1. Formal Derivatives. For any field \mathbb{F} we consider the \mathbb{F}-linear function $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ defined on the basis $1, x, x^{2}, \ldots$ by $D x^{n}:=n x^{n-1}$. That is, we define

$$
D\left(\sum_{k \geq 0} a_{k} x^{k}\right):=\sum_{k \geq 1} k a_{k} x^{k-1} .
$$

(a) For all $f(x), g(x) \in \mathbb{F}[x]$ prove that $D[f(x) g(x)]=f(x) D g(x)+D f(x) g(x)$.
(b) For all $f(x) \in \mathbb{F}[x]$ and $n \geq 1$ prove that $D\left[f(x)^{n}\right]=n f(x)^{n-1} D f(x)$. [Hint: Use part (a) and induction.]
(a): First we prove it using brute force. If $f(x)=\sum a_{k} x^{k}$ and $g(x)=\sum b_{\ell} x^{\ell}$ then we have

$$
\begin{aligned}
x & {[f(x) D g(x)+D f(x) g(x)] } \\
= & f(x) x D g(x)+x D f(x) g(x) \\
& =\left(\sum_{k} a_{k} x^{k}\right)\left(\sum \ell b_{\ell} x^{\ell}\right)+\left(\sum k a_{k} x^{k}\right)\left(\sum b_{\ell} x^{\ell}\right) \\
& =\sum_{m}\left(\sum_{k+\ell=m} \ell a_{k} b_{\ell}\right) x^{m}+\sum_{m}\left(\sum_{k+\ell=m} k a_{k} b_{\ell}\right) x^{m} \\
& =\sum_{m}\left(\sum_{k+\ell=m} \ell a_{k} b_{\ell}+k a_{k} b_{\ell}\right) x^{m} \\
& =\sum_{m}\left(\sum_{k+\ell=m}(k+\ell) a_{k} b_{\ell}\right) x^{m} \\
& =\sum_{m}\left(\sum_{k+\ell=m} m a_{k} b_{\ell}\right) x^{m} \\
& =\sum_{m} m\left(\sum_{k+\ell=m} a_{k} b_{\ell}\right) x^{m} \\
& =x D[f(x) g(x)] .
\end{aligned}
$$

Then cancel x from both sides to get the result. Here is a fancier proof. Let U, V, W be vector spaces over \mathbb{F}. A function $\langle-,-\rangle: U \times V \rightarrow W$ is called \mathbb{F}-bilinear if it is \mathbb{F}-linear in each coordinate. Being linear in the first coordinate means that for any fixed vector $\mathbf{v} \in V$, and for any vectors $\mathbf{u}_{k} \in U$ and scalars $a_{k} \in \mathbb{F}$ we have

$$
\left\langle\sum a_{k} x^{k}, \mathbf{v}\right\rangle=\sum a_{k}\left\langle\mathbf{u}_{k}, \mathbf{v}\right\rangle .
$$

Then for any vectors $\mathbf{v}_{\ell} \in V$ and scalars $b_{\ell} \in \mathbb{F}$ using linearity in the second coordinate gives

$$
\left\langle\sum a_{k} \mathbf{u}_{k}, \sum b_{\ell} \mathbf{v}_{\ell}\right\rangle=\sum_{k, \ell} a_{k} b_{\ell}\left\langle\mathbf{u}_{k}, \mathbf{v}_{\ell}\right\rangle .
$$

If \mathbf{u}_{k} and \mathbf{v}_{ℓ} are bases for U and V, respectively, then we see that the function $\langle-,-\rangle$ is completely determined by the values $\left\langle\mathbf{u}_{k}, \mathbf{v}_{\ell}\right\rangle$. It is easy to check that the two functions
$\langle f, g\rangle:=D[f(x) g(x)]$ and $[f, g]:=f(x) D g(x)+D f(x) g(x)$ from $\mathbb{F}[x] \times \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ are \mathbb{F} bilinear. Finally, in order to prove $\langle f, g\rangle=[f, g]$ for all $f(x), g(x) \in \mathbb{F}[x]$ we only need to check that $\left\langle x^{m}, x^{n}\right\rangle=\left[x^{m}, x^{n}\right]$ for all $m, n \in \mathbb{N}$ since the powers of x are a basis for $\mathbb{F}[x]$. Indeed:

$$
\begin{aligned}
\left\langle x^{m}, x^{n}\right\rangle & =D\left[x^{m} x^{n}\right] \\
& =D\left[x^{m+n}\right] \\
& =(m+n) x^{m+n-1}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[x^{m}, x^{n}\right] } & =x^{m} D\left[x^{n}\right]+D\left[x^{m}\right] x^{n} \\
& =x^{m} n x^{n-1}+m x^{m-1} x^{n} \\
& =n x^{m+n-1}+m x^{m+n-1} \\
& =(m+n) x^{m+n-1} .
\end{aligned}
$$

