
Math 562/662 Spring 2024
Homework 5 Drew Armstrong

1. Formal Derivatives. For any field F we consider the F-linear function D : F[x] → F[x]
defined on the basis 1, x, x2, . . . by Dxn := nxn−1. That is, we define

D

∑
k≥0

akx
k

 :=
∑
k≥1

kakx
k−1.

(a) For all f(x), g(x) ∈ F[x] prove that D[f(x)g(x)] = f(x)Dg(x) +Df(x)g(x).
(b) For all f(x) ∈ F[x] and n ≥ 1 prove that D[f(x)n] = nf(x)n−1Df(x). [Hint: Use part

(a) and induction.]

(a): First we prove it using brute force. If f(x) =
∑
akx

k and g(x) =
∑
b`x

` then we have

x [f(x)Dg(x) +Df(x)g(x)]

= f(x)xDg(x) + xDf(x)g(x)

=
(∑

akx
k
)(∑

`b`x
`
)

+
(∑

kakx
k
)(∑

b`x
`
)

=
∑
m

( ∑
k+`=m

`akb`

)
xm +

∑
m

( ∑
k+`=m

kakb`

)
xm

=
∑
m

( ∑
k+`=m

`akb` + kakb`

)
xm

=
∑
m

( ∑
k+`=m

(k + `)akb`

)
xm

=
∑
m

( ∑
k+`=m

makb`

)
xm

=
∑
m

m

( ∑
k+`=m

akb`

)
xm

= xD[f(x)g(x)].

Then cancel x from both sides to get the result. Here is a fancier proof. Let U, V,W be vector
spaces over F. A function 〈−,−〉 : U × V → W is called F-bilinear if it is F-linear in each
coordinate. Being linear in the first coordinate means that for any fixed vector v ∈ V , and
for any vectors uk ∈ U and scalars ak ∈ F we have〈∑

akx
k,v
〉

=
∑

ak〈uk,v〉.

Then for any vectors v` ∈ V and scalars b` ∈ F using linearity in the second coordinate gives〈∑
akuk,

∑
b`v`

〉
=
∑
k,`

akb`〈uk,v`〉.

If uk and v` are bases for U and V , respectively, then we see that the function 〈−,−〉 is
completely determined by the values 〈uk,v`〉. It is easy to check that the two functions



〈f, g〉 := D[f(x)g(x)] and [f, g] := f(x)Dg(x) + Df(x)g(x) from F[x] × F[x] → F[x] are F-
bilinear. Finally, in order to prove 〈f, g〉 = [f, g] for all f(x), g(x) ∈ F[x] we only need to check
that 〈xm, xn〉 = [xm, xn] for all m,n ∈ N since the powers of x are a basis for F[x]. Indeed:

〈xm, xn〉 = D[xmxn]

= D[xm+n]

= (m+ n)xm+n−1

and

[xm, xn] = xmD[xn] +D[xm]xn

= xmnxn−1 +mxm−1xn

= nxm+n−1 +mxm+n−1

= (m+ n)xm+n−1.

I think the fancy proof is easier.

(b): The result is true for n = 1, so assume n ≥ 2. Then we have

D[f(x)n] = D[f(x)f(x)n−1]

= f(x)D[f(x)n−1] +Df(x)f(x)n−1 (a)

= f(x)(n− 1)f(x)n−2Df(x) +Df(x)f(x)n−1 induction

= (n− 1)f(x)n−1Df(x) + f(x)n−1Df(x)

= [(n− 1) + 1]f(x)n−1Df(x)

= nf(x)n−1Df(x).

2. Invariance of GCD. Consider a field extension E ⊇ F and two polynomials f(x), g(x) ∈
F[x]. Let d(x) ∈ F[x] be the (monic) GCD of f(x) and g(x) in F[x] and let D(x) ∈ E[x] be
the (monic) GCD of f(x) and g(x) in E[x]. Prove that d(x) = D(x). [Hint: The Euclidean
Algorithm produces a(x), b(x) ∈ F[x] and A(x), B(x) ∈ E[x] such that f(x)a(x) + g(x)b(x) =
d(x) and f(x)A(x) + g(x)B(x) = D(x). Use this to show that d(x)|D(x) and D(x)|d(x) in
E[x], which implies that d(x) and D(x) are associate in E[x].]

Given any1 two polynomials f(x), g(x) ∈ F[x] there exists a unique monic polynomial d(x) ∈
F[x] with the properties:

• d(x)|f(x) and d(x)|g(x) in F[x],
• if e(x)|f(x) and e(x)|g(x) in F[x] then e(x)|d(x) in F[x].

