
Math 562/662 Spring 2024
Homework 4 Drew Armstrong

1. Extending Ring Homomorphisms to Polynomials. Given a ring homomorphism
ϕ : R→ S we define the function ϕ : R[x]→ S[x] by sending f(x) =

∑
k akx

k to

fϕ(x) :=
∑
k

ϕ(ak)x
k.

(a) Prove that f(x) 7→ fϕ(x) is a ring homomorphism.
(b) Given an integer n ≥ 0 let ϕ : Z[x] → (Z/nZ)[x] be the extension of the quotient

homomorphism Z→ Z/nZ. Show that

fϕ(x) = 0 ⇐⇒ n divides every coefficient of f(x).

(c) Gauss’ Lemma. A polynomial f(x) ∈ Z[x] is called primitive when its coefficients
have no common prime factors. If f(x), g(x) ∈ Z[x] are primitive, prove that f(x)g(x) ∈
Z[x] is also primitive. [Hint: Let p ≥ 2 be a common prime factor of the coefficients
of f(x)g(x) and let ϕ : Z[x] → (Z/pZ)[x] be the map from part (b). Since Z/pZ is a
field, and since fϕ(x)gϕ(x) = ϕ(f(x)g(x)) = 0 we must have fϕ(x) = 0 or gϕ(x) = 0.]

(a): Note that the two homomorphisms agree when restricted to the “constant polynomials”
R ⊆ R[x] and S ⊆ S[x], hence we have ϕ(0) = 0 and ϕ(1) = 1. Furthermore, for any
f(x) =

∑
akx

k and
∑
bkx

k in R[x] then we have

(f + g)ϕ =
(∑

(ak + bk)x
k
)ϕ

=
∑

ϕ(ak + bk)x
k

=
∑

[ϕ(ak) + ϕ(bk)]x
k

=
∑

ϕ(ak)x
k +

∑
ϕ(bk)x

k

= fϕ + gϕ

and

(fg)ϕ =

(∑
m

( ∑
k+`=m

akb`

)
xm

)ϕ

=
∑
m

ϕ

( ∑
k+`=m

akb`

)
xm

=
∑
m

( ∑
k+`=m

ϕ(ak)ϕ(b`)

)
xm

=
∑
k

ϕ(ak)x
k
∑
`

ϕ(b`)x
`

= fϕgϕ.

(b): Given an integer n ≥ 0 we have a natural “quotient homomorphism” ϕ : Z → Z/nZ
defined by k 7→ [k]. Recall that [k] = [0] if and only if k is a multiple of n. Let ϕ : Z[x] →
(Z/nZ)[x] be the extension to rings of polynomials. Then the kernel is

kerϕ = {f(x) ∈ Z[x] : fϕ(x) = 0}



=
{∑

akx
k ∈ Z[x] :

∑
[ak]x

k = 0
}

=
{∑

akx
k ∈ Z[x] : [ak] = [0] for all k

}
=
{∑

akx
k ∈ Z[x] : n|ak for all k

}
.

(c): Let f(x), g(x) ∈ Z[x] and assume that f(x)g(x) is not primitive. In this case we will
show that either f(x) or g(x) is not primitive. Since f(x)g(x) is not primitive, there exists
some prime p ≥ 2 that divides every coefficient of f(x)g(x). In other words, the the ring
homomorphism ϕ : Z[x] → (Z/pZ)[x] satisfies (fg)ϕ(x) = 0. Then since fϕ(x)gϕ(x) =
(fg)ϕ(x) = 0 and since (Z/pZ)[x] is a domain1 we conclude that fϕ(x) = 0 or gϕ(x) = 0. In
the first case we see that p divides every coefficient of f(x), hence f(x) is not primitive, and
in the second case p divides every coefficient of g(x), hence g(x) is not primitive.