I think the fancy proof is easier.
(b): The result is true for $n=1$, so assume $n \geq 2$. Then we have

$$
\begin{aligned}
D\left[f(x)^{n}\right] & =D\left[f(x) f(x)^{n-1}\right] \\
& =f(x) D\left[f(x)^{n-1}\right]+D f(x) f(x)^{n-1} \\
& =f(x)(n-1) f(x)^{n-2} D f(x)+D f(x) f(x)^{n-1} \\
& =(n-1) f(x)^{n-1} D f(x)+f(x)^{n-1} D f(x) \\
& =[(n-1)+1] f(x)^{n-1} D f(x) \\
& =n f(x)^{n-1} D f(x) .
\end{aligned}
$$

2. Invariance of GCD. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$ and two polynomials $f(x), g(x) \in$ $\mathbb{F}[x]$. Let $d(x) \in \mathbb{F}[x]$ be the (monic) GCD of $f(x)$ and $g(x)$ in $\mathbb{F}[x]$ and let $D(x) \in \mathbb{E}[x]$ be the (monic) GCD of $f(x)$ and $g(x)$ in $\mathbb{E}[x]$. Prove that $d(x)=D(x)$. [Hint: The Euclidean Algorithm produces $a(x), b(x) \in \mathbb{F}[x]$ and $A(x), B(x) \in \mathbb{E}[x]$ such that $f(x) a(x)+g(x) b(x)=$ $d(x)$ and $f(x) A(x)+g(x) B(x)=D(x)$. Use this to show that $d(x) \mid D(x)$ and $D(x) \mid d(x)$ in $\mathbb{E}[x]$, which implies that $d(x)$ and $D(x)$ are associate in $\mathbb{E}[x]$.

Given any ${ }^{11}$ two polynomials $f(x), g(x) \in \mathbb{F}[x]$ there exists a unique monic polynomial $d(x) \in$ $\mathbb{F}[x]$ with the properties:

- $d(x) \mid f(x)$ and $d(x) \mid g(x)$ in $\mathbb{F}[x]$,
- if $e(x) \mid f(x)$ and $e(x) \mid g(x)$ in $\mathbb{F}[x]$ then $e(x) \mid d(x)$ in $\mathbb{F}[x]$.

Furthermore, the Euclidean algorithm gives polynomials $a(x), b(x) \in \mathbb{F}[x]$ such that $f(x) a(x)+$ $g(x) b(x)=d(x)$. Similarly, since $f(x), g(x) \in \mathbb{E}[x]$ there exists a unique monic polynomial $D(x) \in \mathbb{E}[x]$ with the properties

- $D(x) \mid f(x)$ and $D(x) \mid g(x)$ in $\mathbb{E}[x]$,
- if $E(x) \mid f(x)$ and $E(x) \mid g(x)$ in $\mathbb{E}[x]$ then $E(x) \mid D(x)$ in $\mathbb{F}[x]$.

[^0]And the Euclidean algorithm produces $A(x), B(x) \in \mathbb{E}[x]$ satisfying $f(x) A(x)+g(x) B(x)=$ $D(x)$. I claim that $d(x)=D(x)$, which implies that $D(x) \in \mathbb{F}[x]$. Indeed, since $d(x) \mid f(x)$ and $d(x) \mid g(x)$ in $\mathbb{F}[x]$, the same holds in $\mathbb{E}[x]$. Hence the equation $f(x) A(x)+g(x) B(x)=D(x)$ implies that $d(x) \mid D(x)$ in $\mathbb{E}[x]$. Furthermore, since $D(x) \mid f(x)$ and $D(x) \mid g(x)$ in $\mathbb{E}[x]$ the equation $f(x) a(x)+g(x) b(x)=d(x)$ implies that $D(x) \mid d(x)$ in $\mathbb{E}[x]$. Since $\mathbb{E}[x]$ is a domain this implies that $d(x)$ and $D(x)$ are associate, and since $d(x)$ and $D(x)$ are both monic this implies that $d(x)=D(x)$.