Furthermore, the Euclidean algorithm gives polynomials a(x), b(x) ∈ F[x] such that f(x)a(x)+
g(x)b(x) = d(x). Similarly, since f(x), g(x) ∈ E[x] there exists a unique monic polynomial
D(x) ∈ E[x] with the properties

• D(x)|f(x) and D(x)|g(x) in E[x],
• if E(x)|f(x) and E(x)|g(x) in E[x] then E(x)|D(x) in F[x].

1not both zero



And the Euclidean algorithm produces A(x), B(x) ∈ E[x] satisfying f(x)A(x) + g(x)B(x) =
D(x). I claim that d(x) = D(x), which implies that D(x) ∈ F[x]. Indeed, since d(x)|f(x) and
d(x)|g(x) in F[x], the same holds in E[x]. Hence the equation f(x)A(x) + g(x)B(x) = D(x)
implies that d(x)|D(x) in E[x]. Furthermore, since D(x)|f(x) and D(x)|g(x) in E[x] the
equation f(x)a(x) + g(x)b(x) = d(x) implies that D(x)|d(x) in E[x]. Since E[x] is a domain
this implies that d(x) and D(x) are associate, and since d(x) and D(x) are both monic this
implies that d(x) = D(x).

Remark: Sometimes people just say that “this is obvious”, without giving a proof. It’s similar
to fact fact that f(x) = g(x)q(x) with f(x), g(x) ∈ F[x] and q(x) ∈ E[x] implies q(x) ∈ F[x]
by the existence and uniqueness of quotient and remainder over any field.

3. Repeated Factors of Polynomials. If F is a field then we know that F[x] is a unique
factorization domain. That is, for all f(x), p(x) ∈ F[x] with p(x) irreducible, there is a well-
defined multiplicity vp(f) ∈ N, which is the number of times that p(x) occurs in the prime
factorization of f(x). We say that p(x) is a repeated factor when vp(f) ≥ 2.

(a) If f(x) ∈ F[x] has a repeated prime factor, show that gcd(f,Df) 6= 1. [Hint: Suppose
that f(x) = p(x)2g(x). Apply Problem 1 to show that p(x) also divides Df(x).]

(b) If gcd(f,Df) 6= 1, show that f(x) has a repeated prime factor. [Hint: Suppose that
p(x) is a common prime divisor of f(x) and Df(x). Say f(x) = p(x)g(x). Apply
Problem 1 to show that p(x) divides Dp(x)g(x). Then use Euclid’s Lemma and the
fact that deg(Dp) < deg(p) to show that p(x) divides g(x).]

(c) It follows from (a) and (b) that

f(x) has no repeated prime factor in F[x] ⇔ gcd(f,Df) = 1 in F[x].

We will apply this result to roots. We say that f(x) ∈ F[x] is separable if it has no
repeated root in any field extension. Show that

f(x) is separable ⇔ gcd(f,Df) = 1 in F[x].

[Hint: For any field extension E ⊇ F, Problem 2 says that

gcd(f,Df) = 1 in F[x] ⇐⇒ gcd(f,Df) = 1 in E[x].]

(a): Suppose that f(x) = p(x)2g(x) for some non-constant p(x) ∈ F[x].2 From 1 we have

Df(x) = 2p(x)g(x) + p(x)Dg(x) = p(x)[2g(x) + p(x)Dg(x)].

Then since p(x)|f(x) and p(x)|Df(x) we have gcd(f,Df) 6= 1.

(b): Suppose that gcd(f,Df) 6= 1 and let p(x) be a prime divisor of gcd(f,Df), so we also
have p(x)|f(x) and p(x)|Df(x). Write f(x) = p(x)g(x) and Df(x) = p(x)h(x). Then from
Problem 1 we have

Df(x) = Dp(x)g(x) + p(x)Dg(x)

p(x)h(x) = Dp(x)g(x) + p(x)Dg(x)

p(x)[h(x)−Dg(x)] = Dp(x)g(x),

hence p(x) divides Dp(x)g(x). Since p(x) is prime, Euclid’s Lemma in the ring F[x] implies
that p(x) divides Dp(x) or g(x). But p(x) cannot divide Dp(x) because deg(Dp) < deg(p),
hence g(x) = p(x)q(x) for some q(x) ∈ F[x] and

f(x) = p(x)g(x) = p(x)p(x)q(x) = p(x)2q(x).

2For this argument we do not need to assume that p(x) is prime.



Hence f(x) has a repeated prime factor.