Remark: This is one of many related results that go by the name “Gauss’ Lemma”. It is
typically used to prove that polynomials f(x) ∈ Z[x] that are irreducible over Z are also
irreducible over Q. Here is a sketch of the proof. Let f(x) ∈ Z[x] and assume that f(x) is
reducible over Q. Let’s say f(x) = g(x)h(x) with g(x), h(x) ∈ Q[x]. If m,n ∈ N are the
least common multiples of the denominators of the coefficients of g(x) and h(x), respectively,
then we have mnf(x) = g′(x)h′(x) with g′(x) = mg(x) ∈ Z[x] and h′(x) = nh(x) ∈ Z[x].
Furthermore, let g′(x) = m′g′′(x) and h′(x) = n′h′′(x) with g′′(x), h′′(x) ∈ Z[x] primitive, so
that mnf(x) = m′n′g′′(x)h′′(x). But we know that f(x) = m′n′g′′(x)h′′(x)/mn has integer
coefficients. Since g′′(x)h′′(x) is primitive by part (c) this implies that m′n′/mn is an integer,
and hence f(x) is reducible over Z.

2. Equivalent Statements of the FTA. Consider the following statements:

(1R) Every non-constant f(x) ∈ R[x] has a root in C.
(2R) Every non-constant f(x) ∈ R[x] is a product degree 1 and 2 polynomials in R[x]
(1C) Every non-constant f(x) ∈ C[x] has a root in C.
(2C) Every non-constant f(x) ∈ C[x] is a product of degree 1 polynomials in C[x].

I claim that these four statements are equivalent. We will prove the more difficult implications.

(a) Prove that (1R) implies (2R). [Hint: Let ∗ : C → C be complex conjugation and
let ∗ : C[x] → C[x] be the extension as in Problem 1. For all α ∈ C note that
f(α)∗ = f∗(α∗). But if f(x) has real coefficients then f∗(x) = f(x). Use this to show
that the non-real roots of a real polynomial come in complex conjugate pairs.]

(b) Prove that (1R) implies (1C). [Hint: Given f(x) ∈ C[x] we note that (ff∗)∗ =
f∗(f∗∗) = f∗f = ff∗, and hence the polynomial f(x)f∗(x) has real coefficients. As-
suming (1R) we know that ff∗ has a root α ∈ C, i.e., f(α)f∗(α) = 0. Use this to show
that f(x) has a root in C.]

(a): Suppose that (1R) is true, so every non-constant f(x) ∈ R[x] has a root in C. In this
case we will show by induction that (2R) is true. So consider any non-constant f(x) ∈ R[x].
If deg(f) = 1 of deg(f) = 2 then we are done. Otherwise, let α ∈ C be any root of f(x),
which exists by (1R). If α ∈ R then we have f(x) = (x − α)g(x) with g(x) ∈ R[x] and we
may assume by induction on degree that g(x) is a product of degree 1 and 2 real polynomials,

1If p is prime then Z/pZ is a field. In particular, it is a domain.



hence so is f(x). Otherwise we have α ∈ C \ R. In this case we note that α∗ is also a root of
f(x) because f∗(x) = f(x) and hence

f(α∗) = f∗(α∗) = [f(α)]∗ = 0∗ = 0.

Applying Descartes once gives f(x) = (x − α)g(x) for some g(x) ∈ C[x]. Then substituting
x = α∗ gives 0 = (α − α∗)g(α∗). Since α 6= α∗ (because α is not real) this implies that
g(α∗) = 0. Then applying Descartes again gives g(x) = (x − α∗)h(x) for some h(x) ∈ C[x].
Putting this together gives

f(x) = (x− α)(x− α∗)h(x)

= [x2 − (α+ α∗)x+ (αα∗)]h(x), = q(x)h(x),

where the polynomial q(x) has real coefficients because α+α∗ and αα∗ are always real. Since
f(x) and q(x) have real coefficients it follows from the uniqueness of quotients in the ring C[x]
that h(x) has real coefficients. Finally, we may assume by induction that h(x) is a product of
degree 1 and 2 real polynomials. Hence so is f(x).