Remark: Sometimes people just say that "this is obvious", without giving a proof. It's similar to fact fact that $f(x)=g(x) q(x)$ with $f(x), g(x) \in \mathbb{F}[x]$ and $q(x) \in \mathbb{E}[x]$ implies $q(x) \in \mathbb{F}[x]$ by the existence and uniqueness of quotient and remainder over any field.
3. Repeated Factors of Polynomials. If \mathbb{F} is a field then we know that $\mathbb{F}[x]$ is a unique factorization domain. That is, for all $f(x), p(x) \in \mathbb{F}[x]$ with $p(x)$ irreducible, there is a welldefined multiplicity $v_{p}(f) \in \mathbb{N}$, which is the number of times that $p(x)$ occurs in the prime factorization of $f(x)$. We say that $p(x)$ is a repeated factor when $v_{p}(f) \geq 2$.
(a) If $f(x) \in \mathbb{F}[x]$ has a repeated prime factor, show that $\operatorname{gcd}(f, D f) \neq 1$. [Hint: Suppose that $f(x)=p(x)^{2} g(x)$. Apply Problem 1 to show that $p(x)$ also divides $D f(x)$.]
(b) If $\operatorname{gcd}(f, D f) \neq 1$, show that $f(x)$ has a repeated prime factor. [Hint: Suppose that $p(x)$ is a common prime divisor of $f(x)$ and $D f(x)$. Say $f(x)=p(x) g(x)$. Apply Problem 1 to show that $p(x)$ divides $D p(x) g(x)$. Then use Euclid's Lemma and the fact that $\operatorname{deg}(D p)<\operatorname{deg}(p)$ to show that $p(x)$ divides $g(x)$.]
(c) It follows from (a) and (b) that

$$
f(x) \text { has no repeated prime factor in } \mathbb{F}[x] \quad \Leftrightarrow \quad \operatorname{gcd}(f, D f)=1 \text { in } \mathbb{F}[x] .
$$

We will apply this result to roots. We say that $f(x) \in \mathbb{F}[x]$ is separable if it has no repeated root in any field extension. Show that

$$
f(x) \text { is separable } \Leftrightarrow \operatorname{gcd}(f, D f)=1 \text { in } \mathbb{F}[x] \text {. }
$$

[Hint: For any field extension $\mathbb{E} \supseteq \mathbb{F}$, Problem 2 says that

$$
\operatorname{gcd}(f, D f)=1 \text { in } \mathbb{F}[x] \quad \Longleftrightarrow \quad \operatorname{gcd}(f, D f)=1 \text { in } \mathbb{E}[x] .]
$$

(a): Suppose that $f(x)=p(x)^{2} g(x)$ for some non-constant $p(x) \in \mathbb{F}[x] .{ }^{2}$ From 1 we have

$$
D f(x)=2 p(x) g(x)+p(x) D g(x)=p(x)[2 g(x)+p(x) D g(x)] .
$$

Then since $p(x) \mid f(x)$ and $p(x) \mid D f(x)$ we have $\operatorname{gcd}(f, D f) \neq 1$.
(b): Suppose that $\operatorname{gcd}(f, D f) \neq 1$ and let $p(x)$ be a prime divisor of $\operatorname{gcd}(f, D f)$, so we also have $p(x) \mid f(x)$ and $p(x) \mid D f(x)$. Write $f(x)=p(x) g(x)$ and $D f(x)=p(x) h(x)$. Then from Problem 1 we have

$$
\begin{aligned}
D f(x) & =D p(x) g(x)+p(x) D g(x) \\
p(x) h(x) & =D p(x) g(x)+p(x) D g(x) \\
p(x)[h(x)-D g(x)] & =D p(x) g(x),
\end{aligned}
$$

hence $p(x)$ divides $D p(x) g(x)$. Since $p(x)$ is prime, Euclid's Lemma in the ring $\mathbb{F}[x]$ implies that $p(x)$ divides $D p(x)$ or $g(x)$. But $p(x)$ cannot divide $D p(x)$ because $\operatorname{deg}(D p)<\operatorname{deg}(p)$, hence $g(x)=p(x) q(x)$ for some $q(x) \in \mathbb{F}[x]$ and

