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1 Basic Concepts

1.1 Abstract Vector Spaces

Let R be the set of real numbers. A vector space over R consists of a set V (of “vectors”),
with two algebraic operations, called addition and scalar multiplication:

u,v ∈ V  u + v ∈ V
a ∈ R,v ∈ V  av ∈ V.

[Remark: We could also write scalar multiplication as va; the order doesn’t matter.] These
two operations are required to satisfy the following eight axioms:

(1) Axioms of Addition.

(a) u + v = v + u

(b) u + (v + w) = (u + v) + w

(c) There exists a vector 0 ∈ V such that 0 + v = v + 0 = v for all v ∈ V .

(d) For every vector v ∈ V there exists a vector u ∈ V such that u + v = v + u = 0.

Remarks: The vector 0 in axiom (1c) is unique. Indeed, if 0 and 0′ are two vectors satisfying
(1c) then we must have

0 = 0 + 0′ = 0′.

We call the unique element 0 ∈ V satisfying (1c) the zero vector. The vector u in axiom (1d)
is also unique. Indeed, suppose we have two vectors u and u′ satisfying (1d). Then from
axioms (1abc) we must have

u = u + 0 = u + (v + u′) = (u + v) + u′ = 0 + u′ = u′.

The unique element u satisfying (1d) is called the additive inverse of v. We denote it by −v.
In other words, we have

v + u = 0 ⇐⇒ u = −v.

Based on this, we define the operation of vector subtraction:

u− v := u + (−v).

(2) Axioms of Scalar Multiplication.

(a) For the real number 1 ∈ R we have 1v = v for all v ∈ V .

(b) For all real numbers a, b ∈ R and vectors v ∈ V we have a(bv) = (ab)v.1

(c) For all a, b ∈ R and v ∈ V we have (a+ b)v = av + bv.2

1Note that this identity involves two different operations: multiplication of real numbers and scalar mul-
tiplication in V . This identity is the reason that we use the same notation for both operations.

2This identity is the reason that we use the same notation for addition in R and addition in V .
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(d) For all a ∈ R and u,v ∈ V we have a(u + v) = au + av.

Remarks: These eight axioms imply many other basic properties. For example, I claim that
the real number 0 ∈ R satisfies 0v = 0 for all vectors v ∈ V , where 0 is the zero vector.
Indeed, since 0 + 0 = 0 as real numbers, we have

0 + 0 = 0

(0 + 0)v = 0v

0v + 0v = 0v

(0v + 0v)− 0v = 0v − 0v

0v + (0v − 0v) = 0

0v + 0 = 0

0v = 0.

[We could have taken this as another axiom, but we didn’t need to.] It follows from this that
the additive inverse −v is the same as (−1)v for the real number −1 ∈ R. Indeed, since
1 + (−1) = 0 as real numbers, we have

1 + (−1) = 0

(1 + (−1))v = 0v

1v + (−1)v = 0v

v + (−1)v = 0

−v + (v + (−1)v) = −v + 0

(−v + v) + (−1)v = −v

0 + (−1)v = −v

(−1)v = −v.

If this is too pedantic for you, feel free to take the properties 0v = 0 and (−1)v = −v as
axioms.

The Prorotype: Euclidean Space. Let Rn denote the set of ordered n-tupes of real
numbers:

Rn = {v = (v1, v2, . . . , vn) : v1, v2, . . . , vn ∈ R}.

It is easy to check that the following operations make Rn into a vector space over R:

(u1, . . . , un) + (v1, . . . , vn) := (u1 + v1, . . . , un + vn),

a(v1, . . . , vn) := (av1, . . . , avn).

We can think of v = (v1, . . . , vn) as the coordinates of a point in n-dimensional Euclidean
space. In this case, the point 0 = (0, . . . , 0) is called the origin. The Parallelogram Law
says that for any points u,v ∈ Rn, the four points 0, u, v and u + v are the vertices of a
parallelogram. Picture:
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We can also think of an n-tuple v = (v1, . . . , vn) as a directed line segment (an “arrow”) with
head at the point v and tail at the origin 0. According to the Pythagorean Theorem, the
length ‖v‖ of this line segment satisfies

‖v‖ =
√
v2

1 + v2
2 · · ·+ v2

n.

Geometrically, arrows add “head-to-tail” and subtract “tail-to-tail”:

If we let θ denote the angle between arrows u and v then the Law of Cosines tells us that

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ.

On the other hand, the algebraic formula for the length of an arrow tells us that

‖u− v‖2 = ‖(u1 − v1, . . . , un − vn)‖2

= (u1 − v1)2 + · · ·+ (un − vn)2

= (u2
1 − 2u1v1 + v2

1) + · · ·+ (u2
n − 2unvn + v2

n)

= (u2
1 + · · ·+ un)2 + (v2

1 + · · ·+ v2
n)− 2(u1v1 + · · ·+ unvn)

5



= ‖u‖2 + ‖v‖2 − 2(u1v1 + · · ·+ unvn).

Then comparing the two equations gives the amazing formula

u1v1 + · · ·+ unvn = ‖u‖‖v‖ cos θ.

This formula allows us to express angles simply in terms of the coordinates. To be precise, we
define the dot product of two arrows:

u • v := u1v1 + u2v2 + · · ·+ unvn.

Observe that
v • v = v1v1 + · · ·+ vnvn = v2

1 + · · ·+ v2
n = ‖v‖2.

Hence we have
cos θ =

u • v

‖u‖‖v‖
=

u • v√
u • u

√
v • v

.

Note that θ is a right angle if and only if u • v = 0.

1.2 Inner Product Spaces over R

More generally, an inner product space over R consists of a vector space V over R together
with another algebraic operation

u,v ∈ V  〈u,v〉 ∈ R,

which must satisfy the following axioms:

(3) Axioms of Inner Products.

(a) 〈u,v〉 = 〈v,u〉

(b) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉3

(c) For all a ∈ R and u,v ∈ V we have 〈au,v〉 = 〈u, av〉 = a〈u,v〉.

(d) For all v ∈ V we have 〈v,v〉 ≥ 0, with 〈v,v〉 = 0 if and only if v = 0.

The following important inequality is a direct consequence of the axioms, but its proof is just
a little bit tricky. I’ll give you a hint and have you prove it on the homework.

Cauchy-Schwarz Inequality. For any vectors u,v ∈ V in an inner product space we have

|〈u,v〉|2 ≤ 〈u,u〉〈v,v〉.

Why should we bother with this level of abstraction? There are two reasons.

3By combining (3ab) we also have 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉.

6



First of all, there exist important examples of abstract inner product spaces that have nothing
to do with arrows or points in Euclidean space.

Example: L2 Space. Let L2[0, 1] denote the set of real-valued functions f(x) on the interval
[0, 1] such that the integral of f(x) converges:4

L2[0, 1] = {f : [0, 1]→ R,
∫ 1

0
f(x)2 dx <∞}.

Given functions f, g ∈ L2[0, 1] and scalar a ∈ R we define the new functions f + g ∈ L2[0, 1]
and af ∈ L2[0, 1] by adding and multiplying their values, as one does in Calculus:

(f + g)(x) := f(x) + g(x),

(af)(x) := af(x).

One can check that these operations make L2[0, 1] into a vector space over R.5 Furthermore,
one can check that the following operation satisfies the inner product axioms:

〈f(x), g(x)〉 :=

∫ 1

0
f(x)g(x) dx.

Such inner product spaces of functions are extremely important in applied mathematics. We
will say more below.

Another reason for abstraction in linear algebra has to do with “subspaces”.

(4) Axioms of Subspaces. Given a vector space V over R and a subset U ⊆ V , we say that
U is a subspace when it satisfies the following axioms:

(a) 0 ∈ U

(b) If u,v ∈ U then u + v ∈ U .

(c) If a ∈ R and v ∈ U then av ∈ U .

For example, any line or plane through the origin in Euclidean space is a subspace.6 We note
that Euclidean spaces comes with a collection of standard basis vectors:

e1 = (1, 0, 0, . . . , 0, 0),

e2 = (0, 1, 0, . . . , 0, 0),

4Any statement about integrals has some very technical conditions, but we will proceed intuitively, just as
a physicist would.

5The hardest part of the proof is to show that the sum of square integrable functions is square integrable.
This can be shown with the Cauchy-Schwarz inequality.

6A line or plane not through the origin is not a subspace because it doesn’t satisfy (3a). The concept of
“subspace” is not immediately intuitive but it is vital to the theory.
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en = (0, 0, 0, . . . , 0, 1).

By definition, every vector v = (v1, . . . , vn) ∈ Rn has a unique expression as a linear combi-
nation of these basis vectors:

v = (v1, . . . , vn)

= v1(1, 0, . . . , 0, 0) + · · ·+ vn(0, 0, . . . , 0, 1)

= v1e1 + · · ·+ vnen.

However, subspaces of Rn do not come with standard basis vectors. For example, consider
the plane V ⊆ R3 defined by the equation x − 2y + z = 0.7 I claim that every vector v ∈ V
this plane has a unique expression of the form

v = a1(1, 1, 1) + a2(1, 2, 3).

Hence we say that B = {b1,b2} with b1 = (1, 1, 1) and b2 = (1, 2, 3) is a basis for the vector
space V , and if v = a1b1 + a2b2 we say that v = (a1, a2)B are the coordinates of v in the
B-basis. For example, the vector v = (1,−1,−3) ∈ R3 is in the plane V . It has coordinates
(1,−1,−3) as an element of R3 but it has coordinates (3,−2)B as an element of V , with
respect to the B-basis. Here is why we need the concept of an abstract vector space:

Subspaces of Rn do not come with a standard basis. Therefore we must study them
via the axioms of abstract vector spaces.

Here is the technical definition of a basis in an abstract vector space.

Definition of Basis. Let V be a vector space over R and consider a finite subset B =
{b1, . . . ,bn} of vectors in V .

• We say that B is a spanning set if for all v ∈ V there exists at least one choice of
scalars a1, . . . , an ∈ R such that

v = a1b1 + · · ·+ anbn.

• We say that B is an independent set8 if for all v ∈ V there exists at most one choice
of scalars a1, . . . , an ∈ R such that

v = a1b1 + · · ·+ anbn.
7Check that this is a subspace.
8In proofs it is often convenient to use a different form of the definition. Say that B is independent if for

any scalars a1, . . . , an we have

a1b1 + · · ·+ anbn = 0 implies ai = 0 for all i.

Exercise: Check that the two definitions are equivalent.
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• We say that B is a basis if it is spanning and independent; that is, if for all v ∈ V there
exists a unique choice of scalars a1, . . . , an ∈ R such that

v = a1b1 + · · ·+ anbn.

In this case we say that a1, . . . , an ∈ R are the B-coordinates of v, and we write

v = (a1, . . . , an)B.

After we have chosen a basis, we can work with coordinates and pretend that V is Rn.

The following point is fundamental, but its proof is more subtle than you would think.

Definition of Dimension. If a vector space V has a basis with n vectors, then any basis of
V must have n vectors. In this case we say that V has dimension n, and we write

dimV = n.

Proof. This uses a famous trick called “Steinitz Exchange”. See the homework.

Example: Euclidean Space. The vector space Rn has a standard basis e1, . . . , en consisting
of n vectors. It follows from Steinitz Exchange that any basis for Rn must have n vectors,
and hence dimRn = n, as it should be. It is relatively easy to find a basis: any sufficiently
random collection in n vectors in Rn will do. For example:

(1, 4, 3, 2), (3,−7, 4, 1), (100, 89,−72, 36), (23, 24, 25, 26) is almost certainly a basis of R4.

Not every vector space has a finite basis.

Example: Polynomials. Let R[x] denote the set of polynomials in x with real coefficients.
This set is a vector space over R. It does not have a finite basis, but it does have a fairly
obvious infinite basis B consisting of the elements

B = {1(= x0), x, x2, . . .}.

For infinite bases we need to modify slightly the definitions of independence and spanning. In
this case, the key fact is that each polynomial f(x) ∈ R[x] has a unique expression

f(x) =
∑
k≥0

akx
k,

where only finitely many of the coefficients a0, a1, a2, . . . are nonzero. If we allow
infinitely many nonzero coefficients then we obtain power series, instead of polynomials.
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1.3 Normed Spaces

In order to say anything about convergence of infinite series in a vector space, one needs a
way to measure “distance” between vectors.

(5) Axioms of Norms. Let V be a vector space with a function

v ∈ V  ‖v‖ ∈ R.

We call this function a norm when it satisfies the following axioms:

(a) ‖v‖ ≥ 0 for all v ∈ V with ‖v‖ = 0 if and only if v = 0.

(b) For all a ∈ R and v ∈ V we have ‖av‖ = |a|‖v‖.

(c) For all u,v ∈ V we have ‖u + v‖ ≤ ‖u‖+ ‖v‖.

(6) Axioms of Metrics. Let V be a vector space with a function

u,v ∈ V  dist(u,v) ∈ R.

We call this function a metric when it satisfies the following axioms:

(a) dist(u,v) = dist(v,u)

(b) dist(u,v) ≥ 0 for all u,v ∈ V with dist(u,v) = 0 if and only if u = v.

(c) dist(u,v) ≤ dist(u,w) + dist(w,v) for all u,v,w ∈ V .

Every inner product space becomes a normed space9 by taking ‖v‖ =
√
〈v,v〉, and every

normed space becomes a metric space by taking dist(u,v) = ‖u− v‖.

Concept of Orthonormal Sets. Let V be an inner product space. A collection of vectors
b1,b2, . . . is called orthonormal if

• 〈bi,bj〉 = 0 for all i, j with i 6= j

• 〈bi,bi〉 = 1 for all i

The first statement says that any two vectors in the set are orthogonal,10 and the second
statement says that each vector has length 1:

‖bi‖ =
√
〈bi,bi〉 =

√
1 = 1.

Orthonormal sets are very easy to work with. You will show on the homework that if bi are
orthonormal and v = a1b1 + · · ·+ anbn then we must have

ai = 〈v,bi〉 and ‖v‖2 = a2
1 + · · ·+ ann.

9You will prove this on the homework.
10In Euclidean space this corresponds to perpendicular vectors
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If the orthonormal set spans V then it is called an orthonormal basis. Orthonormal bases are
analogous to the standard basis in Euclidean space.

Example: Fourier Series. The inner product space L2[0, 1] of square integrable functions
[0, 1]→ R contains a particularly famous orthonormal set of functions. If we define

sn(x) :=
√

2 sin(2πnx),

cn(x) :=
√

2 cos(2πnx),

then you will show on the homework that the following set of functions is orthonormal:

B = {1, s1(x), s2(x), . . . , c1(x), c2(x), . . .}.

That is, you will show

• 〈1, sn(x)〉 = 〈1, cn(x)〉 = 0 for all n ≥ 1,

• 〈sm(x), cn(x)〉 = 0 for all m,n ≥ 1,

• 〈sm(x), sn(x)〉 = 0 for m 6= n and 1 for m = n,

• 〈cm(x), cn(x)〉 = 0 for m 6= n and 1 for m = n.

It follows from this that the set is independent. Is it also a spanning set? For a given function
f(x) ∈ L2[0, 1], the problem is to find scalars a0, a1, a2, . . . , b1, b2, . . . ∈ R such that

f(x) = a0 +

∞∑
n=1

ansn(x) +

∞∑
n=1

bncn(x). (∗)

In Fourier’s paper on the analytic theory of heat (1822) he gave a clever formula to find the
coefficients. For us this formula is an immediate consequence of the fact that B is orthonormal:

a0 = 〈f(x), 1〉 =

∫ 1

0
f(x) dx,

an = 〈f(x), sn(x)〉 =
√

2

∫ 1

0
f(x) sin(2πnx) dx,

bn = 〈f(x), cn(x)〉 =
√

2

∫ 1

0
f(x) cos(2πnx) dx.

So the coefficients are easy to find. The hard question is whether, and in what sense, the
infinite series (∗) converges. This is an important problem in the history of mathematics;
controversies surrounding its solution led to many of the concepts of modern analysis.

I will just state the simplest form of the answer; the proof is well beyond the scope of this
course. Consider the distance function induced by the inner product on L2[0, 1]. That is, for
any functions f(x), g(x) ∈ L2[0, 1] we define the “distance” between then by

dist(f(x), g(x))2 = ‖f(x)− g(x)‖2 = 〈f(x)− g(x), f(x)− g(x)〉 =

∫ 1

0
(f(x)− g(x))2 dx.

Now consider any function f(x) ∈ L2[0, 1] and let an, bn be the corresponding Fourier coeffi-
cients. Then we have the following theorems.
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• Convergence of Fourier Series. The series (∗) converges in L2. That is, we have

dist

(
f(x), a0 +

N∑
n=1

ansn(x) +

N∑
n=1

bncn(x)

)
→ 0 as N →∞.

• Parseval’s Identity. Computing the “length” of each side of (∗) gives a convergent
series of real numbers:∫ 1

0
f(x)2 dx = 〈f(x), f(x)〉 = a2

0 + a2
1 + b21 + a2

2 + b22 + · · · .

For example, consider the square wave function

f(x) =

{
1 0 ≤ x < 1/2,

0 1/2 ≤ x ≤ 1.

It is easy to check that a0 = 〈f(x), 1〉 = 1/2 and bn = 〈f(x), cn(x)〉 = 0 for all n ≥ 1. Next,
we compute

an = 〈f(x), sn(x)〉

=
√

2

∫ 1

0
f(x) sin(2πnx) dx

=
√

2

∫ 1/2

0
sin(2πnx) dx

=

√
2

2πn
[− cos(2πnx)]

1/2
0

=

√
2

2πn
[− cos(πn) + 1]

=

√
2

2πn
[−(−1)n + 1]

=

{
0 n even,
√

2
πn n odd.