(b): Suppose that (1R) is true, so every non-constant f(x) ∈ R[x] has a root in C. To prove
that (1C) we must show that every non-constant f(x) ∈ C[x] has a root in C. So consider
any non-constant f(x) ∈ C[x]. Define the polynomial g(x) = f(x)f∗(x). From Problem 1 we
have (ff∗)∗ = f∗f∗∗ = f∗f = ff∗, which says that g(x) has real coefficients. From (1R) there
exists α ∈ C with g(α) = 0. Then since

0 = g(α) = f(α)f∗(α)

we must have f(α) = 0 or f∗(α). If f(α) = 0 then we are done. And if f∗(α) = 0 then

f(α∗) = [f∗(α)]∗ = 0∗ = 0,

so we are still done.

3. Freshman’s Binomial Theorem. Let p ≥ 2 be prime and let R be any ring of charac-
teristic p. For any elements a, b ∈ R, prove that

(a+ b)p = ap + bp.

[Hint: For any a ∈ R and n ∈ Z recall that we have an element n ·a ∈ R defined by induction.
If R has characteristic p then p · a = 0 for any a ∈ R. For any a, b ∈ R, the usual binomial
theorem for integers tells us that

(a+ b)p = ap +

(
p

1

)
· ap−1b+ · · ·+

(
p

p− 1

)
· abp−1 + bp.

Your job is to show that the integer
(
p
k

)
is divisible by p whenever 1 ≤ k ≤ p− 1.]

Let k, p ∈ Z with p ≥ 2 prime and 1 ≤ k ≤ p− 1. Let N =
(
p
k

)
∈ N, so that

p(p− 1) · · · 2 · 1 = N · k(k − 1) · · · 2 · 1 · (p− k)(p− k − 1) · · · 2 · 1.

Since p divides the left hand side it also divides the right side, hence by Euclid’s lemma it
divides some factor on the right hand side. But every factor on the right hand side other than
N is smaller than p, hence p must divide N . In other words, we can write N = pN ′ for some
N ′ ∈ N. If c ∈ R is any element of a ring of characteristic p it follows that(

p

k

)
· c = (pN ′) · c = N ′ · (p · c) = N ′ · 0 = 0.



Finally, if a, b ∈ R are any two elements in a ring of characteristic p then we have

(a+ b)p = ap +

(
p

1

)
· ap−1b+ · · ·+

(
p

p− 1

)
· abp−1 + bp

= ap + 0 + · · ·+ 0 + bp

= ap + bp.

4. Eisenstein’s Criterion. Let p ≥ 2 be prime.

(a) Given a polynomial f(x) = a0 + · · · + anx
n ∈ Z[x] with p|ai for 0 ≤ i ≤ n − 1, p - an

and p2 - a0, prove that f(x) is irreducible over Z. [Hint: Suppose that f(x) = g(x)h(x)
with deg(g) = k ≥ 1 and deg(h) = ` ≥ 1. Consider the ring homomorphism ϕ : Z[x]→
(Z/pZ)[x] from 1(b), so that gϕ(x)hϕ(x) = fϕ(x) = [an]xn with [an] 6= [0]. Since p
is prime this implies that gϕ(x) = [b]xk and hϕ(x) = [c]x` for some [c], [d] 6= [0]. But
then the constant terms of g(x) and h(x) are divisible by p, so the constant term of
f(x) = g(x)h(x) is divisible by p2.]

(b) The p-th cyclotomic polynomial is Φp(x) = 1 + x+ · · ·+ xp−1 = (xp − 1)/(x− 1), so

Φp(1 + x) =
(1 + x)p − 1

x
=

(
p

1

)
+

(
p

2

)
x+ · · ·+

(
p

p

)
xp−1.