(c): First suppose that gcd(f,Df) 6= 1 in F[x]. By part (b) this implies that f(x) = p(x)2g(x)
for some prime p(x) ∈ F[x]. Let α ∈ E ⊇ F be a root of f(x) in some field extension E[x],3

so that f(x) = (x − α)2h(x) for some h(x) ∈ E[x]. The other direction is harder and uses
Problem 2. Let f(x) ∈ F[x] have a repeated root α ∈ E ⊇ F in some field extension E, so f(x)
has the repeated factor x − α in E[x]. This implies that gcd(f,Df) 6= 1 in E[x] and hence
gcd(f,Df) 6= 1 in F[x] from Problem 2.

4. Counting Reduced Fractions. For any n ≥ 1 we consider the following subsets of Q:

Fn := {k/n : 0 ≤ k < n},
F ′n := {k/n : 0 ≤ k < n and gcd(k, n) = 1}

Note that #Fn = n and #F ′n = φ(n). In this problem we will show that

Fn =
∐
d|n

F ′d,

which implies that n =
∑

d|n φ(d).

(a) Show that Fn is a subset of ∪d|nF ′d. [Hint: Every fraction can be reduced.]
(b) Show that ∪dF ′d is a subset of Fn.
(c) Show that d 6= e implies F ′d ∩ F ′e = ∅. [Hint: Suppose for contradiction that α is

in F ′d and F ′e, so we can write α = k/d = `/e with 0 ≤ k < d, 0 ≤ ` < e and
gcd(k, d) = gcd(`, e) = 1. Use this to show that d|e and e|d.]

(a): Consider any k/n ∈ Fn and let d = gcd(k, n) with k = dk′ and n = dn′. By the Euclidean
algorithm there exist x, y ∈ Z with d = kx + ny = dk′x + dn′y. Then canceling d from both
sides gives 1 = k′x+ n′y which implies that gcd(k′, n′) = 1. Hence k/n = k′/n′ is in F ′n/n′ .

(b): Consider any d|n and k/d ∈ F ′d (i.e. with 0 ≤ k < d and gcd(k, d) = 1). If n = dn′ then
we have k/d = kn′/dn′ = kn′/n with 0 ≤ kn′ < dn′ = n. Hence k/d ∈ Fn.

(c): Suppose that F ′d ∩ F ′e 6= ∅ so that k/d = `/e for some 0 ≤ k < ` and 0 ≤ ` < e with
gcd(k, d) = gcd(`, e) = 1. The equation ek = d` implies that d|ek. But since gcd(d, k) = 1 we
must have d|e.4 Similarly, since e|d` and gcd(e, `) = 1 we have e|d. Since d|e and e|d we have
d = ±e, which implies that d = e because d, e ∈ N.

5. The Primitive Root Theorem. If E is a finite field then we will prove that (E×, ·, 1) is
a cyclic group. Suppose that #E = pn, and hence #E′ = pn − 1.

(a) If α ∈ E× has order d, use Lagrange’s Theorem to show that d|(pn − 1).
(b) Let d|(pn − 1). Show that E× contains either 0 or φ(d) elements of order d. [Hint: If

α ∈ E× is an element of order d then {1, α, . . . , αd−1} is the full solution of xd = 1.
But recall that αk has order d/ gcd(d, k). Use this to show that the full set of elements
of order d is {αk : 0 ≤ k < d and gcd(k, d) = 1}.]

3For example, let E := F[x]/p(x)F[x] and α = [x].
4Proof: Take dx+ky = 1 and multiply both sides by e to get dex+key = e, hence dex+d`y = e, hence d|e.



(c) Combine (b) with Problem 4 to show that that E× contains exactly φ(d) elements of
order d for each d|(pn − 1). In particular, E× contains at least one element α of
order pn − 1, hence E× = 〈α〉 is a cyclic group. [Hint: Let Nd be the number of
elements of order d in E× and observe that pn − 1 =

∑
d|(pn−1)Nd. We know that

Nd ≤ φ(d) for all d. But if Nd < φ(d) for some d then we have

pn − 1 =
∑

d|(pn−1)

Nd <
∑

d|(pn−1)

φ(d) = pn − 1.]

(d) Corollary. Prove that there exist irreducible polynomials in Fp[x] of all degrees. [Hint:
For any prime power pn we already know that a field of size pn exists. Let E ⊇ Fp
have size pn and let α ∈ E× be a primitive root, which exists by part (c). Show that
the minimal polynomial of α over Fp has degree n.]

(a): Let #E = pn and let (E×,×, 1) be the group of units, so that #E× = pn− 1. Let α ∈ E×
be an element of order d so that

#〈α〉 = #{αk : k ∈ Z} = d.