It follows that

f(x) =
1

2
+

√
2

π
sin(2πx) +

√
2

3π
sin(6πx) +

√
2

5π
sin(10πx) + · · · .

Here is a picture of the first 30 terms of this sequence:

12



Finally, Parseval’s Identity gives the following interesting identity:∫ 1

0
f(x)2 dx =

(
1

2

)2

+

(√
2

π

)2

+

(√
2

3π

)2

+

(√
2

5π

)2

+ · · ·

1

2
=

1

4
+

2

π2
+

2

32π2
+

2

52π2
+ · · ·

1

4
=

2

π2
+

2

32π2
+

2

52π2
+ · · ·

1

4
=

2

π2

(
1

12
+

1

32
+

1

52
+ · · ·

)
π2

8
=

1

12
+

1

32
+

1

52
+ · · ·

That’s weird.11

1.4 Inner Product Spaces over C

Now seems like a good time to bring in complex numbers. I have a beef with the American
educational system, in that there is no course that reliably introduces complex numbers. The
system is able to sleep at night because complex numbers are in the pre-Calculus curriculum,
but the treatment is inadequate, and most math majors don’t take pre-Calculus. Indeed, I
believe it possible for a student to graduate with a math major having never seen a good

11This series is related to the famous Basel problem. It is easy to see that the infinite series 1/12 + 1/22 +
1/32 + · · · converges, but is not at all clear how to find a formula for the sum. This problem was posed by
Pietro Mengoli 1650 and finally solved by Leonhard Euler in 1734, who showed that the limit is exactly π2/6.
The appearance of π in the answer was a big surprise.
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introduction to complex numbers. As is traditional, I will give a quick review and pretend
that you have seen this before, even if you haven’t.

Complex Numbers. The complex numbers are defined as

C = {a+ ib : a, b ∈ R},

where i is an abstract symbol satisfying i2 = −1. Given a complex number α = a + ib, we
define its absolute value and complex conjugate:12

|α| :=
√
a2 + b2,

α∗ := a− ib.

These satisfying the following properties.

(7) Properties of Complex Numbers. For all a, b ∈ R and α, β ∈ C we have

(a) (aα+ bβ)∗ = aα∗ + bβ∗

(b) (αβ)∗ = α∗β∗

(c) α = α∗ ⇐⇒ α ∈ R

(d) |α| ≥ 0 with |α| = 0 if and only if α = 0.

(d) |α| = α∗α

(e) |αβ| = |α||β|.

(f) If α 6= 0 then α−1 = α∗/|α|2.

Many applications of linear algebra use complex instead of real scalars. Almost all of the
axioms are the same, but there is a key change in the definition of inner product.

(8) Axioms of Hermitian Inner Products. Let V be a vector space over C, together with
an algebraic operation

u,v ∈ V  〈u,v〉 ∈ C.

We call this a Hermitian inner product if it satisfies the following axioms:

(a) 〈u,v〉 = 〈v,u〉∗

(b) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉13

(c) For all α ∈ C we have 〈u, αv〉 = α〈u,v〉.14

12I will use α∗ instead of the traditional α to avoid conflict with the whiteboard notation for vectors: ~v.
13By combining (8ab) we also have 〈u + v,w〉 = 〈u,w〉+ 〈v + w〉.
14By combining (8ac) we also have 〈αu,v〉 = α∗〈u,v〉.
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(d) For all v ∈ V , part (a) tells us that 〈v,v〉 ∈ R. Furthermore, we must have 〈v,v〉 ≥ 0
with 〈v,v〉 = 0 if and only if v = 0.

Jargon: A Hermitian inner product is sometimes called sesquilinear (one and a half times
linear) because it is linear in the second coordinate:

〈u, αv + βw〉 = α〈u,v〉+ β〈u,w〉,
〈αu + βv,w〉 = α∗〈u,w〉+ β∗〈v,w〉.

Beware, some books switch these.

Example: The standard Hermitian product on Cn. Consider the set

Cn = {v = (v1, . . . , vn) : v1, . . . , vn ∈ C}.

This is naturally a vector space over C with the usual operations of addition and scalar
multiplication. We can still define the usual dot product

u • v = u1v1 + · · ·+ unvn,

but this turns out to have bad properties. For example, we might have v • v < 0, as with the
vector v = (i, i). To fix this, we instead consider the following operation:

〈u,v〉 = u∗1v1 + · · ·+ u∗nvn.

One can check that this satisfies the axioms of a Hermitian inner product. Most importantly,
we have 〈v,v〉 = v∗1v1 + · · · + v∗nvn = |v1|2 + · · · + |vn|2 ≥ 0, with 〈v,v〉 = 0 if and only if
v = 0, which allows us to define a norm and a metric:

‖v‖ =
√
〈v,v〉,

dist(u,v) = ‖u− v‖.

Quantum mechanics is the big reason for using complex Hermitian spaces, but the complex
numbers also allow us to simplify some classical problems.

Example: Complex Fourier Series. Recall Euler’s identities:

eiθ = cos θ + i sin θ,

e−iθ = cos θ − i sin θ,

cos θ = (eiθ + e−iθ)/2,

sin θ = (eiθ − e−iθ)/(2i).

Suppose that we have a real Fourier series15

f(x) = a0 +
∑
n≥1

an sin(2πnx) +
∑
n≥1

bn cos(2πnx).

15I’ll absorb the
√

2 factors into the coefficients this time.
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We can write this as a complex Fourier series

f(x) =
∞∑

n=−∞
cne

i2πnx

by defining the complex coefficients:

cn :=


a0 n = 0,

(bn − ian)/2 n ≥ 1,

(b−n + ia−n)/2 n ≤ −1.

Why would we do this? Because the functions ei2ınx are easier to work with! Let’s define the
complex L2 space L2[0, 1] as the set of functions [0, 1]→ C satisfying∫ 1

0
|f(x)|2 dx <∞.

This space has a standard Hermitian inner product:

〈f(x), g(x)〉 =

∫ 1

0
f(x)∗g(x) dx.

And the functions ei2πnx for n ∈ Z are an orthonormal set:

〈ei2πmx, ei2πnx〉 =

∫ 1

0
(ei2πmx)∗e2πinx dx

=

∫ 1

0
e−i2πmxe2πinx dx

=

∫ 1

0
ei2π(n−m)x dx.

If m = n then this gives

〈ei2πnx, ei2πnx〉 =

∫ 1

0
1 dx = 1,

and if m 6= n then we get

〈ei2πmx, ei2πnx〉 =

∫ 1

0
ei2π(n−m)x dx

=
1

i2π(n−m)

[
ei2π(n−m)x

]1

0

=
1

i2π(n−m)
[1− 1]

= 0.

16



Note: That was much easier than messing around with trigonometric identities. It also means
that we have a single formula for the complex Fourier coefficients:16

cn = 〈ei2πnx, f(x)〉 =

∫ 1

0
e−i2πnxf(x) dx.

Then we can convert back to real coefficients if desired.

Fourier Transform. For the physicists among you, I should mention what happens for
functions on the whole real line. Let L2(R) denote the set of functions f : R → C that are
square integrable: ∫ ∞

−∞
|f(x)|2 dx <∞.

As with L2[0, 1], this is a Hermitian space with Hermitian product

〈f(x), g(x)〉 =

∫ ∞
−∞

f(x)∗g(x) dx.

This space is more complicated than L2[0, 1] because it does not have a countable basis.17

However, the situation is not hopeless because we can generalize the Fourier series to the
Fourier transform:

f(x) =

∞∑
n=−∞

cne
i2πnx  f(x) =

∫ ∞
−∞

c(ω)ei2πωx dω.

We can view the function c : R → C as a generalization of the sequence of coefficients cn for
n ∈ Z. This function c(ω) is called the Fourier transform of f(x) and it is sometimes denoted
f̂(ω). In some sense we can view the set

{ei2πωx : ω ∈ R}

as an uncountably infinite basis for the space L2(R). There is just one issue; the functions
ei2πωx are not square integrable:∫ ∞

−∞
|ei2πωx|2 dx =

∫ ∞
−∞

1 dx =∞.

This is a typical problem in physics. It can be surmounted by generalizing the concept of
function to that of “distribution”, but the rigorous mathematical definitions make the subject
less understandable. Dirac showed that the intuitive point of view is a powerful tool for
studying quantum mechanics.

16Taking the inner product in the other direction gives 〈f(x), ei2πnx〉 = c∗n.
17The issue is that [0, 1] is a compact infinite set, while R is not compact.
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2 Matrices

2.1 Matrix Multiplication

In the last section we talked about individual vector spaces such as Rn and L2[0, 1]. Each of
these has an inner product, hence it also has a vector norm and a metric. Now we discuss
linear functions between different vector spaces. In the finite dimensional case we can encode
such functions as matrices. But matrix arithmetic does more than just encode linear functions;
it is an extremely powerful language that gives out much more than we put in.

I assume you already know the definition of matrix multiplication. Here is a reminder.

Definition of Matrix Multiplication. Consider two matrices

A =

a11 · · · a1m

...
...

a`1 · · · a`m

 and B =

 b11 · · · b1n
...

...
bm1 · · · bmn

 .

We say that A has shape ` ×m and B has shape m × n. (The number of rows comes first.)
Since the number of columns of A equals the number of rows of B (they both equal m), we
can define the product matrix AB, which has shape `× n:

AB =

c11 · · · c1n

...
...

c`1 · · · c`n

 .

The entries of A, B and AB are related as follows:

cij =

m∑
k=1

aikbkj .

I could have postponed this gory definition until it emerged naturally from the theory. But,
as I said, the mechanics of matrix arithmetic is more than the sum of its parts, so I wanted
to explore the mechanics first.

Row Times Column = Dot Product. Suppose that ` = n = 1, so that

A =
(
a11 · · · a1m

)
and B =

 b11

...
bm1

 .

Then the matrix product AB has shape 1× 1 (it is just a scalar) and corresponds to the dot
product of vectors:

(
a11 · · · a1m

) b11

...
bm1

 = a11b11 + a12b21 + · · ·+ a1mbm1.
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From now on we will identify vectors v = (v1, . . . , vn) ∈ Rn with column vectors:

v = (v1, . . . , vn) =

v1

...
vn

 .

To talk about row vectors we will use the operation of transposition:

A =

a11 · · · a1m

...
...

a`1 · · · a`m

  AT :=

a11 · · · a`1
...

...
a1m · · · a`m

 .

Thus the transpose of a column vector is a row vector:

vT =

v1

...
vn


T

=
(
v1 · · · vn

)
.

Finally, we can express the dot product of any two vectors u,v ∈ Rn in terms of matrix
multiplication:

uTv =
(
u1 · · · un

)v1

...
vn

u1v1 + · · ·+ unvn = u • v.

Column Times Row = Something Else. Warning. A column times a row is not a scalar;
it is a matrix of any shape that we want. That is, for any u ∈ Rm and v ∈ Rn we obtain an
m× n matrix18

uvT =

u1

...
um

(v1 · · · vn
)

=

u1v1 · · · u1vn
...

...
umv1 · · · umvn

 .

Row times column and column times row are the two basic examples. In between there are
many different ways to think about matrix multiplication. For example:

(ij entry of AB) = (ith row of A)(jth col of B),

(ith row of AB) = (ith row of A)B,

(jth col of AB) = A(jth col of B).

If A has shape `×m and B has shape m× n then we also have

AB =
m∑
k=1

(kth col of A)(kth row of B),

18Later we will call these rank one matrices.
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where the right hand side is a sum of m matrices, each of shape `× n.

All of these rules are examples of a very general recursive property of matrix multiplication.

Theorem: Block Multiplication. Suppose that we partition two matrices into submatrices
by inserting vertical and horizontal lines:

A =


A11 · · · A1m

...
...

A`1 · · · A`m

 and B =


B11 · · · B1n

...
...

Bm1 · · · Bmn.


Let’s say that each submatrix Aij has shape λi × µj and each Bij has shape µi × νj , so

#(rows of A) = λ1 + · · ·+ λ`,

#(cols of A) = µ1 + · · ·+ µm,

#(rows of B) = µ1 + · · ·+ µm,

#(cols of B) = ν1 + · · ·+ νn.

Then I claim that that the product matrix AB can be partitioned as

AB =


C11 · · · C1n

...
...

C`1 · · · C`n

 ,

where the submatrix Cij is given by

Cij =
m∑
k=1

AikBkj .

Note that #(cols of Aik) = µk = #(rows of Bkj) so that each matrix product AikBkj is defined
and has shape `i × νj . Thus Cij is a sum of m matrices, each of shape λi × νj . In particular,
Cij has shape λi×µj . Note that the standard formula for unpartitioned matrices corresponds
to the case when each submatrix Aij and Bij has size 1× 1.

I won’t prove right this now because the notation is too hairy.19 Instead let’s see some examples
illustrating the few rules that we stated above. Let

A =

(
1 1 1
1 2 3

)
and B =

1 0
1 1
0 1

 .

19Later it will follow easily from properties of linear functions between direct sums of vector spaces.
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Multiplying rows of A by columns of B gives

(
1 1 1

1 2 3

) 1 0
1 1
0 1

 =



(
1 1 1

)1
1
0

 (
1 1 1

)0
1
0


(
1 2 3

)1
1
0

 (
1 2 3

)0
1
0




=

(
2 2

3 5

)
.

Multiplying rows of A by B gives

(
1 1 1

1 2 3

)1 0
1 1
0 1

 =



(
1 1 1

)1 0
1 1
0 1


(
1 2 3

)1 0
1 1
0 1




=

(
2 2

3 5

)
.

Multiplying A by columns of B gives(
1 1 1
1 2 3

) 1 0
1 1
0 1

 =

 (
1 1 1
1 2 3

)1
1
0

 (
1 1 1
1 2 3

)0
1
1

  =

(
2 2
3 5

)
.

Finally, multiplying columns of A by rows of B gives

(
1 1 1
1 2 3

)
1 0

1 1

0 1

 =

(
1
1

)(
1 0

)
+

(
1
2

)(
1 1

)
+

(
1
3

)(
0 1

)

=

(
1 0
1 0

)
+

(
1 1
2 2

)
+

(
0 1
0 3

)
=

(
2 2
3 5

)
.

Each of these kinds of multiplication is useful for a different purpose. It is important to know
them all.

2.2 Linear Functions

The ultimate goal of matrices is to hide all of the details of matrix arithmetic behind uppercase
Roman letters. This lets us ignore irrelevant details to focus on higher level structure. The
magic property that makes this work is the associative property of matrix multiplication.

Magic: Associativity of Matrix Multiplication. Consider matrices A,B,C of sizes `×m,
m × n and n × p, respectively. Then the matrices AB, BC, A(BC) and (AB)C are defined,
and we have

A(BC) = (AB)C.
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This is not at all obvious from the definitions given above. A brute force proof is possible,
but not enlightening. There is a much more conceptual explanation.

Definition of Linear Functions. Consider vector spaces V and W over R (or C). A function
T : V →W is called linear when it satisfies the following three properties:

• T (0) = 0,

• T (αv) = αT (v),

• T (v1 + v2) = T (v1) + T (v2).

In other words, a linear function preserves the vector space operations of addition and scalar
multiplication. We can also summarize these properties in one step by saying that T preserves
linear combinations:

T (α1v1 + · · ·+ αnvn) = α1T (v1) + · · ·+ αnT (vn).

Why? Many natural operations are linear:

• Differention between suitable spaces of functions is linear.

• Integration from a suitable space of functions to R is linear.

• An inner product 〈−,−〉 on V over R is bilinear. That is, for any v ∈ V , each of the
following two functions is linear:

〈v,−〉 : V → R and 〈−,v〉 : V → R

• A Hermitian inner product 〈−,−〉 on V over C is sesquilinear (one and a half times
linear). This means that for each fixed v ∈ V , the function V → C defined by u 7→ 〈v,u〉
is linear, but the function V → C defined by u 7→ 〈u,v〉 is conjugate linear:

〈α1u1 + · · ·+ αnun,v〉 = α∗1〈u1,v〉+ · · ·+ α∗n〈un,v〉.

If V and W are finite dimensional with dimV = n and dimW = m, then choosing bases turns
linear transformations T : V → W into m × n matrices. To keep things simple, for now we
will work with Euclidean space and standard bases. Here is the big idea:

linear functions
T : Rn → Rm ! m× n matrices
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The correspondence is easy to describe. First of all, let A be an m × n matrix over R. This
defines a function Rn → Rm by multiplying column vectors on the left:

v ∈ Rn  Av ∈ Rm.

Indeed, if v has shape n× 1 then the product matrix Av is defined and has shape m× 1. It
is straightforward to check that this function is linear:

A(α1v+ · · ·+ αnv1) = α1Av1 + · · ·+ αnAvn.

Conversely, let T : Rn → Rm be any linear function. In order to create an m× n matrix from
T we consider the n standard basis vectors e1, . . . , en ∈ Rn. Following our convention we will
think of these as column vectors:

e1 =


1
0
...
0

 , . . . , en =


0
0
...
1

 .

Now each basis vector ei ∈ Rn gets sent by T to a column vector T (ei) in Rm. We will record
the n column vectors T (e1), . . . , T (en) ∈ Rm as the columns of an m× n matrix:

[T ] :=

 | |
T (e1) · · · T (en)
| |

 .

Thus the linear function T : Rn → Rm becomes an m × n matrix [T ]. Furthermore, the
linear function defined by the matrix [T ] is the same as the linear function T . To see this, we
consider any vector v ∈ Rn:

v =


v1

v2

...
vn

 = v1


1
0
...
0

+ v2


0
1
...
0

+ · · ·+ vn


0
0
...
1

 = v1e1 + v2e2 + · · ·+ vnen.