Use part (a) and the proof of Problem 3 to show that Φp(1 + x) is irreducible over Z.
Use this to conclude that Φp(x) is irreducible over Z.

(a): Let p ≥ 2 be prime. Consider a polynomial f(x) = a0 + · · ·+anx
n ∈ Z[x] with p|ai for all

0 ≤ i ≤ n− 1, p - an and p2 - a0. Assume for contradiction that we can write f(x) = g(x)h(x)
for some non-constant g(x), h(x) ∈ Z[x]. Say deg(g) = k ≥ 1 and deg(h) = ` ≥ 1. Let
ϕ : Z[x] → (Z/pZ)[x] be the ring homomorphism from Problem 1. By the assumptions on
f(x) we have

gϕ(x)hϕ(x) = fϕ(x) = [an]xn + [0]xn−1 + · · ·+ [0].

But note that (Z/pZ)[x] is a unique factorization domain because p is prime. This implies
that any divisor of [an]xn must have the form [b]xm for some b,m ∈ Z. In particular, we must
have gϕ(x) = [b]xk and hϕ(x) = [c]x` for some b, c ∈ Z not divisible by p. Since the constant
terms of gϕ(x) and hϕ(0) are [0], the constant terms of g(x) and h(x) are divisible by p. But
then the constant term of f(x) = g(x)h(x) is divisible by p2. Contradiction.

(b): Let Φp(x) be the pth cyclotomic polynomial and let f(x) = Φp(1 + x) ∈ Z[x]. The hint
shows that

f(x) =

(
p

1

)
+

(
p

2

)
x+ · · ·+

(
p

p− 1

)
xp−2 + xp−1.

In Problem 3 we showed that
(
p
k

)
is divisible by p when 1 ≤ k ≤ p − 1. Furthermore,

since
(
p
1

)
= p we have p2 -

(
p
1

)
. Then since f(x) satisfies the hypotheses of Eisenstein’s

criterion we conclude that f(x) is irreducible over Z. Finally, suppose for contradiction that
Φp(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x]. Then

f(x) = Φp(1 + x) = g(1 + x)h(1 + x) = g′(x)h′(x)

with g′(x), h′(x) ∈ Z[x] which contradicts the fact that f(x) is irreducible over Z. Hence Φp(x)
is irreducible over Z.

Remark: By the remark after Problem 1 we conclude that Φp(x) is also irreducible over Q. It
is also true that the cyclotomic polynomial Φn(x) is irreducible over Q for non-prime n ∈ N
but this is much more difficult to prove.



5. Fundamental Theorem of Symmetric Polynomials. For any field F, the symmetric
group Sn acts on the set of polynomials F[x1, . . . , xn] by permuting the variables:

σ · f(x1, . . . , xn) := f(xσ(1), · · · , xσ(n)).

We say that f is a symmetric polynomial when σ · f = f for all σ ∈ Sn.

(a) Let x = (x1, . . . , xn). Then for any k = (k1, . . . , kn) ∈ Nn we define the notation

xk := xk11 x
k2
2 · · ·x

kn
n .

Every f(x) ∈ F[x] has a unique expression f(x) =
∑

k∈Nn akx
k with ak ∈ F for all

k ∈ Nn. Check that this notation satisfies xkx` = xk+` for all k, ` ∈ Nn. It follows
from this (but you don’t need to prove it) that(∑

k∈Nn

akx
k

)(∑
`∈Nn

b`x
`

)
=
∑

m∈Nn

( ∑
k+`=m

akb`

)
xm.

(b) We define the lexicographic order on Nn as follows:

k < ` ⇔ there exists j such that kj < `j and ki = `i for all i < j.

One can check (don’t do this) that this defines a total order on Nn which satisfies the
well-ordering property and for all a,b, c ∈ Nn we have a ≤ b⇒ a + c ≤ b + c. Based
on this, we define the lexicographic degree function deg : F[x]→ Nn by

deg

(∑
k∈Nn

akx
k

)
:= max

lex
{k ∈ Nn : ak 6= 0}.

