p(a) = ¢(8) we have 0 = p(a) — p(8) = p(a — ), which implies that
a — B =0 and hence a = f.



which shows that ¢™ = id. But if 0 < k < n then I claim that ¥ # id. To see this, assume for
contradiction that a?" = ©*(a) = a for all & € E. But then the nonzero polynomial P
has p" distinct roots in E, which is more than its degree p*.

(d): Note that ¢(a) = « if and only if of = «, i.e., if and only if « is a root of the polynomial
P — x. This polynomial can have at most p roots in [E, and every element a € I, is a rootﬂ
Since F), has p elements we conclude that ¢(a) = « if and only if « € F,,.

(e): Consider any automorphism o : E — E. Note that we must have o(a) = « for all a € F),
because [F,, consists of elements of the form 1 +1+--- 41, S(ﬂ
o141+ +1)=c)+01)+ -40(1) =141+ --+1.
From Problem 5 there exists some “primitive root” a € E* satisfying E* = («), so that
E={0,1,a,02,...,a"" 72}
Let ¢ : E — E be the Frobenius automorphism and define the polynomial
f(2) = (@ — a)(@ — (@) - (& — """ (a)) € E[a].
Since " = id we observe that ¢ permutes the roots of this polynomial, hence it fixes the

coefficients. For example, the coefficient of z"~1 in f(z) is (the negative of) the sum o +
o(a) 4+ -+ ¢" (), and we have

pla+pla)+ - +¢" Ha) = p(a) + ¢*(a) + -+ ¢" (@) + ¢"(a)
=p(a)+¢*(a)+ -+ " () +
= a+p(a) +o+ " a).

From part (d) this implies that f(x) has coefficients in F,. Since o fixes elements of F), it
fixes the coefficients of f(x) and hence

flo(@)) = o(f(a)) = o(0) = 0.
This implies that o(a) is a root of f(x) and hence (o) = ¢¥(a) for some k. But if o and ¥
are automorphisms of £ that agree on a then they must agree on every element of E. Indeed,
the elements of E are just 0 and powers of «, so that

o(a’) = o(a)" = ¢*(a)" = p*(a"),
Hence o = ¢* as functions E — E.
Remark: In summary, we have shown that the Galois group of a finite field E of size p” is
a cyclic group of size n, generated by the Frobenius automorphism . Building on this, the
Galois correspondence tells us that the subfields of E are in one-to-one correspondence with

the divisors d|n. Namely, for each divisor d|n there is a subgroup (p?) C (¢), which leads to
a subfield Fix({¢?)) C E defined by

Fix((gpd>) ={aeR:0(a)=aforall o€ <g0d)}
={aeE: ¢%a)=a}
:{aEE:an:a}.

This subfield is the splitting field for 2P — x over F, and it has size p?. Furthermore, the
poset of subfields of E is isomorphic to the lattice of divisors of n under divisibility.

8Given o € F, we have a?~! = 1 for a # 0, which implies o = a. But we also have o = a when a = 0.
9n general, if E' C E is the prime subfield then any automorphism o : E — E fixes the elements of E'.