Then from the definition of [T ] and the linearity of T we have

T (v) = T (v1e1 + v2e2 + · · ·+ vnen)

= v1T (e1) + v2T (e2) + · · ·+ vnT (en)

=
∑
j

vjT (ej)

=
∑
j

vj(jth col of [T ])

= [T ]v,
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where the last expression [T ]v is a matrix product. To summarize: To each linear function

T : Rn → Rn we associate an m× n matrix [T ] with the property that

T (v)︸ ︷︷ ︸
apply the function

= [T ]v︸︷︷︸
matrix multiplication

So far this is slightly interesting. It becomes very interesting when we consider functional
composition. Suppose we have linear functions T : Rn → Rm and S : Rm → R`:

Observe that the composite function S ◦ T : Rn → R` is also linear:

(S ◦ T )
(∑

aivi

)
= S

(
T
(∑

aivi

))
= S

(∑
aiT (vi)

)
=
∑

aiS (T (vi))

=
∑

ai(S ◦ T )(vi).

Hence the function S ◦ T : Rn → R` corresponds to an ` × n matrix [S ◦ T ]. Now we have
three matrices:

[S] has shape `×m,

[T ] has shape m× n,

[S ◦ T ] has shape `× n.

The following theorem is the ultimate reason for the concept of matrix multiplication. This
theorem could also be taken as the definition of matrix multiplication.

Matrix Multiplication = Composition of Linear Functions. For any linear functions
T : Rn → Rm and S : Rm → R`, the composite S ◦ T : Rn → R` is also linear, and we have

[S ◦ T ] = [S][T ].

Proof. The proof will use the following rule of matrix multiplication:

(jth col of AB) = A(jth col of B).
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Our goal is to show that [S ◦T ] and [S][T ] have the same columns. From the definition of the
matrix [S ◦ T ] we have

(jth col of [S ◦ T ]) = (S ◦ T )(ej) = S(T (ej)).

On the other hand, from the above property of matrix multiplication we have

(jth col of [S][T ]) = [S](jth col of [T ]) = [S]T (ej) = S(T (ej)).

�

Remark: It is worth meditating on this proof. When you understand it then you can say that
you really understand the concept of matrix multiplication.

Before moving to some examples, we pause to give the correct (conceptual) proof that matrix
multiplication is associative.

Proof of Associativity. Consider matrices A,B,C of shapes ` × m, m × n and n × p,
respectively. We can use these to define linear functions R : Rm → R`, S : Rn → Rm and
T : Rp → Rn by matrix multiplication:

R(v) := Av for v ∈ R`,
S(v) := Bv for v ∈ Rn,
T (v) := Cv for v ∈ Rm.

Then, of course, the corresponding matrices are [R] = A, [S] = B and [T ] = C. Here is a
picture of the functions:

Recall that composition of functions is naturally associative. That is, for any v ∈ Rp we have

(R ◦ (S ◦ T ))(v) = R(S(T (v))) = ((R ◦ S) ◦ T )(v),

which means that R ◦ (S ◦T ) = (R ◦S) ◦T as functions Rp → R`. Then the previous theorem
tells us that

A(BC) = [R]([S][T ])

= [R][S ◦ T ]

= [R ◦ (S ◦ T )]

= [(R ◦ S) ◦ T ]

= [R ◦ S][T ]

= ([R][S])[T ]

= (AB)C.

Note that we never had to mention the entries of the matrices. Magic! �

25



2.3 Matrix Arithmetic

Let’s zoom out again. One of the strengths of matrix notation is that we can sometimes solve
a problem purely symbolically, without mentioning the entries of the matrices. In fact, by
hiding the appropriate details we can sometimes turn a difficult problem into an almost trivial
matrix computation.

Here is the context for matrix arithmetic.

Vector Spaces of Matrices. Let Rm×n denote the set of m×n with real entries. (We define
Cm×n similarly.) By convention we will write

Rn = Rn×1 = the set of n× 1 column vectors.

Matrices can be added and multiplied by scalars in an obvious way. That is, given m × n
matrices A,B ∈ Rm×n and a scalar α ∈ R we define m× n matrices A+B and αA such that

(ij entry of A+B) = (ij entry of A) + (ij entry of B),

(ij entry of αA) = α(ij entry of A).

It is easy to check that these operations make Rm×n into a vector space over R. Furthermore,
there is a standard basis of matrices Eij with 1 ≤ i ≤ m and 1 ≤ j ≤ n, with the entry 1 in
the ij position and all other entries equal to zero:

Bij =

j

i

 ...
· · · 1


(When a matrix contains many zero entries we will simply leave them blank.) Since there mn
such basis matrices it follows that

dimRm×n = mn.

In addition to the vector space structure, we have two additional operations on matrices. First
we have transposition and conjugate transposition:

Rm×n → Rn×m
A 7→ AT

and
Cm×n → Cn×m
A 7→ A∗

Second we have the all-important operation of matrix multiplication:

R`×m × Rm×n → R`×n
(A,B) 7→ AB.
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Finally, we have two special classes of matrices. For any shape m× n we have a zero matrix:

Om×n =

0 · · · 0
...

...
0 · · · 0

 .

[Note: I use the letter O for zero matrices.] And for any n we have a square identity matrix:

In =


1

1
. . .

1

 .

This identity matrix corresponds to the identity function id : Rn → Rn, which sends each
vector to itself. Indeed, for any linear function T : Rn → Rn recall that the ith column of the
corresponding matrix [T ] is T (ei). Since the ith column of [id] is id(ei) = ei we have [id] = In.

Rules of Matrix Arithmetic. The operations of matrix arithmetic satisfy the following
abstract rules. Here uppercase Roman letters represent matrices and lowercase Greek letters
are scalars. Assume that the matrices have appropriate shape so the indicated matrix sums
and products exist.

• Vector Space Rules.

A+B = B +A,

A+ (B + C) = (A+B) + C,

A+O = O +A = A,

1A = A,

0A = O,

α(βA) = (αβ)A,

(α+ β)A = αA+ βA,

α(A+B) = αA+ αB.

• Multiplication is not Commutative. In general we have

AB 6= BA,

even when both matrices are defined and have the same shape.

• Multiplication is Bilinear.

A(βB + γC) = βAB + γAC,

(αA+ βB)C = αAC + βBC.
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• Multiplication by O and I.

AO = O,

OA = O,

AI = A,

IA = A.

• Properties of Transpose and Conjugate Transpose.

(AT )T = A,

(A+B)T = AT +BT ,

(αA)T = αAT ,

(AB)T = BTAT ,

(A∗)∗ = A,
(A+B)∗ = A∗ +B∗

(αA)∗ = α∗A∗,
(AB)∗ = B∗A∗.

Remark: If A is `×m and B is m× n then AT is m× ` and BT is n×m. The matrix
BTAT always exists and is equal to AB. In general, the matrix ATBT does not exist.

In addition to arithmetic operations, we also need a way to measure the “size” of a matrix.

Axioms of Matrix Norms. Let ‖ − ‖ be a function that assigns to each matrix A a real
number ‖A‖. We call this a matrix norm when it satisfies the following axioms:

(a) ‖A‖ ≥ 0 for all A, with ‖A‖ = 0 if and only if A = O.

(b) ‖αA‖ = |α|‖A‖

(c) ‖A+B‖ ≤ ‖A‖+ ‖B‖

(d) ‖AB‖ ≤ ‖A‖‖B‖.

Here are the two main examples.

The Frobenius Norm. We define this by analogy with the standard vector norm:

‖A‖F :=


√∑

i,j a
2
ij over R,√∑

i,j |aij |2 over C.

We observe that ‖v‖F = ‖v‖ for all column vectors v. The fact that ‖ − ‖F satisfies (abc)
follows from this vector case. You will prove that ‖AB‖F ≤ ‖A‖F ‖B‖F on the homework.

The L2 Norm (Also Called the Operator Norm). The Frobenius norm only applies to
matrices. The operator norm also applies to linear functions on infinite dimensional normed
vector spaces:

‖A‖2 := max{‖Au‖ : over all unit vectors ‖u‖ = 1}.
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Since ‖Au‖ ≥ 0 for all u we have ‖A‖2 ≥ 0. And if ‖A‖2 = 0 then we must have ‖Au‖ = 0
(and hence Au = 0) for all unit vectors u. In particular, letting u range of the standard basis
vectors we find that each column is A is a zero vector, hence A = O. This proves property (a).
For property (b) we observe that ‖αAu‖ = |α|‖Au‖, hence the maximum value of ‖αAu‖ is
|α| times the maximum value of ‖Au‖. For part (c) we use the triangle inequality for vector
norms to observe that20

‖(A+B)u‖ = ‖Au +Bu‖ ≤ ‖Au‖+ ‖Bu‖ for all matrices A,B and unit vectors u.

To prove part (d) we first show that ‖Av‖2 ≤ ‖A‖2‖v‖ for any nonzero vector v. Indeed if v
is nonzero then v/‖v‖ is a unit vector and hence

‖A‖2 = max{‖Au‖ : all unit vectors u} ≥ ‖A(v/‖v‖)‖ = ‖Av‖/‖v‖.

Finally, to show that ‖AB‖2 ≤ ‖A‖2‖B‖2, consider any unit vector u. Note that Bu is not
necessarily a unit vector, but from the previous remark with v = Bu we still have21

‖(AB)u‖ = ‖A(Bu)‖ ≤ ‖A‖2‖Bu‖ ≤ ‖A‖2‖B‖2.

It follows that

‖AB‖2 = max{‖ABu‖ : all unit vectors u} ≤ ‖A‖2‖B‖2.

Here is a picture of the L2 norm of a 2× 2 matrix:

The matrix A sends the unit circle to an ellipse. The operator norm ‖A‖2 is the longest axis of
the ellipse. More generally, the longest axis is called the first singular value σ1 and the smaller
axis is the second singular value σ2. We will discuss the SVD (singular value decomposition)
in a later section.

The Frobenius norm is harder to visualize.
20Details: The maximum value of ‖(A+B)u‖ is ≤ the maximum value of ‖Au‖+ ‖Bu‖ which is ≤ the sum

of the maximum values of ‖Au‖ and ‖Bu‖.
21If Bu = 0 then we have ‖ABu‖ = 0 and there is nothing to show.

29



2.4 Inverse Matrices

We have seen how to multiply matrices, but can we also divide? If we can then this will be
extremely useful for solving matrix equations. For example, suppose we have an equation

AX = B,

where A and B are given matrices and X is an unknown matrix. If we can find a matrix C
such that CA = I then multiplying both sides on the left by C gives

AX = B

C(AX) = CB

(CA)X = CB

IX = CB

X = CB.

Definition of Inverse Matrices. Let A be an m×n matrix. Any n×m matrix B satisfying

AB = Im

is called a right inverse of A. Any n×m matrix C satisfying

CA = In

is called a left inverse of A. Left and right inverses, if they exist, need not be unique. However,
suppose that A has both a right inverse B and a left inverse C. Then we must have

B = InB = (CA)B = C(AB) = CIm = C.

In this case B = C is the unique two-sided inverse of A, and we write

A−1 = B = C.

When A has a two-sided inverse we say that A is invertible. It will follow from the Fundamental
Theorem below that an invertible matrix must be square (i.e., have m = n) but this
theorem is surprisingly difficult to prove.

For example, consider the following non-square matrix:

A =

(
1 1 1
1 2 3

)
If B is a right inverse of A then it must have two columns b1,b2 ∈ R3 and it must satisfy the
block matrix equation

I2 = AB
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(
1 0
0 1

)
= A

(
b1 b2

)
(

e1 e2

)
=
(
Ab1 Ab2

)
From Linear Algebra I you know how to solve the systems Ab1 = e1 and Ab2 = e2 to obtain all
possible column vectors b1,b2. In turns out b1 = (2+s,−1−2s, s) and b2 = (−1+ t, 1−2t, t)
for any parameters s, t. Thus we obtain a two-dimensional family of right inverses:22

(
1 1 1
1 2 3

) 2 + s −1 + t
−1− 2s 1− 2t

s t

 =

(
1 0
0 1

)
.

This already tells us that A has no left inverse, since if it did then any two right inverses
would be equal. Indeed, let B,B′ be any two right inverses of A and suppose that A has a
left inverse C. Then we get

I2 = I2

AB = AB′

C(AB) = C(AB′)

(CA)B = (CA)B′

I3B = I3B
′

B = B′.

Since our matrix A has many different right inverses, no left inverse can exist.

I mentioned above that any invertible matrix (i.e., any matrix with a two-sided inverse) must
be square. It is also true that any left inverse of a given square matrix must also be a right
inverse, and vice versa. I will state these theorems now, but the proofs are surprisingly subtle
and are postponed until the next section.

Two Subtle Theorems.

• Any invertible matrix must be square.

• For any square matrices A and B of the same size, we have

AB = I ⇐⇒ BA = I.

To be concrete, consider the matrices

A =

(
a b
c d

)
and A′ =

(
a′ b′

c′ d′

)
.

22Note: The family of right inverses of A is not a vector subspace of R3×2 because it does not contain the
zero matrix. However, it is an affine subspace of R3×2, i.e., a translation of a linear subspace.
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The matrix equation AA′ = I is equivalent to the following four equations:
aa′ + bc′ = 1,
ab′ + bd′ = 0,
ca′ + dc′ = 0,
cb′ + dd′ = 1.

And the matrix equation A′A = I is equivalent to the system
a′a+ b′c = 1,
a′b+ b′d = 0,
c′a+ d′c = 0,
c′b+ d′d = 1.

The second theorem above tells us that these two systems of equations have the same solutions
for the eight unknowns a, b, c, d, a′, b′, c′, d′. It is tempting to look for a direct algebraic proof
of this but you won’t be able to find one because this is the wrong approach. The correct
approach requires us to consider the dimensions of certain vector spaces associated to the
matrices. See the Fundamental Theorem in the next section.

For now we will prove some easy and purely symbolic properties of inverse matrices.

Algebraic Properties of Inverse Matrices.

(a) Suppose that A−1 exists. Then (A∗)−1 exists and is equal to (A−1)∗.

(b) Suppose that A−1, B−1 and AB exist. Then (AB)−1 exists and is equal to B−1A−1.

Proof. (a): We only need to show that A∗(A−1)∗ = I and (A−1)∗A∗ = I. For the first
identity we have23

A∗(A−1)∗ = (A−1A)∗ = I∗ = I.

The other direction is similar. (b): We only need to show that (AB)(B−1A−1) = I and
(B−1A−1)AB = I. This follows easily from the associativity of matrix multiplication:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

The other direction is similar. �

2.5 Important Kinds of Matrices

It is high time for some examples.

Rotations. Consider the function Rt : R2 → R2 that rotates each point by angle t, counter-
clockwise around the origin. This function is linear because it sends the origin to itself and it
sends parallelograms to parallelograms. To determine the corresponding matrix we only need
to rotate the standard basis vectors:

23Recall that A∗B∗ = (BA)∗.
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Since no confusion will result, I will use the notation Rt for the function and for the corre-
sponding matrix. Thus we have

Rt =

(
Rt

(
1
0

)
Rt

(
0
1

))
=

(
cos t − sin t
sin t cos t

)
.

Once we have the matrix we can use this to rotate a general point:

Rt

(
x
y

)
=

(
cos t − sin t
sin t cos t

)(
x
y

)
=

(
x cos t− y sin t
x sin t+ y cos t

)
.

It would be much harder to solve this problem without the theory of matrices. Next we
consider the composition of two rotations. Thinking in terms of functions, it is clear that
RsRt = Rs+t = RtRs, since rotating first by one angle and then by the other angle is the same
as rotating once by the sum of the two angles. On the other hand, since matrix multiplication is
the same as functional composition, we obtain the following matrix identity, which is equivalent
to the angle sum trigonometric identities:(

cos s − sin s
sin s cos s

)(
cos t − sin t
sin t cos t

)
=

(
cos(s+ t) − sin(s+ t)
sin(s+ t) cos(s+ t)

)
.

Note that rotation clockwise by angle t is the same as rotation counterclockwise by angle −t.
Thus the functions Rt and R−t are inverses:

RtR−t = R−tRt = R0 = I.
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Note that rotation by angle zero is just the identity function. It is interesting to observe that(
cos t − sin t
sin t cos t

)−1

= (Rt)
−1 = R−t =

(
cos(−t) − sin(−t)
sin(−t) cos(−t)

)
=

(
cos t sin t
− sin t cos t

)
= (Rt)

T .

We will see below the matrices satisfying A−1 = AT are called orthogonal matrices. Finally,
let me remark that the determinant of a rotation matrix is always 1:

det(Rt) = det

(
cos t − sin t
sin t cos t

)
= cos2 t+ sin2 t = 1.

We will discuss the general theory of determinants later.

Reflections. Let Ft : R2 → R2 be the function that reflects each point across the line that
makes angle t/2 from the positive x-axis. Again, this is a linear function because it sends the
origin to itself and sends parallelograms to parallelograms. To determine the corresponding
matrix we reflect the standard basis vectors:

Thus we obtain the matrix

Ft =

(
Ft

(
1
0

)
Ft

(
0
1

))
=

(
cos t sin t
sin t − cos t

)
.

The composition of two reflections in two different lines turns out to be a rotation:

FsFt =

(
cos s sin s
sin s − cos s

)(
cos t sin t
sin t − cos t

)
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=

(
cos s cos t+ sin s sin t cos s sin t− sin s cos t
sin s cos t− cos s sin t sin s sin t+ cos s cos t

)
=

(
cos(s− t) − sin(s− t)
sin(s− t) cos(s− t)

)
= Rs−t.