According to Lagrange’s Theorem, the size of any subgroup divides the size of the group.
Since 〈α〉 is a subgroup of E× this implies that d divides pn − 1.

(b): Hence any element of the group E× has order dividing pn − 1. For any d|pn − 1 that
the number of elements of order d is either zero or φ(d). Indeed, if the number of elements
of order d is zero then we are done. Otherwise, let α ∈ E× be an element of order d and
consider the d distinct elements 1, α, α2, . . . , αd−1. Each of these is a root of the polynomial
xd − 1 because (αk)d = (αd)k = 1k = 1. Since the polynomial xd − 1 has degree d, this is the
complete solution of the equation xd − 1 = 0. If β ∈ E× is any other element of order d it
follows that β = αk for some k. But not every k occurs. Recall, if α has order d then αk has
order d/ gcd(k, d), hence αk has order d if and only if gcd(k, d) = 1. It follows that the set of
elements of order d is exactly {αk : 1 ≤ k ≤ d− 1, gcd(k, d) = 1}, which has size φ(d).

(c): For any d|(pn − 1) let Nd be the number of elements of order d in E×, so that Nd = 0 or
Nd = φ(d). Since each of the pn − 1 elements of E× has some order, we have

pn − 1 =
∑

d|(pn−1)

Nd,

and from Problem 4 we have

pn − 1 =
∑

d|(pn−1)

φ(d).

If at least one of the Nd is zero then we obtain a contradiction

pn − 1 =
∑

d|(pn−1)

Nd <
∑

d|(pn−1)

φ(d) = pn − 1.

Hence we must have Nd = φ(d) for all d|(pn − 1). In particular, we have

Npn−1 = φ(pn − 1) ≥ 1,

which shows that E× is a cyclic group.

Remark: This is an indirect proof. For example, it tells us that the field of size 173 has exactly
φ(173 − 1) = 2448 primitive roots, but it does not tell us how to find one. I don’t know a
better algorithm than “guess and check”.



(d): Let E be a field of size pn.5 Note that E must be an n-dimensional vector space over Fp,
so [E/Fp] = n. In (c) we showed that there exists α ∈ E× such that E× = 〈α〉, and hence

E = {0} ∩ E× = {0, 1, α, . . . , αpn−2} = Fp(α).

Let m(x) ∈ Fp(x) be the minimal polynomial of α/Fp, which is irreducible over Fp. Then from
the Minimal Polynomial Theorem we have deg(m) = [Fp(α)/Fp] = [E/Fp] = n.

6. The Frobenius Automorphism. Let p ≥ 2 be prime and let E ⊇ Fp be a field of size
pn for some n ≥ 1. Let ϕ : E→ E denote the function ϕ(α) := αp.

(a) Prove that ϕ is a ring homomorphism.
(b) Prove that ϕ is injective. Since E is finite this implies that ϕ is also surjective. In

other words, every element of E has a unique p-th root. [Hint: A ring homomorphism
ϕ is injective if and only if kerϕ = {0}.]

(c) Show that ϕn : E → E is the identity function. If 0 < k < n, show that ϕk is not

the identity function. [Hint: If k < n and αp
k

= α for all α ∈ E then the polynomial

xp
k − x has too many roots in E.]

(d) For all α ∈ E, show that α ∈ Fp if and only if ϕ(α) = α.
(e) Harder. Show that every invertible ring homomorphism σ : E → E has the form

σ = ϕk for some k. [Hint: From the Primitive Root Theorem we know that E× = 〈α〉
for some α. Let S = {α,ϕ(α), ϕ2(α), . . . , ϕn−1(α)} and let

f(x) =
∏
β∈S

(x− β) ∈ E[x].

Note that ϕ permutes the roots of f(x), hence it fixes the coefficients of f(x). By (d)
this implies that f(x) ∈ Fp[x]. Use this to show that f(σ(α)) = σ(f(α)) = 0, and

hence σ(α) ∈ S. Let’s say σ(α) = ϕk(α). In this case show that σ = ϕk.]6

(a): Let E ⊇ Fp be a field of size pn for some prime p. Let ϕ : E → E denote the Frobenius
map ϕ(α) := αp. To see that this is a ring homomorphism we first note that ϕ(1) = 1p = 1
and ϕ(0) = 0p = 0. Then for any α, β ∈ E we note that

ϕ(αβ) = (αβ)p = αpβp = ϕ(α)ϕ(β)

and
ϕ(α+ β) = (α+ β)p = αp + βp = ϕ(α) + ϕ(β).

This last identity follows from the Freshman’s Binomial Theorem, which you proved on the
previous homework.