$$
f(x)=p(x) g(x)=p(x) p(x) q(x)=p(x)^{2} q(x) .
$$

[^1]Hence $f(x)$ has a repeated prime factor.
(c): First suppose that $\operatorname{gcd}(f, D f) \neq 1$ in $\mathbb{F}[x]$. By part (b) this implies that $f(x)=p(x)^{2} g(x)$ for some prime $p(x) \in \mathbb{F}[x]$. Let $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ be a root of $f(x)$ in some field extension $\mathbb{E}[x]^{3}$ so that $f(x)=(x-\alpha)^{2} h(x)$ for some $h(x) \in \mathbb{E}[x]$. The other direction is harder and uses Problem 2. Let $f(x) \in \mathbb{F}[x]$ have a repeated root $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ in some field extension \mathbb{E}, so $f(x)$ has the repeated factor $x-\alpha$ in $\mathbb{E}[x]$. This implies that $\operatorname{gcd}(f, D f) \neq 1$ in $\mathbb{E}[x]$ and hence $\operatorname{gcd}(f, D f) \neq 1$ in $\mathbb{F}[x]$ from Problem 2.
4. Counting Reduced Fractions. For any $n \geq 1$ we consider the following subsets of \mathbb{Q} :

$$
\begin{aligned}
& F_{n}:=\{k / n: 0 \leq k<n\}, \\
& F_{n}^{\prime}:=\{k / n: 0 \leq k<n \text { and } \operatorname{gcd}(k, n)=1\}
\end{aligned}
$$

Note that $\# F_{n}=n$ and $\# F_{n}^{\prime}=\phi(n)$. In this problem we will show that

$$
F_{n}=\coprod_{d \mid n} F_{d}^{\prime}
$$

which implies that $n=\sum_{d \mid n} \phi(d)$.
(a) Show that F_{n} is a subset of $\cup_{d \mid n} F_{d}^{\prime}$. [Hint: Every fraction can be reduced.]
(b) Show that $\cup_{d} F_{d}^{\prime}$ is a subset of F_{n}.
(c) Show that $d \neq e$ implies $F_{d}^{\prime} \cap F_{e}^{\prime}=\emptyset$. [Hint: Suppose for contradiction that α is in F_{d}^{\prime} and F_{e}^{\prime}, so we can write $\alpha=k / d=\ell / e$ with $0 \leq k<d, 0 \leq \ell<e$ and $\operatorname{gcd}(k, d)=\operatorname{gcd}(\ell, e)=1$. Use this to show that $d \mid e$ and $e \mid d$.]
(a): Consider any $k / n \in F_{n}$ and let $d=\operatorname{gcd}(k, n)$ with $k=d k^{\prime}$ and $n=d n^{\prime}$. By the Euclidean algorithm there exist $x, y \in \mathbb{Z}$ with $d=k x+n y=d k^{\prime} x+d n^{\prime} y$. Then canceling d from both sides gives $1=k^{\prime} x+n^{\prime} y$ which implies that $\operatorname{gcd}\left(k^{\prime}, n^{\prime}\right)=1$. Hence $k / n=k^{\prime} / n^{\prime}$ is in $F_{n / n^{\prime}}^{\prime}$.
(b): Consider any $d \mid n$ and $k / d \in F_{d}^{\prime}$ (i.e. with $0 \leq k<d$ and $\operatorname{gcd}(k, d)=1$). If $n=d n^{\prime}$ then we have $k / d=k n^{\prime} / d n^{\prime}=k n^{\prime} / n$ with $0 \leq k n^{\prime}<d n^{\prime}=n$. Hence $k / d \in F_{n}$.
(c): Suppose that $F_{d}^{\prime} \cap F_{e}^{\prime} \neq \emptyset$ so that $k / d=\ell / e$ for some $0 \leq k<\ell$ and $0 \leq \ell<e$ with $\operatorname{gcd}(k, d)=\operatorname{gcd}(\ell, e)=1$. The equation $e k=d \ell$ implies that $d \mid e k$. But since $\operatorname{gcd}(d, k)=1$ we must have $d \mid e{ }^{4}$ Similarly, since $e \mid d \ell$ and $\operatorname{gcd}(e, \ell)=1$ we have $e \mid d$. Since $d \mid e$ and $e \mid d$ we have $d= \pm e$, which implies that $d=e$ because $d, e \in \mathbb{N}$.
5. The Primitive Root Theorem. If \mathbb{E} is a finite field then we will prove that $\left(\mathbb{E}^{\times}, \cdot, 1\right)$ is a cyclic group. Suppose that $\# \mathbb{E}=p^{n}$, and hence $\# \mathbb{E}^{\prime}=p^{n}-1$.
(a) If $\alpha \in \mathbb{E}^{\times}$has order d, use Lagrange's Theorem to show that $d \mid\left(p^{n}-1\right)$.
(b) Let $d \mid\left(p^{n}-1\right)$. Show that \mathbb{E}^{\times}contains either 0 or $\phi(d)$ elements of order d. [Hint: If $\alpha \in \mathbb{E}^{\times}$is an element of order d then $\left\{1, \alpha, \ldots, \alpha^{d-1}\right\}$ is the full solution of $x^{d}=1$. But recall that α^{k} has order $d / \operatorname{gcd}(d, k)$. Use this to show that the full set of elements of order d is $\left\{\alpha^{k}: 0 \leq k<d\right.$ and $\left.\operatorname{gcd}(k, d)=1\right\}$.]