This would be more difficult to see geometrically. In particular, we find that reflection matrices
do not commute in general:

FsFt = Rs−t 6= Rt−s = FtFs unless angles s− t and t− s are equal.

Taking s = t shows that the composition of a reflection with itself is the identity matrix:

F 2
t = FtFt = Rt−t = R0 = I.

In other words, reflecting in the same line twice is the same thing as doing nothing. This
implies that each reflection matrix Ft is equal to its own inverse:

(Ft)
−1 = Ft.

It also happens that (Ft)
T = Ft, so Ft is another example of an orthogonal matrix. Finally,

let me remark that the determinant of any reflection matrix is −1:

det(Ft) = det

(
cos t sin t
sin t − cos t

)
= − cos2 t− sin2 t = −1.

Projections. Consider the following matrix:

Pt =

(
cos2 t cos t sin t

cos t sin t sin2 t

)
.

As with any 2 × 2 matrix, this defines a linear function R2 → R2. What is the geometric
description of this function? It is convenient to solve this problem in greater generality.

Suppose that we want to project24 a point x ∈ Rn onto the line in Rn generated by a vector
a:

24Here we are talking about orthogonal projection, i.e., projection at right angles. Later we will talk about
more general kinds of projection.
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Since projection is a linear function there will be some n × n matrix P that achieves this
projection. We know exactly two things about this situation:

(1) Since the projection Px is on the line generated by a we must have Px = αx for some
scalar α. This scalar will change depending on the point x.

(2) Since the projection is orthogonal we know that the blue vector Px−x is orthogonal to
the red vector a.

Putting these two facts together gives25

aT (Px− x) = 0 (2)

aT (αa− x) = 0 (1)

αaTa− aTx = 0

α = aTx/aTa

α = aTx/‖a‖2.

Hence the projection of x is given by

Px = αa =

(
aTx

‖a‖2

)
︸ ︷︷ ︸

scalar

a︸︷︷︸
vector

.

To find a formula for the n × n projection matrix P we simply rearrange using the fact that
matrix multiplication is associative:26

Px =

(
aTx

‖a‖2

)
a

25I will express this using inner products because the ideas generalize beyond Euclidean space.
26The associativity of matrix multiplication is behind many clever proofs like this.
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= a

(
aTx

‖a‖2

)
scalars commute with matrices

=
1

‖a‖2
a(aTx)

=
1

‖a‖2
(aaT )︸ ︷︷ ︸

n× n matrix

x︸︷︷︸
vector

.

Since this identity holds for any vector x27 we conclude that the projection matrix is given by

P =
1

‖a‖2
aaT .

If a = u is a unit vector then the formula is particularly simple:

P = uuT = the projection onto the line in Rn spanned by unit vector u.

Now we go back to two dimensions. Consider the line in R2 that makes angle t counterclockwise
from the positive x-axis. This line is generated by the unit vector u = (cos t, sin t). Hence the
matrix that projects onto this line is

Pt = uuT =

(
cos t
sin t

)(
cos t sin t

)
=

(
cos2 t cos t sin t

cos t sin t sin2 t

)
.

The image of a general point x = (x, y) under this projection is

Pt

(
x
y

)
=

(
cos2 t cos t sin t

cos t sin t sin2 t

)(
x
y

)
=

(
x cos2 t+ y cos t sin t

x cos t sin t+ y sin2 t

)
.

Here is a picture:

27Let A,B be two n× n matrices such that Ax = Bx for all x ∈ Rn. If x = ej then the identity Aej = Bej
tells us that the jth columns of A and B are the same. Since this holds for any j we conclude that A and B
are the same matrix.
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Note that this projection is not invertible. To see this, let’s consider the point (− sin t, cos t).
This point gets projected to the origin:

Pt

(
− sin t
cos t

)
=

(
cos2 t cos t sin t

cos t sin t sin2 t

)(
− sin t
cos t

)
=

(
− cos2 t sin t+ cos2 t sin t

− cos t sin2 t+ cos t sin2 t

)
=

(
0
0

)
.

But the origin gets projected to itself: Pt0 = 0. If Pt had an inverse matrix (Pt)
−1 then this

would imply that

Pt

(
− sin t
cos t

)
= Pt

(
0
0

)
(Pt)

−1Pt

(
− sin t
cos t

)
= (Pt)

−1Pt

(
0
0

)
(
− sin t
cos t

)
=

(
0
0

)
.

Contradiction.28 More generally, let P = uuT be the matrix that projects onto the line in Rn
generated by some unit vector u and let v ∈ Rn be any vector that is perpendicular to u, so
that uTv = 0. Then we have

Pv = (uuT )v = u(uTv) = u(0) = 0.

28More generally, a linear function that is not injective cannot have a left inverse.
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This shows that the projection onto a line in Rn is never invertible. Finally, let me note that
the matrix Pt has determinant zero:

detPt = det

(
cos2 t cos t sin t

cos t sin t sin2 t

)
= cos2 t sin2 t− cos2 t sin2 t = 0.

Later we will see that a square matrix A is invertible if and only if detA 6= 0.

The Group of Orthogonal Matrices. I mentioned above that a square matrix A satisfying
A−1 = AT is called an orthogonal matrix. We denote the set of all such matrices by

On(R) = {A ∈ Rn×n : ATA = I and AAT = I}.

Sometimes the set On(R) is called the orthogonal group, because it satisfies the three group
axioms from abstract algebra:

• The identity matrix is in On(R). Indeed, we have IT = I and II = I, so that IT I =
II = I and IIT = II = I.

• If A is in On(R) then A is invertible and A−1 is also in On(R). Indeed, the conditions
ATA = I and AAT = I just tell us that A is invertible with A−1 = AT . But then we
also have

(A−1)−1 = A = (AT )T = (A−1)T ,

which tells us that A−1 is in On(R).

• If A and B are in On(R) (i.e., if A−1 = AT and B−1 = BT ) then so is their product
AB. Indeed, we have

(AB)−1 = B−1A−1 = BTAT = (AB)T .

Remark: Particle physicists are particularly interested in matrix groups but they prefer the
complex version of orthogonal matrices, which are called unitary matrices:

Un(C) = {A ∈ Cn×n : A∗A = I and AA∗ = I}.

It is worth mentioning a geometric interpretation of orthogonal matrices:29

ATA = I ⇐⇒ the columns of A are orthonormal.

Indeed, suppose that A ∈ Rn×n has column vectors a1, . . . ,an ∈ Rn, so that AT has row
vectors aT1 , . . . ,a

T
n . Then the i, j entry of the matrix ATA is the dot product of ai and aj :

(i, j entry of ATA) = (ith row of AT )(jth col of A)

= aTi aj

29The same result holds for unitary matrices, with respect to the Hermitian inner product.
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= ai • aj .

On the other hand, the i, j entry of the identity matrix is the Kronecker delta δij . Hence we
have ATA = I if and only if

ai • aj = δij ,

i.e., if and only if the column vectors a1, . . . ,an ∈ Rn are orthonormal. This is one reason for
the term “orthogonal matrix”. On the homework you used this fact to prove that every 2× 2
orthogonal matrix is either a rotation or a rotation.

The Fundamental Theorem, which we will prove in the next section, tells us that the equations
ATA = I and AAT = I are equivalent when A is square, which means that the columns of a
square matrix are orthonormal if and only if the rows are orthonormal. I find this mysterious.

3 Subspaces Associated to Linear Functions

In the last section we discussed purely symbolic properties of matrix inversion. Recall: Let A
be an m×n matrix. An n×m matrix B is called a right inverse of A when AB = Im and an
m× n matrix C is called a left inverse of A when CA = In. If A has both a right inverse B
and a left inverse C then the two must be equal because

B = InB = (CA)B = C(AB) = CIm = C.

In this case we say that A−1 = B = C is the unique two-sided inverse of A. Any matrix
having a two-sided inverse is called invertible. We also proved the following basic facts: If
A−1 exists then (A∗)−1 exists and is equal to (A−1)∗. If A−1, B−1 and AB exist then (AB)−1

exists and is equal to B−1A−1.

Precisely when do inverse matrices exist? This question is surprisingly subtle. In order to
answer it we must ascend to a higher level of abstraction. To each linear function between
vector spaces V →W we associate certain subspaces of V and W .

3.1 Kernel and Image of a Linear Function.

Consider a linear function f : V →W between vector spaces.30 We define the kernel and the
image of f as follows:

ker(f) := {the set of v ∈ V such that f(v) = 0},
im(f) := {the set of w ∈W such that w = f(v) for some v ∈ V }.

Remark: The kernel and image of f are sometimes called the nullspace and range.31

30Over R or C; it doesn’t matter. Indeed, the same theory applies to vector spaces over arbitrary fields.
31Kernel and image are standard terminology in abstract algebra. Nullspace and range are more common

in applied linear algebra. For matrices, the image/range is often called the column space. (Too many words; I
know.) See the next section.
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We observe that ker(f) ⊆ V is a subspace. Indeed, given vectors v1, . . . ,vn ∈ ker(f) in the
kernel and scalars a1, . . . , an, the linearity of f implies

f(a1v1 + · · ·+ anvn) = a1f(v1) + · · ·+ anf(vn) = a10 + · · ·+ an0 = 0,

so the linear combination a1v1 + · · ·+anvn is also in the kernel. Furthermore, we observe that
im(f) ⊆ W is a subspace. Indeed, consider any vectors w1, . . . ,wn ∈ im(f) in the image
and any scalars a1, . . . , an. By definition we can write wi = f(vi) for some vectors vi, hence
from the linearity of f we have

a1w1 + · · ·+ anwn = a1f(v1) + · · ·+ anf(vn) = f(a1v1 + · · ·+ anvn).

Since a1w1 + · · ·+ anwn = f(v′) for some vector v′ we conclude that the linear combination
a1w1 + · · ·+ anwn is also in the image.

The invertibility of a linear function is closely related to its kernel and image. The first
observation is true by definition of the words image and surjective:32

f : V → W is surjective if and only if im(f) = W .

The next observation requires a short proof:

f : V → W is injective if and only if ker(f) = {0}.

Proof. Recall that any linear function satisfies f(0) = 0. If f is injective then f(v) = 0 = f(0)
implies v = 0, and hence ker(f) = {0}. Conversely, suppose that ker(f) = {0}. To show
that f is injective, let f(v1) = f(v2) for some vectors v1,v2. Then we have

f(v1) = f(v2)

f(v1)− f(v2) = 0

f(v1 − v2) = 0 linearity of f

v1 − v2 = 0 ker(f) = {0}
v1 = v2.

Hence f is injective. �

32The words surjective and injective were introduced by Bourbaki in the 1940s. The older equivalent terms
are onto and one-to-one.
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3.2 Isomorphism of Vector Spaces.

Let f : V →W be a function between vector spaces. We say that f is an isomorphism33 when
the following properties are satisfied:

(a) f is linear,

(b) f is surjective,

(c) f is injective.

Properties (b) and (c) say that f is a bijection,34 which is equivalent to being invertible.
Furthermore, one can check that the inverse function f−1 : W → V is also linear. If there
exists an isomorphism between vector spaces V and W then we will write

V ∼= W.

When V and W are finite dimensional we have the following important fact:

Isomorphism of Finite Dimensional Vector Spaces.

V ∼= W ⇐⇒ dim(V ) = dim(W ).

Proof. =⇒: Suppose that V ∼= W and let f : V → W be a specific isomorphism. Suppose
that dim(V ) = n and let {b1, . . . ,bn} be a basis for V . Then I claim that {f(b1), . . . , f(bn)}
is a basis for W , from which it will follow that dim(W ) = n. There are two things to show:

• Independent. Suppose that a1f(b1) + · · · + anf(bn) = 0 for some scalars a1, . . . , an.
Linearity of f implies that

0 = a1f(b1) + · · ·+ anf(bn) = f(a1b1 + · · ·+ anbn),

and then the fact that f is injective implies that

0 = a1b1 + · · ·+ anbn.

Finally, the fact that {b1, . . . ,bn} is independent implies that a1 = · · · = an = 0.

• Spanning. Consider any vector w ∈ W . Since f is surjective we have w = f(v) for
some v ∈ V , and since {b1, . . . ,bn} spans v we can write

v = a1b1 + · · ·+ anbn

for some scalars a1, . . . , an. Finally, by linearity of f we have

w = f(v) = f(a1b1 + · · ·+ anbn) = a1f(b1) + · · ·+ anf(bn),

which shows that {f(b1), . . . , f(bn)} spans W .

33Also called a linear isomorphism, or an isomorphism of vector spaces.
34Another Bourbaki term. The older word is one-to-one correspondence.
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⇐=: Suppose that dim(V ) = dim(W ) = n. Choose bases v1, . . . ,vn ∈ V and w1, . . . ,wn ∈W
and define a linear function f : V → W by sending vi 7→ wi for all i. Then for any vector
v = a1v1 + · · ·+ anvn ∈ V we have

f(a1v1 + · · ·+ anvn) = a1f(v1) + · · ·+ anf(vn) = a1w1 + · · ·+ anwn.

Furthermore, the function f :−1: W → V defined by sending wi 7→ vi is the inverse of f :

f−1(a1w1 + · · ·+ anwn) = a1f
−1(w1) + · · ·+ anf

−1(wn) = a1v1 + · · ·+ anvn.

�

As a consequence of this theorem, any n-dimensional vector space over R is isomorphic to Rn.
Indeed, let v1, . . . ,vn ∈ V be a basis. Then the following function V → Rn is an isomorphism:

a1v1 + · · ·+ anvn 7→

a1

...
an

 .

We will apply these ideas in the next section.

4 Subspaces Associated to Matrices

Recall that an m×n matrix over R is the same thing as a linear function Rn → Rm.35 In this
case the kernel and image have a special interpretation.

4.1 The Nullspace of a Matrix.

Given an m× n matrix A we define the nullspace:

N (A) := {the set of x ∈ Rn such that Ax = 0}.

It is easy to check that N (A) ⊆ Rm is a subspace. Indeed, N (A) is just the kernel of the
linear function A : Rn → Rm. More interestingly, we can use the concept of the nullspace to
express the fact that a given vector is simultaneously orthogonal to a given set of vectors:

x ∈ N (A) ⇐⇒ Ax = 0 ⇐⇒ x is orthogonal to every row of A.

Indeed, let aTi be the ith row vector of A. If Ax = 0 then we have0
...
0

 = 0 = Ax =

− aT1 −
...

− aTm −

x =

aT1 x
...

aTmx

 .

35When I write Rn I always assume that we are working with the standard basis.
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Comparing entries on the left and right gives aTi x = 0 for all i. In other words, the vector x
is orthogonal to each row vector of A. Equivalently, we have

ATx = 0 ⇐⇒ x is orthogonal to every column of A.

It is important to get comfortable with this idea because it is the foundation of least squares.36

4.2 The Column Space of a Matrix.

We can think of an m× n matrix A as a linear function A : Rn → Rm. In this case the image
of A is called the column space:

C(A) = {the set of Ax ∈ Rm for all x ∈ Rn}.

But why is it called the column space? Let a1, . . . ,an ∈ Rm be the column vectors of A. Then
for any vector x = (x1, . . . , xn) ∈ Rn we have

Ax =
(

a1 · · · an
)x1

...
xn

 = x1a1 + · · ·+ xnan,

which is a linear combination of the columns of A. So we can also write

C(A) = {all linear combinations of the columns of A}.

Similarly, we can define the row space of A:

R(A) := C(AT ) = {all linear combinations of the rows of A}.

Note that C(A) is a subspace of Rm because each column of an m×n matrix lives in Rm, while
R(A) is a subspace of Rn. So the row space and column space cannot be directly compared.

4.3 Orthogonality of the Subspaces.

We observed above that x ∈ N (A) if and only if x is orthogonal to every row of A. We can
express this as follows:

N (A) = R(A)⊥.

In general, given a subspace U ⊆ V of an inner product space V we let U⊥ ⊆ V denote the
set of vectors that are orthogonal to every vector in U :37

U⊥ = {the set of v ∈ V such that 〈u,v〉 = 0 for all u ∈ U}.
36For the impatient: Let Px be the orthogonal projection of a point x onto the column space of a matrix A.

Then the vector Px− x must be orthogonal to every column of A, hence AT (Px− x) = 0.
37We read U⊥ as “U perp”.
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You will check on the homework that U⊥ ⊆ V is also a subspace. Furthermore, if V finite
dimensional then you will prove the following dimension formula:

dimU + dimU⊥ = dimV.

In the case of the rowspace and nullspace of a matrix A we obtain the following theorem.

The Rank-Nullity Theorem. For any matrix A we have

dimR(A) + dimN (A) = the number of columns of A.

Indeed, if A is m× n then R(A) and N (A) are orthogonal subspaces of Rn, so that

dimR(A) + dimN (A) = n.

This is often called the rank-nullity theorem because dimR(A) is called the rank and dimN (A)
is called the nullity of the matrix A.38 By replacing A with AT we obtain the equivalent formula

dim C(A) + dimN (AT ) = m,

which does not have a nice name.

5 The Fundamental Theorem

In this section we will prove the most important theorem about matrices. Following Gilbert
Strang, I will call this “The Fundamental Theorem”.

The Fundamental Theorem of Linear Algebra. For any m× n matrix A we have

dimR(A) = dim C(A).

This common dimension is called the rank of A, sometimes written rank(A).

This result is a bit surprising because the row space R(A) lives in Rn, while the column space
C(A) lives in Rm, so there is no direct way to compare them. Evidently there is some subtle
form of communication between the rows and columns of a matrix. We will see in the next
section that the Fundamental Theorem implies the following facts:

• Invertible matrices are square.

• If A and B are square of the same size, then AB = I if and only if BA = I.