Use part (a) and the given properties to show that deg(fg) = deg(f) + deg(g) for all
nonzero polynomials f(x), g(x) ∈ F[x].

(c) The elementary symmetric polynomials e1(x), . . . , en(x) are defined by

(y − x1) · · · (y − xn) = yn − e1(x)yn−1 + e2(x)yn−2 + · · ·+ (−1)nen(x).

One can check that each ei(x) is monic (i.e., has lex-leading coefficient 1) and has
deg(ej) = (1, . . . , 1, 0, . . . , 0), with j ones followed by n− j zeroes. For any symmetric
polynomial f(x) ∈ F[x], prove that we can find a (possibly non-symmetric) polynomial
g(x) ∈ F[x] such that

f(x) = g(e1(x), . . . , en(x)).

[Hint: Use induction on lexicographic degree. Suppose that f(x) = cxk + lower terms.
Use the fact that f(x) is symmetric to show that k1 ≥ k2 ≥ · · · ≥ kn. Define

g(x) := ce1(x)k1−k2e2(x)k2−k3 · · · en−1(x)kn−1−knen(x)kn

and use (b) to check that g(x) = cxk + lower terms. Then since deg(f − g) < deg(f)
we may assume that f(x)− g(x) = h(e1(x), . . . , en(x)) for some h(x) ∈ F[x].]

(d) Let f(x) ∈ F[x] be a polynomial in one variable and let E ⊇ F be a splitting field for
f(x) over F. That is, suppose that there exist α1, . . . , αn ∈ E such that

f(x) = (x− α1) · · · (x− αn).

For any multivariable polynomial F (x1, . . . , xn) ∈ F[x1, . . . , xn] we have the evaluation
F (α1, . . . , αn) ∈ E. If F is symmetric, use part (c) to show that F (α1, . . . , αn) ∈ F.



(a): This is easy:

xkx` = xk11 · · ·x
kn
n x

`1
1 · · ·x

`n
n

= xk1+`11 · · ·xkn+`nn

= xk+`.

(b): Let us write f(x) =
∑

k∈Nn akx
k and g(x) =

∑
`∈Nn b`x

`, with deg(f) = d ∈ Nn and
deg(g) = e ∈ Nn. By definition, this means that

• ad 6= 0 and ak = 0 for all k > d,
• b` 6= 0 and b` = 0 for all ` > e.

The product is given by f(x)g(x) =
∑

m∈Nn cmxm, with coefficients

cm =
∑

k+`=m

akb` ∈ F.

Our goal is to show that deg(fg) = d + e. In other words, we want to show that cd+e 6= 0
and that m > d + e implies cm = 0.

For the first condition, we observe that

cd+e =
∑

k+`=d+e

akb` ∈ F.

Since ad 6= 0 and be 6= 0, the summand adbe is nonzero. But I claim that every other summand
is zero. Indeed, suppose that k + ` = d + e with k 6= d or ` 6= e, which implies that k 6= d
and ` 6= e. If k > d then by definition of deg(f) we have ak = 0, hence the summand akb` is
zero. And if k < d then from (b) we must have ` > e because

k < d

k + ` < d + ` add ` to both sides

d + e < d + ` because k + ` = d + e

e < `. add −d to both sides

In this case we have b` = 0, hence the summand akb` is still zero. Since all but one summand
in cd+e is zero and the last is nonzero, we conclude that cd+e 6= 0 as desired.

For the second condition we want to show that m > d+ e implies cm = 0. In this case, every
summand in cm has the form akb` for some k, ` with k + ` = m > d + e. We will be done if
we can show that k + ` > d + e implies k > d or ` > e since this implies that at least one
of ak and b` is zero, hence akb` = 0. In this case every summand akb` of cm is zero, hence
cm = 0. It is equivalent to prove the contrapositive statement: that k ≤ d and ` ≤ e imply
k + ` ≤ d + e. So let us suppose that k ≤ d and ` ≤ e. In this case, (b) implies that{

k ≤ d
k + ` ≤ d + `

}
and

{
` ≤ e

d + ` ≤ d + e

}
,

and then since k + ` ≤ d + ` ≤ d + e we conclude that k + ` ≤ d + e.