[^2](c) Combine (b) with Problem 4 to show that that \mathbb{E}^{\times}contains exactly $\phi(d)$ elements of order d for each $d \mid\left(p^{n}-1\right)$. In particular, \mathbb{E}^{\times}contains at least one element α of order $p^{n}-1$, hence $\mathbb{E}^{\times}=\langle\alpha\rangle$ is a cyclic group. [Hint: Let N_{d} be the number of elements of order d in \mathbb{E}^{\times}and observe that $p^{n}-1=\sum_{d \mid\left(p^{n}-1\right)} N_{d}$. We know that $N_{d} \leq \phi(d)$ for all d. But if $N_{d}<\phi(d)$ for some d then we have
$$
\left.p^{n}-1=\sum_{d \mid\left(p^{n}-1\right)} N_{d}<\sum_{d \mid\left(p^{n}-1\right)} \phi(d)=p^{n}-1 .\right]
$$
(d) Corollary. Prove that there exist irreducible polynomials in $\mathbb{F}_{p}[x]$ of all degrees. [Hint: For any prime power p^{n} we already know that a field of size p^{n} exists. Let $\mathbb{E} \supseteq \mathbb{F}_{p}$ have size p^{n} and let $\alpha \in \mathbb{E}^{\times}$be a primitive root, which exists by part (c). Show that the minimal polynomial of α over \mathbb{F}_{p} has degree n.]
(a): Let $\# \mathbb{E}=p^{n}$ and let $\left(\mathbb{E}^{\times}, \times, 1\right)$ be the group of units, so that $\# \mathbb{E}^{\times}=p^{n}-1$. Let $\alpha \in \mathbb{E}^{\times}$ be an element of order d so that
$$
\#\langle\alpha\rangle=\#\left\{\alpha^{k}: k \in \mathbb{Z}\right\}=d
$$

According to Lagrange's Theorem, the size of any subgroup divides the size of the group. Since $\langle\alpha\rangle$ is a subgroup of \mathbb{E}^{\times}this implies that d divides $p^{n}-1$.
(b): Hence any element of the group \mathbb{E}^{\times}has order dividing $p^{n}-1$. For any $d \mid p^{n}-1$ that the number of elements of order d is either zero or $\phi(d)$. Indeed, if the number of elements of order d is zero then we are done. Otherwise, let $\alpha \in \mathbb{E}^{\times}$be an element of order d and consider the d distinct elements $1, \alpha, \alpha^{2}, \ldots, \alpha^{d-1}$. Each of these is a root of the polynomial $x^{d}-1$ because $\left(\alpha^{k}\right)^{d}=\left(\alpha^{d}\right)^{k}=1^{k}=1$. Since the polynomial $x^{d}-1$ has degree d, this is the complete solution of the equation $x^{d}-1=0$. If $\beta \in \mathbb{E}^{\times}$is any other element of order d it follows that $\beta=\alpha^{k}$ for some k. But not every k occurs. Recall, if α has order d then α^{k} has order $d / \operatorname{gcd}(k, d)$, hence α^{k} has order d if and only if $\operatorname{gcd}(k, d)=1$. It follows that the set of elements of order d is exactly $\left\{\alpha^{k}: 1 \leq k \leq d-1, \operatorname{gcd}(k, d)=1\right\}$, which has size $\phi(d)$.
(c): For any $d \mid\left(p^{n}-1\right)$ let N_{d} be the number of elements of order d in \mathbb{E}^{\times}, so that $N_{d}=0$ or $N_{d}=\phi(d)$. Since each of the $p^{n}-1$ elements of \mathbb{E}^{\times}has some order, we have

$$
p^{n}-1=\sum_{d \mid\left(p^{n}-1\right)} N_{d},
$$

and from Problem 4 we have

$$
p^{n}-1=\sum_{d \mid\left(p^{n}-1\right)} \phi(d) .
$$

If at least one of the N_{d} is zero then we obtain a contradiction

$$
p^{n}-1=\sum_{d \mid\left(p^{n}-1\right)} N_{d}<\sum_{d \mid\left(p^{n}-1\right)} \phi(d)=p^{n}-1 .
$$