• If A is square then A has orthonormal columns if and only if it has orthonormal rows.

The proof is more difficult than you might expect, but it is worth going through the details
because the ideas in the proof quite useful. There are two main steps:

38The dimension of C(A) is also called the rank of A. The fact that R(A) and C(A) have the same dimension
is a deep fact called the Fundamental Theorem. See the next section.
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(1) Let E and F be any matrices such that E has a left inverse E′E = I and F has a right
inverse FF ′ = I.39 Then we will show that

dimR(EAF ) = dimR(A) and dim C(EAF ) = dim C(A).

(2) For any matrix A, we will find matrices E and F , as in (1), so that EAF has the
following simple form:

EAF =

(
Ir Or,n−r

Om−r,r Om−r,n−r

)
,

where Ir is the square r × r identity matrix. Since the matrix on the right clearly has
row space and column space of dimension r,40 it will follow that

dimR(A) = dimR(EAF ) = r = dim C(EAF ) = dim C(A).

Aside from these two main steps, we will further organize the proof into substeps, labeled by
(a), (b), etc., since there are many details.

Proof of Step (1).

(a) For any matrix E such that EA exists, we have

R(EA) ⊆ R(A).

Indeed, I claim that each row of EA is a linear combination of the rows of A. To see this, let
E have ith row (ei1, . . . , eim) and let A have ith row aTi . Then

(ith row of EA) = (ith row of E)A

=
(
ei1 · · · eim

)
A

=
(
ei1 · · · eim

)


aT1

...

aTm


= ei1a

T
1 + · · ·+ eimaTm.

In the last step we used block multiplication. Since every row of EA is in the rowspace R(A) it
follows that any linear combination of rows of EA is in R(A). In other words, R(EA) ⊆ R(A).

(b) If E has a left inverse E′E = I then we also have

R(A) ⊆ R(EA).

39These one-sided inverses need not be unique.
40The first r rows are a basis for the row space, while the first r columns are a basis for the column space.
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Indeed, applying step (a) to the matricx B = EA and E′ shows that

R(A) = R(E′EA) = R(E′B) ⊆ R(B) = R(EA).

Then combining (a) and (b) shows that R(EA) = R(A), hence

dimR(EA) = dimR(A).

(c) For any matrix F such that AF exists, we have

C(A) ⊆ C(AF ).

Indeed, I claim that any column of AF is a linear combination of the columns of A. The proof
is similar to part (a). Let (f1j , . . . , fnj) be the jth column of F and let aj be the jth column
of A. Then we have

(jth column of AF ) = A(jth column of F )

=
(

a1 · · · an
)f1j

...
fnj


= f1ja1 + · · ·+ fnjan.

(d) If F has a right inverse FF ′ = I, then applying (c) to the matrix B = AF and F ′ gives

C(AF ) = C(B) ⊆ C(BF ′) = C(AFF ′) = C(A),

hence C(AF ) = C(A). It follows that

dim C(AF ) = dim C(A).

Next we will show that dimR(A) = dimR(AF ) and dim C(EA) = dim C(A). This time the
corresponding spaces are not equal, but they are still isomorphic.

(e) For any matrix A with rows aTi and any matrix F of appropriate shape, note that

(ith row of AF ) = (ith row of A)F = aTi F.

Consider the function ϕ : R(A)→ R(AF ) defined by multiplying on the right by F . That is,
for any vector41 bT = b1a

T
1 + · · ·+ bmaTm ∈ R(A) we define

ϕ(bT ) := bTF

= ϕ(b1a
T
1 + · · ·+ bmaTm)F

41Usually we think of R(A) as space of column vectors, but for the purpose of this proof it is more convenient
to think of R(A) as space of row vectors.
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= b1(aT1 F ) + · · ·+ bm(aTmF ) ∈ R(AF ).

Matrix multiplication is linear, so ϕ is a linear function. Next, for any vector

cT := c1(aT1 F ) + · · ·+ cm(aTmF ) ∈ R(AF )

we have
cT = ϕ(c1a

T
1 + · · ·+ cna

T
m),

so that ϕ is surjective. Finally, since F has a right inverse FF ′ = I we see that ϕ is injective.
Indeed, if ϕ(bT ) = ϕ(cT ) then

ϕ(bT ) = ϕ(cT )

bTF = cTF

(bTF )F ′ = (cTF )F ′

bT (FF ′) = cT (FF ′)

bT = cT .

Hence ϕ is an isomorphism R(A) ∼= R(AF ), and it follows from the previous section that

dimR(AF ) = dimR(A).

(f) Similarly, if E has a left inverse E′E = I then we will show that C(EA) ∼= C(A). To do
this we consider the function ψ : C(A)→ C(EA) defined by multiplying on the left by E. To
be explicit, let aj be the jth column of A,42 so that

(jth column of EA) = E(jth column of A) = Eaj .

Consider the function ψ : C(A) → C(EA) defined by multiplying on the left by E. That is,
for any vector b = b1a1 + · · ·+ bnan ∈ C(A) we define

ψ(b) := Eb

= E(b1a1 + · · ·+ bnan)

= b1(Ea1) + · · ·+ bn(Ean) ∈ C(EA).

Following an argument similar to (e), we see that ψ is a vector space isomorphism, and hence

dim C(EA) = dim C(A).

Proof of Step (2). The proof of this step is an algorithm. For this purpose we introduce
the important new idea of elementary matrices.

(g) Elementary Matrices. We define three families of square matrices.43

42In part (e) we used aTi for the ith row of A. Hopefully you don’t mind that I’m recycling the notation aj
for a different purpose. Gilbert Strang uses a∗i to denote rows of a matrix, but I don’t like this because I use ∗
for conjugate transpose.

43It is always a struggle to find a notation for elementary matrices. Here I use the Wikipedia notation. I
guess that D is for Diagonal, T is for Transposition and L is for Lower triangular, since many algorithms only
use lower triangular Lij(λ) (i.e., with i > j). I prefer to think of D for Dilation and L for eLimination.
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• For any index i and nonzero scalar λ we define

Di(λ) =


1

1
λ

1
1

 .

The main diagonal entries are 1, except of the ii entry, which is λ. The off-diagonal
entries are all zero.

• For any indices i 6= j and any scalar λ we define

Lij(λ) =


1

1 · · · λ

1
...
1

1

 .

The main diagonal entries are 1. The only other nonzero entry is λ in the ij position.

• For any indices i 6= j we define

Tij =


1

0 · · · 1
... 1

...
1 · · · 0

1

 .

The main diagonal entries are 1 except for zeros in the ii and jj positions. The off-
diagonal entries are zero except for 1 in the ij and ji positions.

We observe that each of these (square) elementary matrices is invertible. That is, we have

Di(λ)−1 = Di(1/λ)

Lij(λ)−1 = Lij(−λ)

T−1
ij = Tij .

But what are these matrices for?

(h) Row and Column Operations. Let A be an m × n matrix. For any matrix E we
have seen that each row of EA is a linear combination of the rows of A. To be precise, if
(ei1, . . . , eim) is the ith row of E and aTi is the ith row of A, then

(ith row of EA) = ei1a
T
1 + · · ·+ eimaTm.

When E is an m×m elementary matrix then we have the following elementary row operations.
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• The function A Di(λ)A multiplies the ith row of A by λ.

• The function A  Lij(λ)A replaces the ith row of A by itself plus λ times the jth row
of A. Indeed, when k 6= i, the kth row of Lij(λ) is just a standard basis vector, whereas
the ith row of Lij(λ) is (0, . . . , 0, 1, 0, . . . , 0, λ, 0, . . . , 0) with 1 in the ith position and λ
in the jth position. Hence the ith row of EA is

0aT1 + · · ·+ 0aTi−1 + 1aTi + 0aTi+1 + · · ·+ 0aTj−1 + λaTj + 0aTj+1 + · · ·+ 0aTm.

• The function A TijA swaps the ith and jth rows of A.

Similarly, if F has jth column (f1j , . . . , fnj) and A has jth column aj , then

(jth column of AF ) = f1ja1 + · · ·+ fnjan.

When F is an elementary matrix then we have the following elementary column operations.

• The function A ADi(λ) multiplies the ith column of A by λ.

• The function A  ALij(λ) replaces the jth column of A by itself plus λ times the ith
column of A. The proof is the same as for rows.

• The function A ATij swaps the ith and jth columns of A.

(i) The Algorithm. Finally, we can use elementary matrices to put the m × n matrix A
into a particularly nice form. If E1, . . . , Ek are elementary m ×m matrices and if F1, . . . , F`
are elementary n× n matrices then by performing row and column operations we will obtain

Ek · · ·E1E1AF1F2 · · ·F` = EAF.

Since elementary matrices are invertible, the products E = Ek · · ·E2E1 and F = F1F2 · · ·F`
are also invertible. In particular, E has a left inverse and F has a right inverse, so we can
apply the results from step (1).

Now we explain how to choose the operations.44 If the top left entry of A is zero, swap rows
or columns until it is not zero. Then scale the first row or column so the top left entry is equal
to 1. Next apply elimination matrices Lij(λ) on both sides to eliminate the other entries in
the first row and column. The result is a matrix of the form

1 0 · · · 0

0
...
0

A′

 ,

44We are concerned here with clarity of exposition, not with efficiency of implementation.
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where A′ has size (m− 1)× (n− 1). If A′ is the zero matrix then we are done. Otherwise we
repeat the previous steps on the smaller matrix to obtain

1 0 0 · · · 0

0 1 0 · · · 0

0
...
0

0
...
0

A′′


,

where A′′ has size (m− 2)× (n− 2). We repeat this process until the bottom right corner is
a zero matrix. If the process terminates after r steps then the bottom right corner is the zero
matrix of size (m− r)× (n− r). �

This completes our proof of the Fundamental Theorem. This is not the shortest proof, but it
is the clearest proof that I know. And it has the added benefit of introducing important ideas
(such as elementary matrices) that we will use in the future.

Remark: There is a variant of this algorithm that works over the integers. The difference
when working over Z is that we cannot divide, so we cannot scale the top left entry to equal 1.
However, we can arrange that the top left entry is as small as possible, and that each diagonal
entry divides the next. We omit the proof because it requires a bit of number theory.45

Theorem (Smith Normal Form). Let A be an n×m matrix of rank r with integer entries.
Then there exist invertible matrices E and F with integer entries, whose inverses E−1 and
F−1 and also have integer entries, such that

EAF =


d1

d2

. . .

dr

Or,n−r

Om−r,r Om−r,n−r

 .

The diagonal integers 0 ≤ d1 ≤ . . . ≤ dr have the property that di+1 is an integer multiple of
di for all i. These diagonal entries are called the elementary divisors of the matrix A. The
Smith Normal Form is useful in cryptography and in algebraic topology, but we will have no
use for it in this course.

6 Existence of Inverse Matrices

As promised, we now apply the Fundamental Theorem to the existence of inverse matrices.
Before doing so we make a basic observation. For any m× n matrix A and n× 1 column b,

the matrix equation Ax = b has a solution x ∈ Rn if and only if b ∈ C(A).

45In general the algorithms for linear algebra over Z are much more expensive than for linear algebra over a
field such as R or C. The complexity of the algorithms makes the subject useful for cryptography.
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Indeed, this is just a way of rephrasing the definition of the column space, since every linear
combination of the columns of A has the form Ax for some vector x.

First we state conditions for the existence of left and right inverse matrices.

6.1 Existence of Right Inverses.

Given an m×n matrix A, recall that a right inverse is any n×m matrix X satisfying AX = Im.
In order to find such a matrix, let xj ∈ Rn be the unknown jth column of X. Then using
block multiplication gives(

Ax1 · · · Axm
)

= A
(

x1 · · · xm
)

= AX = Im =
(

e1 · · · em
)
.

In other words, we have AX = Im if and only if we have Axj = ej for each column vector
xj , where ej is the jth column of the identity matrix Im, i.e., the jth standard basis vector in
Rm. By the previous remark, such vectors xj exist if and only if each basis vector ej ∈ Rm is
in the column space C(A). Finally, since C(A) is a subspace of Rm, this happens if and only
if C(A) fills up all of Rm.46 Here is a summary:

A has a right inverse ⇐⇒ AX = Im for some matrix X

⇐⇒ Axj = ej for some vectors x1, . . . ,xm

⇐⇒ ej ∈ C(A) for the standard basis vectors e1, . . . , em

⇐⇒ C(A) = Rm

⇐⇒ dim C(A) = m.

Furthermore, the Rank-Nullity Theorem tells us that dim C(A) + dimN (AT ) = m, hence

A has a right inverse ⇐⇒ dim C(A) = m

⇐⇒ dimN (AT ) = 0

⇐⇒ N (AT ) = {0}
⇐⇒ ATx = 0 implies x = 0

⇐⇒ the columns of AT are independent

⇐⇒ the rows of A are independent.

6.2 Existence of Left Inverses.

We could do this from scratch, or we could observe that A has a right inverse if and only if
AT has a left inverse. Indeed, if X is a right inverse of A then AX = Im implies XTAT = Im,

46Indeed, if C(A) contains every basis vector e1, . . . , en then since C(A) is a subspace, it contains every linear
combination of the basis vectors, i.e., it contains every vector in Rm.
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so that XT is a left inverse of AT . Conversely, if Y is a left inverse of AT then Y AT = In
implies AY T = Im, so that Y T is a right inverse of A. Hence

A has a left inverse ⇐⇒ AT has a right inverse

⇐⇒ C(AT ) = Rn

⇐⇒ R(A) = Rn

⇐⇒ dimR(A) = n

⇐⇒ dimN (A) = 0 Rank-Nullity

⇐⇒ N (A) = {0}
⇐⇒ Ax = 0 implies x = 0

⇐⇒ the columns of A are independent.

6.3 Existence of Two-Sided Inverses.

Now we will use the Fundamental Theorem, which says that dimR(A) = dim C(A). First we
observe that

A has a two-sided inverse ⇐⇒ A has a right inverse and a left inverse.

Indeed, any two sided inverse is by definition a right inverse and a left inverse. Conversely,
suppose that A has a right inverse AB = Im and a left inverse CA = In. Then (as we have
seen before) we must have

B = InB = (CA)B = C(AB) = CIm = C,

so that A−1 = B = C is the unique two-sided inverse of A. Finally, let r be the rank of A so
that r = dimR(A) = dim C(A) and observe that47

A has a two-sided inverse ⇐⇒ A has a right inverse and a left inverse

⇐⇒ dim C(A) = m and dimR(A) = n

⇐⇒ r = m and r = n

⇐⇒ m = n = r.

In particular, A must be square.

These ideas lead to some subtle properties of square matrices. Apparently the columns know
what the rows are doing, and vice versa.

47There are many more equivalent conditions for invertibility. Wolfram MathWorld lists twenty three: https:
//mathworld.wolfram.com/InvertibleMatrixTheorem.html. Twenty of these follow easily from the results in
this section. The remaining three refer to determinants, eigenvalues and singular values, which we haven’t
discussed yet.
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6.4 Proof that AB = I ⇐⇒ BA = I for Square Matrices.

Let A and B be square matrices with r = rank(A). Then

AB = I =⇒ A has a right inverse

=⇒ r = the number of columns of A

=⇒ r = the number of rows of A

=⇒ A has a left inverse, say CA = I.

But then from the above computation we must have B = C, so BA = I. Switching the roles
of A and B shows that BA = I implies AB = I.

Here is an interesting application.

6.5 For Square Matrices, Orthonormal Columns ⇐⇒ Orthonormal Rows.

Let A be a square matrix. Then we have

A has orthonormal columns ⇐⇒ ATA = I

⇐⇒ AAT = I

⇐⇒ A has orthonormal rows.

I think this theorem is a small miracle.

Now we know when inverse matrices exist. In the next section we will describe methods to
compute inverse matrices.

7 Linear Systems

I assume you have some familiarity with the solution of linear systems, which is the main topic
of Linear Algebra I. In this section we will go deeper into the topic.

Recall that a system of m linear equations in n unknowns has the form
a11x1 + · · · + a1nxn = b1,

...
...

...
...

am1x1 + · · · + amnxn = bm,

which can be expressed as a single matrix equation:a11 · · · a1n

...
...

am1 · · · amn


x1

...
xn

 =

 b1
...
bm

 .
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At a higher level of abstraction we just write Ax = b. Given a matrix of coefficients A ∈ Rm×n
and a vector of constants b ∈ Rm, the goal is to solve for the vector of unknowns x ∈ Rn.
Recall from the previous section that

the system Ax = b has a solution for x if and only if b is in the column space C(A).

If this is the case, then we can view the solution of Ax = b as an (n − r)-dimensional affine
subspace of Rn, which is parallel to the nullspace N (A). To be precise, we have the following.

7.1 Shape of the Solution

Let A be an m×n matrix and consider any vector b ∈ C(A) in the column space. By definition
this means we can write b = Ax′ for some vector x′ ∈ Rm, which might not be unique. Then
every solution Ax = b has the form

x = x′ + x0

for some homogeneous solution Ax0 = 0, i.e., for some element of the nullspace x0 ∈ N (A).
In more colloquial terms:

(general solution) = (one particular solution) + (general homogeneous solution).