(b): Recall that a ring homomorphism is injective if and only if its kernel is zero.7 In our case,
if αp = ϕ(α) = 0 then we must have α = 0 because E is a domain. Hence α ∈ kerϕ implies
α = 0. Hence ϕ is injective. It follows from injectivity and the finiteness of E that ϕ is also
surjective.

(c): For any α ∈ E× note that αp
n−1 = 1 because #E× = pn − 1 (see 5a). Multiplying both

sides by α gives αp
n

= α, which also holds when α = 0. Thus for any α ∈ E we have

ϕn(α) = αp
n

= α,

5For example, let E be a splitting field for xp
n

− x over Fp.
6Thanks to Qiaochu Yuan for this proof.
7Indeed, if ϕ : R → S is injective then for any α ∈ kerϕ we have ϕ(α) = 0 = ϕ(0) and hence α = 0.

Conversely, if kerϕ = {0} then for any ϕ(α) = ϕ(β) we have 0 = ϕ(α)− ϕ(β) = ϕ(α− β), which implies that
α− β = 0 and hence α = β.



which shows that ϕn = id. But if 0 < k < n then I claim that ϕk 6= id. To see this, assume for

contradiction that αp
k

= ϕk(α) = α for all α ∈ E. But then the nonzero polynomial xp
k − x

has pn distinct roots in E, which is more than its degree pk.

(d): Note that ϕ(α) = α if and only if αp = α, i.e., if and only if α is a root of the polynomial
xp − x. This polynomial can have at most p roots in E, and every element α ∈ Fp is a root.8

Since Fp has p elements we conclude that ϕ(α) = α if and only if α ∈ Fp.

(e): Consider any automorphism σ : E→ E. Note that we must have σ(α) = α for all α ∈ Fp
because Fp consists of elements of the form 1 + 1 + · · ·+ 1, so9

σ(1 + 1 + · · ·+ 1) = σ(1) + σ(1) + · · ·+ σ(1) = 1 + 1 + · · ·+ 1.

From Problem 5 there exists some “primitive root” α ∈ E× satisfying E× = 〈α〉, so that

E = {0, 1, α, α2, . . . , αp
n−2}.

Let ϕ : E→ E be the Frobenius automorphism and define the polynomial

f(x) = (x− α)(x− ϕ(α)) · · · (x− ϕn−1(α)) ∈ E[x].

Since ϕn = id we observe that ϕ permutes the roots of this polynomial, hence it fixes the
coefficients. For example, the coefficient of xn−1 in f(x) is (the negative of) the sum α +
ϕ(α) + · · ·+ ϕn−1(α), and we have

ϕ(α+ ϕ(α) + · · ·+ ϕn−1(α)) = ϕ(α) + ϕ2(α) + · · ·+ ϕn−1(α) + ϕn(α)

= ϕ(α) + ϕ2(α) + · · ·+ ϕn−1(α) + α

= α+ ϕ(α) + · · ·+ ϕn−1(α).

From part (d) this implies that f(x) has coefficients in Fp. Since σ fixes elements of Fp, it
fixes the coefficients of f(x) and hence

f(σ(α)) = σ(f(α)) = σ(0) = 0.

This implies that σ(α) is a root of f(x) and hence σ(α) = ϕk(α) for some k. But if σ and ϕk

are automorphisms of E that agree on α then they must agree on every element of E. Indeed,
the elements of E are just 0 and powers of α, so that

σ(α`) = σ(α)` = ϕk(α)` = ϕk(α`).

Hence σ = ϕk as functions E→ E.

Remark: In summary, we have shown that the Galois group of a finite field E of size pn is
a cyclic group of size n, generated by the Frobenius automorphism ϕ. Building on this, the
Galois correspondence tells us that the subfields of E are in one-to-one correspondence with
the divisors d|n. Namely, for each divisor d|n there is a subgroup 〈ϕd〉 ⊆ 〈ϕ〉, which leads to
a subfield Fix(〈ϕd〉) ⊆ E defined by

Fix(〈ϕd〉) = {α ∈ E : σ(α) = α for all σ ∈ 〈ϕd〉}

= {α ∈ E : ϕd(α) = α}

= {α ∈ E : αp
d

= α}.

This subfield is the splitting field for xp
d − x over Fp and it has size pd. Furthermore, the

poset of subfields of E is isomorphic to the lattice of divisors of n under divisibility.

8Given α ∈ Fp we have αp−1 = 1 for α 6= 0, which implies αp = α. But we also have αp = α when α = 0.
9In general, if E′ ⊆ E is the prime subfield then any automorphism σ : E→ E fixes the elements of E′.