Hence we must have $N_{d}=\phi(d)$ for all $d \mid\left(p^{n}-1\right)$. In particular, we have

$$
N_{p^{n}-1}=\phi\left(p^{n}-1\right) \geq 1,
$$

which shows that \mathbb{E}^{\times}is a cyclic group.
Remark: This is an indirect proof. For example, it tells us that the field of size 17^{3} has exactly $\phi\left(17^{3}-1\right)=2448$ primitive roots, but it does not tell us how to find one. I don't know a better algorithm than "guess and check".
(d): Let \mathbb{E} be a field of size $p^{n} 5^{5}$ Note that \mathbb{E} must be an n-dimensional vector space over \mathbb{F}_{p}, so $\left[\mathbb{E} / \mathbb{F}_{p}\right]=n$. In (c) we showed that there exists $\alpha \in \mathbb{E}^{\times}$such that $\mathbb{E}^{\times}=\langle\alpha\rangle$, and hence

$$
\mathbb{E}=\{0\} \cap \mathbb{E}^{\times}=\left\{0,1, \alpha, \ldots, \alpha^{p^{n}-2}\right\}=\mathbb{F}_{p}(\alpha) .
$$

Let $m(x) \in \mathbb{F}_{p}(x)$ be the minimal polynomial of α / \mathbb{F}_{p}, which is irreducible over \mathbb{F}_{p}. Then from the Minimal Polynomial Theorem we have $\operatorname{deg}(m)=\left[\mathbb{F}_{p}(\alpha) / \mathbb{F}_{p}\right]=\left[\mathbb{E} / \mathbb{F}_{p}\right]=n$.
6. The Frobenius Automorphism. Let $p \geq 2$ be prime and let $\mathbb{E} \supseteq \mathbb{F}_{p}$ be a field of size p^{n} for some $n \geq 1$. Let $\varphi: \mathbb{E} \rightarrow \mathbb{E}$ denote the function $\varphi(\alpha):=\alpha^{p}$.
(a) Prove that φ is a ring homomorphism.
(b) Prove that φ is injective. Since \mathbb{E} is finite this implies that φ is also surjective. In other words, every element of \mathbb{E} has a unique p-th root. [Hint: A ring homomorphism φ is injective if and only if $\operatorname{ker} \varphi=\{0\}$.]
(c) Show that $\varphi^{n}: \mathbb{E} \rightarrow \mathbb{E}$ is the identity function. If $0<k<n$, show that φ^{k} is not the identity function. [Hint: If $k<n$ and $\alpha^{p^{k}}=\alpha$ for all $\alpha \in \mathbb{E}$ then the polynomial $x^{p^{k}}-x$ has too many roots in \mathbb{E}.]
(d) For all $\alpha \in \mathbb{E}$, show that $\alpha \in \mathbb{F}_{p}$ if and only if $\varphi(\alpha)=\alpha$.
(e) Harder. Show that every invertible ring homomorphism $\sigma: \mathbb{E} \rightarrow \mathbb{E}$ has the form $\sigma=\varphi^{k}$ for some k. [Hint: From the Primitive Root Theorem we know that $\mathbb{E}^{\times}=\langle\alpha\rangle$ for some α. Let $S=\left\{\alpha, \varphi(\alpha), \varphi^{2}(\alpha), \ldots, \varphi^{n-1}(\alpha)\right\}$ and let

$$
f(x)=\prod_{\beta \in S}(x-\beta) \in \mathbb{E}[x] .
$$

Note that φ permutes the roots of $f(x)$, hence it fixes the coefficients of $f(x)$. By (d) this implies that $f(x) \in \mathbb{F}_{p}[x]$. Use this to show that $f(\sigma(\alpha))=\sigma(f(\alpha))=0$, and hence $\sigma(\alpha) \in S$. Let's say $\sigma(\alpha)=\varphi^{k}(\alpha)$. In this case show that $\sigma=\varphi^{k}$. ${ }^{6}$
(a): Let $\mathbb{E} \supseteq \mathbb{F}_{p}$ be a field of size p^{n} for some prime p. Let $\varphi: \mathbb{E} \rightarrow \mathbb{E}$ denote the Frobenius $\operatorname{map} \varphi(\alpha):=\alpha^{p}$. To see that this is a ring homomorphism we first note that $\varphi(1)=1^{p}=1$ and $\varphi(0)=0^{p}=0$. Then for any $\alpha, \beta \in \mathbb{E}$ we note that

$$
\varphi(\alpha \beta)=(\alpha \beta)^{p}=\alpha^{p} \beta^{p}=\varphi(\alpha) \varphi(\beta)
$$

and

$$
\varphi(\alpha+\beta)=(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}=\varphi(\alpha)+\varphi(\beta) .
$$