Proof. Fix a particular solution Ax′ = b. Then for any x0 ∈ N (A) we have

A(x′ + x0) = Ax′ +Ax0 = Ax′ + 0 = Ax′ = b,

so that x = x′ + x0 is also a solution. Conversely, let x be any solution Ax = b. Then

b = b

Ax = Ax′

Ax−Ax′ = 0

A(x− x′) = 0,

so that x − x′ is an element of the nullspace, say x − x′ = x0 ∈ N (A). Hence every solution
has the form x = x′ + x0 for some x0. �

Here is a picture where the nullspace is a 2-dimensional plane living in Rn, so the general
solution is also a 2-dimensional plane:
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7.2 Uniqueness of the Solution

Suppose that b ∈ C(A), so the system Ax = b has a solution. In the previous section we saw
that this solution has the same shape as the nullspace. Hence the solution is unique if and
only if the nullspace is a single point. If A has shape48 m × n and rank r, recall from the
Rank-Nullity theorem that dimN (A) = n− dimR(A) = n− r. Hence

the solution to Ax = b is unique ⇐⇒ N (A) = {0},
⇐⇒ dimN(A) = 0

⇐⇒ r = n

⇐⇒ A has independent rows

⇐⇒ A has a left inverse.

Indeed, suppose that CA = I and Ax = b. Then we must have

Ax = b

CAx = Cb

Ix = Cb

x = Cb,

so that Cb is the unique solution.

48Here I am using the word “shape” for matrices and for subspaces. Don’t take it too literally in either case.
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7.3 How to Compute the Solution

Linear systems are solved using row reduction, also called Gaussian elimination. Gauss de-
veloped this method together with the method of least squares when he was 24, in order to
determine the orbit of the dwarf planet Ceres. A similar method for solving linear systems
was used in China since at least the 5th century AD.49

We will perform row reduction using elimination matrices, which were defined in the pre-
vious section. The goal is to put the system in a standardized simple form. Given a general
matrix A, we first multiply on the left by lower triangular elimination matrices Lij(λ) (i.e.,
with i > j) until we obtain a matrix in “staircase form”:

Lk · · ·L2L1A =


∗ · · · · ·

∗ · · ·
∗ ·

 .

Here the blank entries are zero. The entries labeled ∗ are nonzero; these are called the pivots.
And the entries marked · are arbitrary. Next we multiply by dilation matrices Di(λ) to turn
the pivot entries into 1s:

D` · · ·D2D1Lk · · ·L2L1A =


1 · · · · ·

1 · · ·
1 ·

 .

Finally, we multiply by upper triangular elimination matrices Lij(λ) (i.e., with i < j) to
eliminate the entries above the pivots:

Um · · ·U2U1D` · · ·D2D1Lk · · ·L2L1A =


1 · 0 · 0 ·

1 · 0 ·
1 ·

 .

Finally, this is called the reduced row echelon form (or RREF) of A. It has the virtue of being
unique, i.e., independent of the particular order of row operations.50

We can summarize this process as follows. Multiply the elementary matrices together to obtain

L := Lk · · ·L2L1, D := D` · · ·D2D1 and U := Um · · ·U2U1.

The names indicate that L is lower trianglular (i.e., has zeros above the diagonal), D is
diagonal (i.e., has zeros away from the diagonal) and U is upper triangular (i.e., has zeros

49The Chinese method was concerned with integer solutions, and is the precursor of the Chinese Remainder
Theorem in abstract algebra.

50We will not prove this uniqueness because it is a bit tricky, and we will never need it.
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below the diagonal). Furthermore, let’s define E = UDL, which is invertible because it is a
product of invertible matrices. Let R denote the RREF of A, so that

EA = R.

Since E is invertible, it follows from the section on the Fundamental Theorem that R has the
same row space and nullspace as A:

R(R) = R(A) and N (R) = N (A).

In other words, the homogeneous system equation Ax = 0 is equivalent to Rx = 0, and the
solution of this second system is particularly easy to read off. To solve the non-homogeneous
system Ax = b we simply multiply both sides on the left by E to obtain

Ax = b

EAx = Eb

Rx = Eb,

and the solution is again easy to read off.

Example. Solve the linear system
x + 3y + 8z = 2,
x + 2y + 6z = 1,
0 + y + 2z = 1,

which can be expressed in matrix notation as1 3 8
1 2 6
0 1 2

xy
z

 =

2
1
1

 ,

Ax = b.

First we perform down elimination on A: 1
−1 1

1

1 3 8
1 2 6
0 1 2

 =

1 3 8
0 −1 −2
0 1 2


1

1
+1 1

1 3 8
0 −1 −2
0 1 2

 =

1 3 8
0 −1 −2
0 0 0



Next we scale the pivots:1
−1

1

1 3 8
0 −1 −2
0 0 0

 =

1 3 8
0 1 2
0 0 0

 .
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Then we perform up elimination:511 −3
1

1

1 3 8
0 1 2
0 0 0

 =

1 0 2
0 1 2
0 0 0

 .

The single matrix that performs the elimination is

E = UDL

=

1 −3
1

1

1
−1

1

1
1

+1 1

 1
−1 1

1


=

1 −3
1

1

1
−1

1

 1
−1 1
−1 1 1


=

−2 3 0
1 −1 0
−1 1 1

 .

Check:

EA = R,−2 3 0
1 −1 0
−1 1 1

1 3 8
1 2 6
0 1 2

 =

1 0 2
0 1 2
0 0 0

 .

To solve the homogeneous system Ax = 0 we multiply both sides by E:

Ax = 0

EAx = E0

Rx = 01 0 2
0 1 2
0 0 0

xy
z

 =

0
0
0

 .

This is equivalent to the linear system
x + 0 + 2z = 0,
0 + y + 2z = 0,
0 + 0 + 0 = 0.

Note that the third equation is redundant, which shows that our original system of three
equations really only contains two equations. The solution, which is also called the nullspace

51In class I circled pivots and drew arrows, which is extremely difficult to do in LATEX.
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of A, is a line: xy
z

 =

−2z
−2z
z

 = z

−2
−2
1

 .

To solve the non-homogeneous system Ax = b we again multiply both sides by E:

Ax = b

EAx = Eb

Rx = Eb1 0 2
0 1 2
0 0 0

xy
z

 =

−2 3 0
1 −1 0
−1 1 1

2
1
1


1 0 2

0 1 2
0 0 0

xy
z

 =

−1
1
0

 .

This is equivalent to the linear system
x + 0 + 2z = −1,
0 + y + 2z = 1,
0 + 0 + 0 = 0,

whose solution is a line parallel to the null space:xy
z

 =

−1− 2z
1− 2z
z

 =

−1
1
0

+ z

−2
−2
1

 .

In the language of 5.1, x0 = z(−2,−2, 1) is the general homogeneous solution and x′ =
(−1, 1, 0) is one particular solution. Note that there are infinitely many equivalent ways to
describe this solution. For example, we can also writexy

z

 =

 1
3
−1

+ t

2
2
1

 .

On the other hand, the following system has no solution because (1, 0, 0) is not in the column
space of A: 1 3 8

1 2 6
0 1 2

xy
z

 =

1
0
0

 .

If we try to solve the system then we obtain−2 3 0
1 −1 0
−1 1 1

1 3 8
1 2 6
0 1 2

xy
z

 =

−2 3 0
1 −1 0
−1 1 1

1
0
0


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1 0 2
0 1 2
0 0 0

xy
z

 =

−2
1
−1

 ,

which is equivalent to the system
x + 0y + 2z = −2,
0x + y + 2z = 1,
0x + 0y + 0z = −1.

This system has no solution because the third equation 0x+ 0y + 0z = −1 has no solution.

7.4 How to Compute the Inverse of a Square Matrix

We have seen a method for solving linear systems. Now we apply this method to compute the
inverse of a square matrix. Let A be an invertible n× n matrix, and let E be the product of
elementary matrices that puts A in reduced row echelon form: EA = R. Since A is invertible it
has independent rows, and, since R(A) = R(R), this implies that R has independent rows. In
particular, R has no zero rows, which finally implies that R is the identity matrix. Summary:

The RREF of an invertible matrix A is the identity matrix I.

This idea gives an algorithm to compute the inverse. Begin with the augmented matrix(
A I

)
.

Then apply elementary matrices on the left to put A in RREF:(
A I

)
 
(
E1A E1I

)
 
(
E2E1A E2E1I

)
...

 
(
Ek · · ·E2E1A Ek · · ·E2E1I

)
=
(
EA E

)
=
(
R E

)
.

If A is invertible, so that R = I and E = A−1 then the process gives(
A I

) RREF
 

(
I A−1

)
.

We don’t even need to keep track of the elementary matrices.

Example. (
A I

)
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=

 1 1 1
1 2 0
1 0 0

1 0 0
0 1 0
0 0 1


 

 1 1 1
0 1 −1
1 0 0

1 0 0
−1 1 0
0 0 1


 

 1 1 1
0 1 −1
0 −1 −1

1 0 0
−1 1 0
−1 0 1


 

 1 1 1
0 1 −1
0 0 −2

1 0 0
−1 1 0
−2 1 1


 

 1 1 1
0 1 −1
0 0 1

1 0 0
−1 1 0
1 −1/2 −1/2


 

 1 1 1
0 1 0
0 0 1

1 0 0
0 1/2 −1/2
1 −1/2 −1/2


 

 1 1 0
0 1 0
0 0 1

0 1/2 1/2
0 1/2 −1/2
1 −1/2 −1/2


 

 1 0 0
0 1 0
0 0 1

0 0 1
0 1/2 −1/2
1 −1/2 −1/2


=
(
I A−1

)
.

Check: 1 1 1
1 2 0
1 0 0

0 0 1
0 1/2 −1/2
1 −1/2 −1/2

 =

1 0 0
0 1 0
0 0 1

 .

Recall that for square matrices A and B we have AB = I if and only if BA = I so we only
need to check one.

What happens if we try to invert a non-invertible matrix? Consider the matrix A from Section
5.3. We perform elimination until we reach the RREF: 1 3 8

1 2 6
0 1 2

1 0 0
0 1 0
0 0 1


=
(
A I

)
 
(
EA E

)
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=
(
R E

)
=

 1 0 2
0 1 2
0 0 0

−2 3 0
1 −1 0
−1 1 1


And then we’re stuck.

8 Least Squares Approximation

8.1 The Four Fundamental Subspaces

Let me summarize our results so far. To each m × n matrix A we associate four subspaces;
two of Rm and two of Rn:

R(A),N (A) ⊆ Rn and C(A),N (AT ) ⊆ Rm.

The subspaces R(A) and N (A) are orthogonal complements in Rn, while C(A) and N (AT )
are orthogonal complements in Rm.52 It follows from the general theorem on dimensions of
orthogonal complements53 that

dimR(A) + dimN (A) = n and dim C(A) + dimN(AT ) = m.

These results are called the Rank-Nullity Theorem. The Fundamental Theorem says that the
rank of A is well-defined:

r = rank(A) := dimR(A) = dim C(A).

Hence we also have

dimN (A) = n− r and dimN (AT ) = m− r.

Here is “the big picture” in the style of Gilbert Strang:54

52Remind yourself right now why this is true.
53See the homework.
54A similar picture appears on the cover of his 4th edition of Introduction to Linear Algebra.
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The matrix A maps the space Rn on the left to the space Rm on the right. Actually, A maps
all of Rn onto the blue column space C(A). The red nullspace N (A) gets squashed onto the
origin 0 ∈ Rm. Any vector x ∈ Rn can be expressed uniquely as x = y + z with y ∈ R(A)
and z ∈ N (A). If Ay = b then we also have Ax = b because

Ax = A(y + z) = Ay +Az = b + 0 = b.

This picture is rather impressionistic but it does a good job of showing a lot of information.
One thing it doesn’t show is the set of all solutions to the equation Ax = b, which is an affine
subspace of Rn that is parallel to N(A) and passes through x and y. I guess that would make
the picture unreadable.

Next we work through an explicit example. Consider the rank 2 matrix

A =

1 3 8
1 2 6
0 1 2

 .

In Section 5.3 we already computed the nullspace:

N (A) = the line in R3 spanned by (2, 2,−1).

The rowspace is the orthogonal complement of the nullspace, which is a plane:

R(A) = N (A)⊥ = the plane in R3 defined by 2x+ 2y − z = 0.
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Since no two rows of A are parallel, any two rows will form a basis for R(A). More systemat-
ically, we can look at the RREF:

EA = R,−2 3 0
1 −1 0
−1 1 1

1 3 8
1 2 6
0 1 2

 =

1 0 2
0 1 2
0 0 0

 .

Since the product of elementary matrices E is invertible, we know that R(A) = R(EA) =
R(R), and it is very easy to read a basis from R:

R(A) = R(R) = Span{(1, 0, 2), (0, 1, 2)}.

To compute the column space C(A) and left nullspace N (AT ) we can apply the same methods
to the transposed matrix AT . That is, we should compute RREF (AT ):551 1 0

3 2 1
8 6 2

 RREF
 

1 0 1
0 1 −1
0 0 0

 .

From this we see that

C(A) = R(AT ) = Span{(1, 0, 1), (0, 1,−1)}.

Finally, the left nullspace is the solution to the homogeneous system ATx = 0, which from
the RREF of AT is equivalent to

x + 0 + +z = 0,
0 + y + −z = 0,
0 + 0 + 0 = 0.

The solution is the line spanned by (1,−1,−1):xy
z

 =

−zz
z

 = z

−1
1
1

 = Span{(1,−1,−1)}.

As expected, this line is the orthogonal complement of the column space:

Span{(1,−1,−1)}⊥ = (plane x− y − z = 0) = Span{(1, 0, 1), (0, 1,−1)} = C(A).

Here is a picture:

55This is equivalent to applying elementary matrices on the right of A to compute reduced column echelon
form (RCEF), but nobody uses this terminology.
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Note that the line N (A) gets squashed onto the origin, while all of R3 gets squashed onto the
plane C(A). Since this matrix is square, we could have drawn all four subspaces in the same
copy of R3, but that would just be a mess.

In summary:

The four fundamental subspaces can be read off from RREF(A) and RREF(AT ).

8.2 The Matrices ATA and AAT

We have seen that a non-square matrix A cannot have an inverse. To fix this we sometimes
consider the square matrices ATA and AAT . To be precise, suppose that A has shape m× n,
so that ATA is square of shape n × n and AAT is square of shape m ×m. We also observe
that these matrices are symmetric because

(ATA)T = AT (AT )T = ATA

and
(AAT )T = (AT )TAT = AAT .

The matrices ATA and AAT show up surprisingly often in applied mathematics. We will see
our first glimpse of this in the next section when we discuss least squares approximation. To
prepare for this we develop some basic properties. The key observation is that A and ATA
have the same nullspace:

N (ATA) = N (A).

This would be easy to prove if AT had a left inverse. Indeed, if E is a matrix with a left
inverse E′E = I then we recall from Section 3 that

R(EA) = R(A),
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and hence
N (EA) = R(EA)⊥ = R(A)⊥ = N (A).

But the matrix AT might not have a left inverse, so we cannot use this fact. Instead we use
a clever trick:56

For any x ∈ Rn we have xTATAx = (Ax)T (Ax) = (Ax) • (Ax) = ‖Ax‖2.

Proof that N (ATA) = N (A). First we note that N (A) ⊆ N (ATA) because

Ax = 0 =⇒ (ATA)x = AT (Ax) = AT0 = 0.

On the other hand, suppose that (ATA)x = 0. Then from the trick we have

‖Ax‖2 = xTATAx = xT (ATAx) = xT0 = 0,

and hence ‖Ax‖ = 0. But recall that the standard norm ‖ − ‖ satisfies ‖v‖ = 0 if and only if
v = 0. Hence we must have Ax = 0 as desired. �

We obtain a similar identity by replacing A with AT . To be precise, let B = AT , so that

N (AAT ) = N (BTB) = N (B) = N (AT ).

And it follows from these identities that

rank(ATA) = rank(A) = rank(AT ) = rank(AAT ).

Indeed, the first and third equations follow by applying dimension to the identities N (ATA) =
N (A) and N (AAT ) = N (AT ), while the middle equation is just the Fundamental Theorem.
This is quite interesting since the four matrices A, AT , ATA and AAT have different shapes.

We combine these results to prove the main result of this section.

Theorem (Invertibility of ATA and AAT ). For any matrix A, the matrices ATA and AAT

are square, hence they might be invertible. I claim that

(ATA)−1 exists ⇐⇒ A has independent columns,

(AAT )−1 exists ⇐⇒ A has independent rows.

Proof. Let A have shape m×n and rank r. To prove the first statement, note that ATA has
shape n× n, hence

(ATA)−1 exists ⇐⇒ rank(ATA) = n

56The idea lurking in the background is that matrices of the form ATA are related to inner products. See
Problem 5 on Homework 3.
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⇐⇒ rank(A) = n previous result

⇐⇒ dim C(A) = n

⇐⇒ A as independent columns.

Similarly, since AAT has shape m×m, we have

(AAT )−1 exists ⇐⇒ rank(AAT ) = m

⇐⇒ rank(A) = m previous result

⇐⇒ dimR(A) = m

⇐⇒ A as independent rows.

�

To end this section we give two theoretical applications.57

Explicit formulas for left and right inverses. For any matrix A we recall from 4.1 that

A has a left inverse ⇐⇒ A has independent columns,

A has a right inverse ⇐⇒ A has independent rows.

Such left and right inverses are not unique, but we can use the previous theorem to give a
formula for specific left and right inverse. If A has independent columns then (ATA)−1 exists
and (ATA)−1AT is a left inverse:

[(ATA)−1AT ]A = (ATA)−1(ATA) = I.

If A has independent rows then (AAT )−1 exists and AT (AAT )−1 is a right inverse:

A[AT (AAT )−1] = (AAT )(AAT )−1 = I.

CMR Factorization. Applied linear algebra is often expressed in terms of matrix factoriza-
tions. Here we will show that any m × n matrix A of rank r can be factored as A = CMR,
where the matrices C, M and R have shapes m× r, r × r and r × n. The matrices C and R
are defined as follows:

• Choose any r independent columns of A and let these be the columns of C.

• Choose any r independent rows of A and let these be the rows of R.