Remark: This is exactly the same proof you would use to rigorously prove the identity
deg(fg) = deg(f) + deg(g) for polynomials in one variable. It’s just that no one ever bothers
to write that proof down.

(c): If f(x) has degree 0 then f(x) = c for some constant c ∈ F and we can write f(x) =
g(e1(x), . . . , en(x)) with g(x) = c. Now let f(x) be symmetric with deg(f) = k > 0 and



assume for induction that all symmetric polynomials of smaller lexicographic degree satisfy
the desired property. By assumption we have

f(x) = cxk11 x
k2
2 · · ·x

kn
n + lower terms.

I claim that k1 ≥ k2 ≥ · · · ≥ kn. To prove this, suppose for contradiction that ki < ki+1 and
let k′ = σ(k) where σ is the permutation that swaps the ith and jth coordinates. Note that

k′ > k in lexicographic order. Since f(x) is symmetric, the coefficients of xk and xk′ in f(x)
must be equal; in particular, both coefficients are non-zero. But then f(x) contains the term

cxk′ , where k′ > k. This contradicts the assumption that k is the highest exponent in f(x).

Thus we may consider the (symmetric) polynomial

g(x) := ce1(x)k1−k2e2(x)k2−k3 · · · en−1(x)kn−1−knen(x)kn

According to part (b) this polynomial is monic and satisfies

deg(g) = (k1 − k2) deg(e1) + (k2 − k3) deg(e2) + · · ·+ kn deg(en)

= (k1 − k2)(1, 0, . . . , 0)

+ (k2 − k3)(1, 1, 0 . . . , 0)

...

+ kn(1, 1, . . . , 1)

= (k1, k2, . . . , kn)

= k.

Since f(x) and g(x) are symmetric polynomials with the same leading term it follows that
f(x) − g(x) is a symmetric polynomial of strictly smaller degree, hence by induction there
exists a (possibly non-symmetric) polynomial h(x) satisfying

f(x)− g(x) = h(e1(x), . . . , en(x)).

Finally, we have

f(x) = g(x) + h(e1(x), . . . , en(x)) = g′(e1(x), . . . , en(x)),

where

g′(x) = cxk1−k21 xk2−k32 · · ·xknn + h(x).

(d): Let f(x) = a0 + a1x+ · · ·+ anx
n with a0, . . . , an ∈ F and let E ⊇ F be a field containing

elements α1, . . . , αn ∈ E such that

f(x) = (x− α1) · · · (x− αn).

Expanding the right hand side and comparing coefficients shows that ak = (−1)kek(α1, . . . , αn),
which shows that ek(α1, . . . , αn) ∈ F for all k. More generally, let F (x) be any symmetric
polynomial in n coordinates. By part (c) we can write

F (x) = g(e1(x), e2(x), . . . , en(x))

for some polynomial g(x) with coefficients in F. Then substituting xk = αk gives

F (α1, . . . , αn) = g(e1(α1, . . . , αn), . . . , en(α1, . . . , αn)) ∈ F.



Remark: This theorem is extremely old2 but a rigorous proof is almost never written down.
Most authors just mention that it’s “well-known”. The first rigorous proof, using lexicographic
degree, was given by Gauss as part of his second proof of the Fundamental Theorem of Algebra.
The computational theory of multivariable polynomials was studied more rigorously after the
invention of computers. The foundations were laid by Bruno Buchberger in his 1965 thesis.

2Apart from Descartes’ theorem on long division of polynomials it is the oldest theorem in this class. It is
sometimes attributed to Newton.