This last identity follows from the Freshman's Binomial Theorem, which you proved on the previous homework.
(b): Recall that a ring homomorphism is injective if and only if its kernel is zero ${ }^{7}$ In our case, if $\alpha^{p}=\varphi(\alpha)=0$ then we must have $\alpha=0$ because \mathbb{E} is a domain. Hence $\alpha \in \operatorname{ker} \varphi$ implies $\alpha=0$. Hence φ is injective. It follows from injectivity and the finiteness of \mathbb{E} that φ is also surjective.
(c): For any $\alpha \in \mathbb{E}^{\times}$note that $\alpha^{p^{n}-1}=1$ because $\# \mathbb{E}^{\times}=p^{n}-1$ (see 5 a). Multiplying both sides by α gives $\alpha^{p^{n}}=\alpha$, which also holds when $\alpha=0$. Thus for any $\alpha \in \mathbb{E}$ we have

$$
\varphi^{n}(\alpha)=\alpha^{p^{n}}=\alpha,
$$

[^3]which shows that $\varphi^{n}=\mathrm{id}$. But if $0<k<n$ then I claim that $\varphi^{k} \neq \mathrm{id}$. To see this, assume for contradiction that $\alpha^{p^{k}}=\varphi^{k}(\alpha)=\alpha$ for all $\alpha \in \mathbb{E}$. But then the nonzero polynomial $x^{p^{k}}-x$ has p^{n} distinct roots in \mathbb{E}, which is more than its degree p^{k}.
(d): Note that $\varphi(\alpha)=\alpha$ if and only if $\alpha^{p}=\alpha$, i.e., if and only if α is a root of the polynomial $x^{p}-x$. This polynomial can have at most p roots in \mathbb{E}, and every element $\alpha \in \mathbb{F}_{p}$ is a root. $\|^{8}$ Since \mathbb{F}_{p} has p elements we conclude that $\varphi(\alpha)=\alpha$ if and only if $\alpha \in \mathbb{F}_{p}$.
(e): Consider any automorphism $\sigma: \mathbb{E} \rightarrow \mathbb{E}$. Note that we must have $\sigma(\alpha)=\alpha$ for all $\alpha \in \mathbb{F}_{p}$ because \mathbb{F}_{p} consists of elements of the form $1+1+\cdots+1$, sc ${ }^{9}$
$$
\sigma(1+1+\cdots+1)=\sigma(1)+\sigma(1)+\cdots+\sigma(1)=1+1+\cdots+1 .
$$

From Problem 5 there exists some "primitive root" $\alpha \in \mathbb{E}^{\times}$satisfying $\mathbb{E}^{\times}=\langle\alpha\rangle$, so that

$$
\mathbb{E}=\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{p^{n}-2}\right\}
$$

Let $\varphi: \mathbb{E} \rightarrow \mathbb{E}$ be the Frobenius automorphism and define the polynomial

$$
f(x)=(x-\alpha)(x-\varphi(\alpha)) \cdots\left(x-\varphi^{n-1}(\alpha)\right) \in \mathbb{E}[x] .
$$

Since $\varphi^{n}=$ id we observe that φ permutes the roots of this polynomial, hence it fixes the coefficients. For example, the coefficient of x^{n-1} in $f(x)$ is (the negative of) the sum $\alpha+$ $\varphi(\alpha)+\cdots+\varphi^{n-1}(\alpha)$, and we have

$$
\begin{aligned}
\varphi\left(\alpha+\varphi(\alpha)+\cdots+\varphi^{n-1}(\alpha)\right) & =\varphi(\alpha)+\varphi^{2}(\alpha)+\cdots+\varphi^{n-1}(\alpha)+\varphi^{n}(\alpha) \\
& =\varphi(\alpha)+\varphi^{2}(\alpha)+\cdots+\varphi^{n-1}(\alpha)+\alpha \\
& =\alpha+\varphi(\alpha)+\cdots+\varphi^{n-1}(\alpha) .
\end{aligned}
$$