By construction, C has independent columns and R has independent rows, so the matrices
(CTC)−1 and (RRT )−1 exist. In this case we will show that there exists a unique r × r
matrix M satisfying A = CMR. This matrix is invertible and is determined by the formula

M = (CTC)−1(CTART )(RRT )−1.

It is difficult to see that the matrix defined by this formula has the desired properties, so we
will proceed in two steps:

57The section on Least Squares below gives some practical applications.
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(1) There exists an invertible matrix M satisfying A = CMR.

(2) The matrix from part (1) must satisfy the desired formula.

The proof of (1) is tricky and algorithmic.58 Feel free to skip it.

(1): First let T be an invertible product of column transpositions so that the first r columns
of AT are equal to C; let’s say

AT =
(
C F

)
,

for some m×(n−r) matrix F . Next we consider the reduced row echelon form of AT . Let E be
an invertible product of elementary row operations satisfying EAT = RREF(AT ). Since the
first r columns of AT (i.e., the columns of C) are independent, so will be the first r columns
of the RREF, and it follows that

EAT = RREF(AT ) =

(
Ir G

Om−r,r Om−r,n−r

)
,

for some r × (n − r) matrix G. I claim that AT = C
(
I G

)
. Indeed, if we write E−1 =(

X Y
)

where X is m× r and Y is m× (m− r) then we find

(
C F

)
= AT = E−1

(
I G

O O

)
=
(
X Y

)( I G

O O

)
=
(
X YG

)
,

which implies that X = C.59 It follows that

AT = E−1

(
I G

O O

)
=
(
C Y

)( I G

O O

)
=
(
C CG

)
= C

(
I G

)
.

At this point we have
A = C

(
I G

)
T−1 = CR′,

where we have defined R′ :=
(
I G

)
T−1. Our final goal is to prove that R′ = MR for some

invertible M . Since C has independent columns (and hence has a left inverse) we see from
Section 3 that A and R′ have the same row space:

R(A) = R(CR′) = R(R′),

Since this row space is r-dimensional, and since R′ has r rows, it follows that the rows of R′

are a basis for R(A). In particular, each row of R can be expressed as a linear combination
of the rows of R′, which gives a matrix equation R = MR′. Similarly, since the rows of R
are a basis for R(A) we can write R′ = NR for some matrix N . Putting these together gives

58I apologize that I assigned this as homework; I didn’t realize how tricky it is. Gilbert Strang fooled me.
Maybe there is a more direct proof but I couldn’t find it.

59We also have Y G = F , but we don’t care about this.
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R = MNR. Finally, since R has a right inverse this implies MN = I, which implies that M
is invertible.60 �

(2): Once we know that M exists, it is not difficult to prove that satisfies the desired formula.
Indeed, suppose that A = CMR. Then since (CTC)−1 and (RRT )−1 exist we must have

CMR = A

CT (CMR)RT = CTART

(CTC)M(RRT ) = CTART

M = (CTC)−1CTART (RRT )−1.

�

For example, let’s consider our favorite matrix

A =

1 3 8
1 2 6
0 1 2

 .

This matrix has rank 2, so we should choose two independent columns and two independent
rows. Choosing the first two columns and the first two rows gives

A =

1 3
1 2
0 1

(−2 3
1 −1

)(
1 3 8
1 2 6

)
.

Choosing columns 1, 3 and rows 2, 3 gives

A =

1 8
1 6
0 2

(1 −3
0 1/2

)(
1 2 6
0 1 2

)
.

Remark: There is another interesting description of the matrix M . In the paper LU and CR
Elimination by Strang and Moler,61 they prove that M−1 is the matrix obtained from A by
intersecting the columns of C with the rows of R. We observe that this is true for the two
examples just given:(

−2 3
1 −1

)−1

=

(
1 3
1 2

)
and

(
1 −3
0 1/2

)−1

=

(
1 6
0 2

)
.

Pretty cool.

60Recall that MN = I implies NM = I for square matrices.
61I think there’s a better proof in Hamm and Huang, https://arxiv.org/abs/1907.12668. I need to look

into it.
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8.3 Least Squares Approximation

We have seen that a linear system Ax = b has a solution for x if and only if b is in the column
space of A. In fact, this statement is just the definition of the column space:

C(A) = {all linear combinations of the columns of A},
= {all vectors of the form Ax for some x}.

What happens when b is not in the column space?

The Problem of Least Squares. Given an m × n matrix A and an m × 1 column vector
b, find an n× 1 column vector x such that the distance ‖Ax− b‖ is minimized.

Obviously a true solution Ax = b makes ‖Ax− b‖ = 0. When b 6∈ C(A), the minimum value
of ‖Ax− b‖ will be strictly positive. The problem is called least squares approximation since
the length ‖Ax − b‖ is minimized if and only if the squared length ‖Ax − b‖2 is minimized,
and the squared length is a sum of squares:62

‖Ax− b‖2 =

∥∥∥∥∥∥∥
 aT1 x− b1

...

aTmx− bm


∥∥∥∥∥∥∥

2

= (aT1 x− b1)2 + · · ·+ (aTmx− bm)2,

where aTi is the ith row of A and b = (b1, . . . , bm). There are two ways to solve this problem:

(1) Calculus

(2) Linear Algebra

The calculus solution uses the typical method of Lagrange multipliers. This solution is more
common in textbooks because every student knows calculus, whereas not every student knows
linear algebra. However, the linear algebra solution is conceptually much simpler and is easier
to generalize.

The key idea is to view ‖Ax − b‖ as the distance between two points in Rn. The expression
Ax represents a general point of the column space, while b is a point that is not in the column
space. Here is a picture:

62There are certainly other ways to define a “best approximate solution”. For example, one could try to
minimize the sum of absolute values:

|aT1 x− b1|+ · · ·+ |aTmx− bm|.

This is a reasonable idea, but the mathematics is much more difficult. We will see some other methods of
approximation after we discuss the singular value decomposition.

71



For geometric reasons63 we see that the length of the blue vector Ax− b is minimized when
it is perpendicular to the column space. Since the orthogonal complement of C(A) is N (AT ),
this happens precisely when

AT (Ax− b) = 0. (∗)

Since you might not remember the details, I will repeat them one more time.64 Let ai be the
ith column of A, so that aTi is the ith row of AT . To say that Ax− b is perpendicular to the
column space means that Ax− b is perpendicular to each column. That is, we must have

aTi (Ax− b) = ai • (Ax− b) = 0 for all i.

But this is equivalent to saying that AT (Ax− b) = 0 because

AT (Ax− b) =

− aT1 −
...

− aTm −

 (Ax− b) =

aT1 (Ax− b)
...

aTm(Ax− b)

 ,

which is the zero vector if and only if each component aTi (Ax− b) is zero.

We may proceed to solve equation (∗) which is called the normal equation:65

AT (Ax− b) = 0

ATAx−ATb = 0

ATAx = ATb.

63Ultimately, this follows from the triangle inequality.
64David Hilbert said that every idea must be repeated five times before the students will remember it. See

the very interesting biography of Hilbert by Constance Reid.
65The word normal here indicates that Ax− b is perpendicular to the columns of A.
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Whereas the equation Ax = b did not have a solution, it is worth noting that the normal
equation ATAx = ATb always has a solution. To see this, we only need to check that ATb
is in the column space C(ATA). In the previous section on the matrices ATA and AAT we
proved the key fact that N (ATA) = N (A), which implies that

R(ATA) = N (ATA)⊥ = N (A)⊥ = R(A).

But then we must have

C(ATA) = R((ATA)T ) = R(ATA) = R(A) = C(AT ).

This implies that any vector in the column space of AT , for example ATb, is in the column
space of ATA, so can be expressed in the form ATAx.

In general, suppose that A has shape m × n and rank r. Then the solution of the normal
equation ATAx = ATb is an affine subspace of Rn that is parallel to the nullspace N (ATA) =
N (A), and so has dimension n − r. This solution will be unique if and only if r = n, i.e., if
and only if A has independent columns. In this case we know from the previous section that
(ATA)−1 exists, and hence the unique least squares solution has a symbolic form:

ATAx = ATb

x = (ATA)−1ATb.

Here is a summary:

• If b ∈ C(A) then the system Ax = b has an exact solution.

• If b 6∈ C(A) then the system Ax = b does not have an exact solution.

• The length ‖Ax− b‖ is minimized when Ax− b is perpendicular to C(A).

• This happens if and only if AT (Ax− b) = 0, or ATAx = ATb.

• The normal equation ATAx = ATb always has a solution.

• If A has independent columns then ATA is invertible, so the solution is unique:

x = (ATA)−1ATb.

We often use a different notation such as x̂ to denote the least squares solution ATAx̂ = ATb,
to distinguish it from an exact solution Ax = b. However, if there exists an exact solution
Ax = b, then we note that x̂ = x since multiplying both sides on the left gives

Ax = b

ATAx = ATb.
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8.4 Examples of Least Squares

The classical application of least squares is to curve fitting. Indeed, this is the purpose for
which Gauss invented the method.66

Curve Fitting. Suppose that we have a collection of n data points in the x, y-plane:

(x1, y1), (x2, y2), . . . , (xn, yn).

We would like to find the line of the form y = a+ bx that is the “best fit” for these points:

There are different ways one might interpret the word “best”. The most obvious definition
might be to minimize the orthogonal distances67 from the points to the line:

This idea is called total least squares, or orthogonal least squares. It is a hard non-linear
problem, which we will solve after discussing the singular value decomposition. In statistics
this problem is called principal component analysis. It is much easier to minimize the sum of
squares of the vertical distances:

66He used it to fit the elliptical orbit of the dwarf Planet Ceres to a collection of observed data points.
67Typically we want to minimize the sum of squared distances.
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This problem is called ordinary least squares, or just least squares regression.

Here’s how we solve it. We start by being optimistic and assuming that all of the data points
fit perfectly on the line, which leads to a system of n linear equations in the two unknowns a
and b: 

a + bx1 = y1,
a + bx2 = y2,

...
a + bxn = yn,

It is an unfortunate feature of curve fitting problems that the roles of variables and constants
get switched around, so instead of a system looking like Ax = b we get a system looking like
Xa = y. In our case we have

Xa = y1 x1

...
...

1 xn

(a
b

)
=

y1

...
yn

 .

However, this system almost certainly does not have a solution, since any three or more points
almost certainly do not fit perfectly on a straight line. Hence we will apply the method of
least squares. If the data points do not all have the same x value, then the two columns of X
are are independent and we get a unique solution:

Xa = y

XTXa = XTy

a = (XTX)−1Xy.

Recall that this “least squares solution” minimizes the length ‖Xa−y‖, hence it also minimizes
the squared length ‖Xa− y‖2. In terms of the data points, this becomes

‖Xa− y‖2 =

∥∥∥∥∥∥∥
 a+ bxi − yi

...
a+ bxn − yn


∥∥∥∥∥∥∥

2

=
∑

(a+ bxi − yi)2,

which is, indeed, the sum of the squared vertical errors:
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To be explicit, the normal equation has the following form, which you might recognize:

XTXa = XTy(
1 · · · 1
x1 · · · xn

)1 x1

...
...

1 xn

(a
b

)
=

(
1 · · · 1
x1 · · · xn

)y1

...
yn


(

n
∑
xi∑

xi
∑
x2
i

)(
a
b

)
=

( ∑
yi∑
xiyi

)
,

which is equivalent to the linear system{
an + b

∑
xi =

∑
yi,

a
∑
xi + b

∑
x2
i =

∑
xiyi.

This is the form usually presented in introductory statistics courses, when the students don’t
know linear algebra.

However, the linear algebra formulation is much more powerful because it generalizes easily.
For example, we can fit our data to polynomial curve of degree d:

y = a0 + a1x+ · · ·+ · · ·+ adx
d.

Assuming optimistically that all n data points lie on this curve gives a system of n linear
equations in the d+ 1 unknown coefficients a0, . . . , ad:

Xa = y1 x1 x2
1 · · · xd1

...
...

...
...

...

1 xn x2
n · · · xdn


a0

...
ad

 =

y1

...
yn

 .

76



Then the least squares solution (which minimizes the sum of squares of the vertical errors) is
given by the normal equation XTXa = XTy. This equation is much harder to obtain using
calculus, and the explicit formulas for the entries of the matrix XTX are not so nice.

Distance Between Subspaces. Consider the following parametrized lines in R3:

L1 : (1, 0, 0) + s(1, 2, 1),
L2 : (1, 1, 1) + t(1, 1, 1).

These lines (probably) do not intersect. We would like to find points x1 ∈ L1 and x2 ∈ L2

such that the distance ‖x1 − x2‖ is minimized:

We could solve this problem from scratch, but instead we will apply the general theory of least
squares. First we assume, optimistically, that the lines intersect, so that

x1 = x21
0
0

+ s

1
2
1

 =

1
1
1

+ t

1
1
1


s

1
2
1

− t
1

1
1

 =

1
1
1

−
1

0
0


1 −1

2 −1
1 −1

(s
t

)
=

0
1
1

 .

Whether this system has an exact solution or not,68 we can proceed by multiplying on the left
by the transpose of the coefficient matrix:1 −1

2 −1
1 −1

(s
t

)
=

0
1
1


68If the system did, unexpectedly, have an exact solution, we would see this at the end.
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(
1 2 1
−1 −1 −1

)1 −1
2 −1
1 −1

(s
t

)
=

(
1 2 1
−1 −1 −1

)0
1
1


(

6 −4
−4 3

)(
s
t

)
=

(
3
−2

)
(
s
t

)
=

(
6 −4
−4 3

)−1(
3
−2

)
(
s
t

)
=

1

2

(
3 4
4 6

)(
3
−2

)
=

1

2

(
1
0

)
=

(
1/2
0

)
.

The least squares solution (s, t) = (1/2, 0) corresponds to the points

x1 = (1, 0, 0) +
1

2
(1, 2, 1) = (3/2, 1, 1/2) and x2 = (1, 1, 1) + 0(1, 1, 1) = (1, 1, 1).

But what exactly have we minimized here? Recall that the least squares solution of Ax = b
minimizes the distance ‖Ax− b‖. In our case we have minimized the distance∥∥∥∥∥∥

1 −1
2 −1
1 −1

(s
t

)
−

0
1
1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
1

0
0

+ s

1
2
1

−
1

1
1

− t
1

1
1

∥∥∥∥∥∥ = ‖x1 − x2‖,

which is exactly what we wanted to do.

More generally, we can use this method to find the distance between any two affine subspaces
living in Rn. Recall that an affine subspace of Rn has the form

p + U = {the set of points p + u for all u ∈ U},

where p ∈ Rn is a point and U ⊆ Rn is a linear subspace (i.e., passing through 0). For the
current discussion, it is convenient to represent a d-dimensional affine subspace as p + C(A)
for some n× d matrix A with independent columns. We can also express this as

p + C(A) = {the set of points p +Ax for all x ∈ Rd}.

Now let A and B be matrices of shapes n× d and n× e, each with independent columns, and
consider any two points a,b ∈ Rn. We want to find the distance between the following two
subspaces:

a + C(A) = {the set of a +Ax for x ∈ Rd},
b + C(B) = {the set of b +By for y ∈ Re}.
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We begin optimistically, by assuming that a + C(A) and b + C(B) share a common point:

a +Ax = b +By

Ax−By = b− a(
A −B

)( x

y

)
= b− a

Cz = c,

where the matrices C, z and c have shapes n × (d + e), (d + e) × 1 and n × 1, respectively.
Next we multiply on the left by CT to obtain

Cz = c

CTCz = CT c(
AT

−BT

)(
A −B

)
z =

(
AT

−BT

)
c(

ATA −ATB

−BTA BTB

)
z =

(
AT c

−BT c

)
.

The matrix C need not have independent columns. However, if the column spaces C(A)
and C(B) have trivial intersection (i.e., if C(A) ∩ C(B) = {0}), then C will have independent
columns.69 In this case the inverse (CTC)−1 exists and we have a unique least squares solution:(

x

y

)
=

(
ATA −ATB

−BTA BTB

)−1(
AT (b− a)

−BT (b− a)

)
.

To check that this makes sense, we consider the case when

a =

1
0
0

 , A =

1
2
1

 , b =

1
1
1

 , B =

1
1
1

 .

This is just our previous example with L1 = a + C(A) and L2 = b + C(B). Then we have(
x

y

)
=

(
ATA −ATB

−BTA BTB

)−1(
AT (b− a)

−BT (b− a)

)

=



(
1 2 1

)1
2
1

 −
(
1 2 1

)1
1
1


−
(
1 1 1

)1
2
1

 (
1 1 1

)1
1
1





−1

(
1 2 1

)0
1
1


−
(
1 1 1

)0
1
1




69This is a bit tricky so we omit the proof.
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=

(
6 −4

−4 3

)−1(
3

−2

)
,

=

(
1/2

0

)
,

which is exactly what we had before.

8.5 Projection Matrices

When solving the least squares problem we implicitly solved the problem of projecting onto
a (linear) subspace. Given a linear subspace U ⊆ Rn and a point x ∈ Rn we want to find
the point y ∈ U that is closest to x. We will denote the point by y = P (x) and call it the
projection of x onto U . Here is a picture:

It is not immediately obvious, but we will see that P : Rn → Rn is a linear function, hence
it corresponds to an n × n matrix. The easiest way to find this matrix is to represent U as
a column space. Suppose that dimU = d and let a1, . . . ,ad ∈ U be any basis. Then we can
form the n× d matrix

A =

 | |
a1 · · · ad
| |

 so that U = C(A).

From geometric considerations (the triangle inequality) we see that the distance ‖P (x)−x‖ is
minimized when the vector P (x)−x is perpendicular to U . And since U⊥ = C(A)⊥ = N (AT ),
we see that70

P (x)− x ∈ U⊥ ⇐⇒ AT (P (x)− x) = 0.