From part (d) this implies that $f(x)$ has coefficients in \mathbb{F}_{p}. Since σ fixes elements of \mathbb{F}_{p}, it fixes the coefficients of $f(x)$ and hence

$$
f(\sigma(\alpha))=\sigma(f(\alpha))=\sigma(0)=0 .
$$

This implies that $\sigma(\alpha)$ is a root of $f(x)$ and hence $\sigma(\alpha)=\varphi^{k}(\alpha)$ for some k. But if σ and φ^{k} are automorphisms of \mathbb{E} that agree on α then they must agree on every element of \mathbb{E}. Indeed, the elements of \mathbb{E} are just 0 and powers of α, so that

$$
\sigma\left(\alpha^{\ell}\right)=\sigma(\alpha)^{\ell}=\varphi^{k}(\alpha)^{\ell}=\varphi^{k}\left(\alpha^{\ell}\right) .
$$

Hence $\sigma=\varphi^{k}$ as functions $\mathbb{E} \rightarrow \mathbb{E}$.
Remark: In summary, we have shown that the Galois group of a finite field \mathbb{E} of size p^{n} is a cyclic group of size n, generated by the Frobenius automorphism φ. Building on this, the Galois correspondence tells us that the subfields of \mathbb{E} are in one-to-one correspondence with the divisors $d \mid n$. Namely, for each divisor $d \mid n$ there is a subgroup $\left\langle\varphi^{d}\right\rangle \subseteq\langle\varphi\rangle$, which leads to a subfield $\operatorname{Fix}\left(\left\langle\varphi^{d}\right\rangle\right) \subseteq \mathbb{E}$ defined by

$$
\begin{aligned}
\operatorname{Fix}\left(\left\langle\varphi^{d}\right\rangle\right) & =\left\{\alpha \in \mathbb{E}: \sigma(\alpha)=\alpha \text { for all } \sigma \in\left\langle\varphi^{d}\right\rangle\right\} \\
& =\left\{\alpha \in \mathbb{E}: \varphi^{d}(\alpha)=\alpha\right\} \\
& =\left\{\alpha \in \mathbb{E}: \alpha^{p^{d}}=\alpha\right\} .
\end{aligned}
$$

This subfield is the splitting field for $x^{p^{d}}-x$ over \mathbb{F}_{p} and it has size p^{d}. Furthermore, the poset of subfields of \mathbb{E} is isomorphic to the lattice of divisors of n under divisibility.

[^4]
[^0]: $1_{\text {not both zero }}$

[^1]: ${ }^{2}$ For this argument we do not need to assume that $p(x)$ is prime.

[^2]: ${ }^{3}$ For example, let $\mathbb{E}:=\mathbb{F}[x] / p(x) \mathbb{F}[x]$ and $\alpha=[x]$.
 ${ }^{4}$ Proof: Take $d x+k y=1$ and multiply both sides by e to get $d e x+k e y=e$, hence $d e x+d \ell y=e$, hence $d \mid e$.

[^3]: ${ }^{5}$ For example, let \mathbb{E} be a splitting field for $x^{p^{n}}-x$ over \mathbb{F}_{p}.
 ${ }^{6}$ Thanks to Qiaochu Yuan for this proof.
 ${ }^{7}$ Indeed, if $\varphi: R \rightarrow S$ is injective then for any $\alpha \in \operatorname{ker} \varphi$ we have $\varphi(\alpha)=0=\varphi(0)$ and hence $\alpha=0$. Conversely, if $\operatorname{ker} \varphi=\{0\}$ then for any $\varphi(\alpha)=\varphi(\beta)$ we have $0=\varphi(\alpha)-\varphi(\beta)=\varphi(\alpha-\beta)$, which implies that $\alpha-\beta=0$ and hence $\alpha=\beta$.

[^4]: ${ }^{8}$ Given $\alpha \in \mathbb{F}_{p}$ we have $\alpha^{p-1}=1$ for $\alpha \neq 0$, which implies $\alpha^{p}=\alpha$. But we also have $\alpha^{p}=\alpha$ when $\alpha=0$.
 ${ }^{9}$ In general, if $\mathbb{E}^{\prime} \subseteq \mathbb{E}$ is the prime subfield then any automorphism $\sigma: \mathbb{E} \rightarrow \mathbb{E}$ fixes the elements of \mathbb{E}^{\prime}.