70We already saw this argument in 6.3 so I went faster this time.
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Furthermore, since P (x) ∈ U and since U = C(A) we can write P (x) = Ax̂ for some vector
x̂ ∈ Rd.71 Thus we have the following two facts about the projection:

• AT (P (x)− x) = 0,

• P (x) = Ax̂.

Combining these facts gives

AT (Ax̂− x) = 0

ATAx̂−ATx = 0

ATAx̂ = ATx

x̂ = (ATA)−1ATx A has independent columns

Ax̂ = A(ATA)−1ATx

P (x) = A(ATA)−1ATx.

Finally, since this equality holds for any vector x ∈ Rn we conclude that P is linear and is
represented by the n× n matrix A(ATA)−1AT . We have thus proved the following theorem.

Theorem (Projection Onto a Subspace). Let A be an n × d matrix with independent
columns, so the column space U = C(A) is a d-dimensional subspace of Rn. The function
P : Rn → Rn that projects onto U is linear and is represented by the following matrix:

P = A(ATA)−1AT .

If A has orthonormal columns then the formula simplifies because ATA = I:

P = AAT .

A given subspace is represented by many matrices. For example, consider the 3× 1 matrices

A =

 1
−1
1

 and B =

−2
2
−2

 .

The column spaces C(A) and C(B) are the same line in R3. Thus we expect that the matrices
A(ATA)−1AT and B(BTB)−1BT are equal. Indeed, we have

A(ATA)−1AT =

 1
−1
1

(1 −1 1
) 1
−1
1

−1 (
1 −1 1

)

=

 1
−1
1

 (3)−1 (1 −1 1
)

71In the least squares problem the vector x̂ is the main event. Here it is only a temporary convenience.
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=
1

3

 1
−1
1

(1 −1 1
)

=
1

3

 1 −1 1
−1 1 −1
1 −1 1


and

A(ATA)−1AT =

−2
2
−2

(−2 2 −2
)−2

2
−2

−1 (
−2 2 −2

)

=

−2
2
−2

 (12)−1 (−2 2 −2
)

=
1

12

−2
2
−2

(−2 2 −2
)

=
1

12

 4 −4 4
−4 4 −4
4 −4 4


=

1

3

 1 −1 1
−1 1 −1
1 −1 1

 .

More generally, if A is n× d then for any invertible d× d matrix C we have

C(AC) = C(A).

If A has independent columns then AC also has independent columns, and we observe that

(AC)((AC)T (AC))−1(AC)T = AC(CT (ATA)C)−1CTAT

= ACC−1(ATA)−1(CT )−1CTAT

= AI(ATA)−1IAT

= A(ATA)−1AT .

So far we have discussed explicit properties of projection in Euclidean space. Next we discuss
some abstract properties of projection that apply also to operators on infinite dimensional
spaces.

Definition of Abstract Projection. Let V be a real inner product space and consider a
linear function P : V → V . If P satisfies certain mild conditions,72 then there exists a unique
linear function P T : V → V , called the adjoint of P , satisfying

〈Pu,v〉 = 〈u, P Tv〉 for all u,v ∈ V .

72For example, this holds when V is complete and P is continuous.
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We say that P is an abstract projection operator when

P 2 = P and P T = P.

For example, if V is Euclidean space then the adjoint P T is just the transpose matrix. In this
case we observe that the matrix P = A(ATA)−1AT is an abstract projection because

P 2 = [A(ATA)−1AT ][A(ATA)−1AT ]

= A((((
(((((ATA)−1(ATA)(ATA)−1AT

= AI(ATA)−1AT

= P

and

P T = [A(ATA)−1AT ]T

= (AT )T [(ATA)−1]T (A)T

= A[(ATA)T ]−1AT

= A[AT (AT )T ]−1AT

= A(ATA)−1AT

= P.

Later we will see that any abstract projection matrix satisfying P 2 = P and P T = P is a
“real” (i.e., geometric) projection, hence it can be represented as P = A(ATA)−1AT . To
summarize: For any square matrix P we have

P 2 = P and P T = P ⇐⇒ P = A(ATA)−1AT for some A.

I think that’s pretty surprising. In fact, there is a more general version:73 For any square
matrix P we have

P 2 = P ⇐⇒ P = A(BTA)−1BT for some A and B.

If P has shape n × n and rank d then the matrices A and B both have shape n × d and
independent columns. Geometrically, this is a “non-orthogonal projection”. It projects all
points onto the column space of A, but it does this at a strange angle that is perpendicular
to the column space of B.

For example, suppose we want to project onto the line t(1, 1) in R2 in a direction that is
perpendicular to (3, 1). Then we can take

A =

(
1
1

)
and B =

(
3
1

)
73Maybe we’ll prove this later; maybe not. Here are some links:

https://math.stackexchange.com/questions/600745/are-idempotent-matrices-always-diagonalizable

https://math.stackexchange.com/questions/2817221/decomposition-of-idempotent-matrix

83

https://math.stackexchange.com/questions/600745/are-idempotent-matrices-always-diagonalizable
https://math.stackexchange.com/questions/2817221/decomposition-of-idempotent-matrix


to get

P = A(BTA)−1BT =

(
1
1

)((
3 1

)(1
1

))−1 (
3 1

)
=

(
1
1

)
(4)−1 (3 1

)
=

1

4

(
1
1

)(
3 1

)
=

1

4

(
3 1
3 1

)
.

Picture:

Projection Matrices Come in Pairs.74 To end this section, I want to observe that pro-
jection matrices come in pairs. Let P be a projection matrix satisfying

P 2 = P and P T = P.

Then the matrix Q = I − P is also a projection since

Q2 = (I − P )2 = I2 − 2P + P 2 = I − 2P + P = I − P = Q

and
QT = (I − P )T = IT − P T = I − P = Q.

74This topic does not apply very well to infinite dimensional vector spaces, since one of the pair will have
infinite rank.
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Furthermore, we observe that

PQ = QP = P 2 − P = P − P = O.

Thus we have the following situation:

• P and Q are projections,

• P +Q = I,

• PQ = O.

Suppose that P and Q have shape n× n. If P is the projection onto a subspace U ⊆ Rn then
Q is the projection onto the orthogonal complement U⊥ ⊆ Rn and vice versa. We can see this
by looking at Rn “from the side”:

For any point x ∈ Rn we know that the four points 0,x, Px, Qx form a rectangle because

Px +Qx = (P +Q)x = Ix = x

and
(Px) • (Qx) = (Px)T (Qx) = xTP TQx = xTPQx = xTOx = 0.

This pairing sometimes shortens calculations. For example, suppose that we want to find the
3× 3 matrix P that projects onto the plane x− 2y + z = 0 in R3. Then the complementary
matrix Q = I − P projects onto the line generated by (1,−2, 1), which is easier to calculate:

Q =

 1
−2
1

 1
−2
1

(1 −2 1
)−1 (

1 −2 1
)
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=

 1
−2
1

 (6)−1 (1 −2 1
)

=
1

6

 1
−2
1

(1 −2 1
)

=
1

6

 1 −2 1
−2 4 −2
1 −2 1

 .

It follows that

P = I −Q

=
1

6

6 0 0
0 6 0
0 0 6

− 1

6

 1 −2 1
−2 4 −2
1 −2 1


=

1

6

 5 2 −1
2 2 2
−1 2 5

 .

Of course, we could also do this the long way, by first finding a basis for the plane x−2y+z = 0.
Let’s take (1, 0,−1) and (0, 1, 2) and form the matrix

A =

 1 0
0 1
−1 2

 .

Then with a bit of work, one can verify that

A(ATA)−1AT =
1

6

 5 2 −1
2 2 2
−1 2 5

 .

It seems a bit surprising that these two methods give the same answer. To be more precise,
consider any complementary subspaces U and U⊥ in Rn, and choose any matrices A and B
with independent columns, such that U = C(A) and U⊥ = C(B). Then it must be true that

A(ATA)−1AT +B(BTB)−1BT = I,

but this seems mysterious. I’ll end by giving an argument to make it feel more natural.

Suppose that dimU = d so that A has shape n × d and B has shape n × (n − d). Form the
augmented matrix

C =
(
A B

)
,
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which has shape n× n. Since the columns of A are a basis for U and the columns of B are a
basis for U⊥, the columns of C are a basis for the whole space. In particular, C is invertible,
which implies that

C(CTC)−1CT = CC−1(CT )−1CT = I.

On the other hand, since every column of A is perpendicular to every column of B we know
that ATB = O and BTA = O, hence

CTC =

(
AT

BT

)(
A B

)
=

(
ATA ATB

BTA BTB

)
=

(
ATA O

O BTB

)
.

And since A and B each have independent columns, we know that ATA and BTB are invert-
ible, hence

(CTC)−1 =

(
ATA O

O BTB

)−1

=

(
(ATA)−1 O

O (BTB)−1

)
.

Finally, we observe that

C(CTC)−1CT =
(
A B

)( (ATA)−1 O

O (BTB)−1

)(
AT

BT

)

=
(
A(ATA)−1 B(BTB)−1

)( AT

BT

)
= A(ATA)−1AT +B(BTB)−1BT .

9 Linear and Bilinear Forms

9.1 Linear Forms

Let V be a vector space over R (or C). A linear function

ϕ : V → R

is called a linear form. If V is an infinite dimensional space of functions such as L2 then a
linear form is usually called a linear functional.

Linear forms on Rn are particularly simple. Let ϕ : Rn → R be a linear form and for each
basis vector ei define the scalar

bi := ϕ(ei).

Then for any vector x = x1e1 + · · ·+ xnen ∈ Rn we have

ϕ(x) = ϕ(x1e1 + · · ·+ xnen)

= x1ϕ(e1) + · · ·+ xnϕ(en)

= x1b1 + · · ·+ xnbn.
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If we write b = (b1, . . . , bn) then this becomes

ϕ(x) = bTx.

We will denote the function x 7→ bTx by ϕb : Rn → R. Thus we obtain a bijection between
vectors and linear forms:

Rn → linear forms on Rn
b 7→ ϕb.

Indeed, the function ϕb(x) = bTx is linear, and we have just seen that every linear function
ϕ : Rn → R is equal to ϕb for some b ∈ Rn.

More abstractly, let V be an inner product space over R (or a Hermitian space over C). Then
for any vector u ∈ V we can define a linear form

ϕu(v) := 〈u,v〉.

Again, this gives a map75 from V to the set of linear forms on V :

V → linear forms on V
u 7→ ϕu.

But this need not be a bijection in general. To investigate this, suppose that vectors u1,u2 ∈ V
correspond to the same functional, so that for all v ∈ V we have

ϕu1(v) = ϕu2(v)

〈u1,v〉 = 〈u2,v〉
〈u1,v〉 − 〈u2,v〉 = 0

〈u1 − u2,v〉 = 0.

Since this applies to any v we can take v = u1 − u2 to obtain

〈u1 − u2,u1 − u2〉 = 0.

But it is an axiom of (Hermitian) inner products that 〈x,x〉 = 0 implies x = 0, hence we must
have

u1 − u2 = 0

u1 = u2.

This shows that the map from V to the set of linear forms on V is always injective. However,
it is not necessarily surjective. This is the subject of the Riesz Representation Theorem.

75So many different words for “function”. The purpose is to avoid confusion when discussing many different
kinds of functions at the same time.
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Theorem (Riesz Representation). Let V be a Hilbert space. This means that V is an
inner product space over R (or a Hermitian space over C), and that Cauchy sequences with
respect to the norm ‖− ‖ =

√
〈−,−〉 converge.76 Let ϕ : V → R be a linear functional. Then

ϕ = ϕu for some u ∈ V ⇐⇒ ϕ is continuous with respect to ‖ − ‖.

If V is finite dimensional then every linear functional is continuous. If V is infinite dimensional
then there exist discontinuous functionals, but they are often ignored.

Let me introduce a some jargon. Given a vector space V over R (or C) we define its dual space
as the set of linear forms:77

V ∨ = the dual space

= {all linear forms V → R}.

As the name suggests, the set V ∨ is also a vector space over R. For a given list of forms
ϕi : V → R and scalars ai ∈ F we define the form

∑
aiϕi : V → R “pointwise”:(∑

aiϕi

)
(v) :=

∑
aiϕi(v) for all v ∈ V .

I claim that this definition makes the map V → V ∨ into a linear map. To see this, let’s give
the map a name. Let Φ denote the map that sends the vector u ∈ V to the form ϕu ∈ V ∨:

Φ : V → V ∨

u 7→ ϕu

Then for any linear combination of vectors
∑
aiui ∈ V , I claim that

Φ
(∑

aiui

)
=
∑

aiΦ(ui),

where each side of the equation is a linear form. To show that two forms are equal we must
show that they define the same function V → R. So consider any vector v ∈ V . Then since
Φ(u) is just another name for ϕu, we have[

Φ
(∑

aiui

)]
(v) = ϕ∑

aiui(v)

=
〈∑

aiui,v
〉

=
∑

ai〈ui,v〉

=
∑

aiϕui(v)

=
[∑

aiΦ(ui)
]

(v).

76Recall: We say that v1,v2, . . . is a Cauchy sequence if for all k ≥ ` ≥ N we have ‖vk−v`‖ → 0 as N →∞.
77It is more common to write V ∗ for the dual space, but I am already using that notation for the conjugate

transpose.
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Thus Φ : V → V ∨ is an injective linear map, and if V is finite dimensional then it is also
surjective, hence it is an isomorphism V ∼= V ∨. When V is infinite dimensional then Φ is not
surjective, however it is common to restrict the definition of V ∨ as follows:

V ∨ = {the set of continuous linear functionals V → R}.

Then from the Riesz Reprentation Theorem we will still have V ∼= V ∨.

Another piece of jargon is the Dirac bra-ket notation from quantum physics. To motivate this,
consider the isomorphism between Rn and its dual:

Rn ∼= (Rn)∨

b ↔ ϕb,

where the form ϕb : Rn → R corresponding to the column vector b is defined by ϕb(x) = bTx.
But every linear function corresponds to a matrix, and the linear function ϕb : Rn → R
corresponds to the 1× n row vector bT . In the language of Chapter 2, we have

[ϕb] = bT .

Thus it makes sense to identify the dual space (Rn)∨ with the space of row vectors, and the
isomorphism Rn ∼= (Rn)∨ with transposition:78

Rn ∼= (Rn)∨

b ↔ bT .

For infinite dimensional spaces we can no longer use matrices. However, if V is an infinite
dimensional Hilbert space of functions, such as L2(C), and V ∨ is its dual space of continuous
functionals, Dirac introduced the following notation:

V ∼= V ∨

|f〉 ↔ 〈f |.

This notation is compatible with the inner product notation 〈−,−〉 since, by definition, the
functional 〈f | ∈ V ∨ acts on the vector |g〉 ∈ V by

〈f | acting on |g〉 = 〈f, g〉.

Hence in the physics notation the inner product is written as 〈f |g〉.

9.2 Bilinear Forms

Let V be a vector space over R (or C). A bilinear form is a function

ϕ : V × V → R

that is linear in each coordinate:
78Another piece of jargon: Sometimes the elements of (Rn)∨ are called co-vectors.
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• ϕ(u,
∑
aivi) =

∑
aiϕ(u,vi),

• ϕ(
∑
aiui,v) =

∑
aiϕ(ui,v).

Remark: Over C we want one of the coordinates to be conjugate linear. In this course I have
picked the first coordinate:

ϕ(
∑

aiui,v) =
∑

a∗iϕ(ui,v).

In this case we say that ϕ is sesquilinear (one-and-a-half times linear) instead of bilinear. For
example, an inner product is a bilinear function and a Hermitian inner product is a sesquilinear
function.

As with linear forms, we begin with the case of Euclidean space. Let ϕ : Rn × Rn → R be a
bilinear form, and for any two basis vectors ei, ej ∈ Rn define the scalar

bij := ϕ(ei, ej).

Then for any vectors x = x1e1 + · · ·+ xnen and y = y1e1 + · · ·+ ynen we have

ϕ(x,y) = ϕ(x1e1 + · · ·+ xnen, y1e1 + · · ·+ ynen)

=
∑

xiyjϕ(ei, ej)

=
∑

xiyibij .

If we let B be the n× n matrix with ij entry bij then this becomes

ϕ(x,y) = xTBy =
(
x1 · · · xn

)b11 · · · b1n
...

...
bn1 · · · bnn


y1

...
yn

 .

Exercise: Verify this. Conversely, for any n×n matrix B we can define a bilinear form ϕB by

ϕB(x,y) := xTBy.

If B has ij entry bij then it follows that

ϕB(ei, ej) = eTi Bej = (ith row of B)ej = bij .

Hence for any n× n matrices B and C we have

ϕB = ϕC =⇒ ϕB(x,y) = ϕC(x,y) for all x,y ∈ Rn

=⇒ ϕB(ei, ej) = ϕC(ei, ej) for all i, j

=⇒ bij = cij for all i, j

=⇒ B = C.
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In summary, we obtain a bijection between n× n matrices and bilinear forms:

square matrices Rn×n ↔ bilinear forms Rn × Rn → R
B ↔ ϕB.

We can also view this as an isomorphism of vector spaces, since bilinear forms can be added
and multiplied by scalars, as can any kind of functions with values in R. The following result
compares properties of the form ϕB to properties of the matrix B.

Theorem (Properties of Bilinear Forms). Let B be an n× n matrix over R (or C) and
consider the bilinear (or sesquilinear) form ϕB defined by79

ϕB(x,y) = xTBy over R or ϕB(x,y) = x∗By over C.

(a) Symmetric. We have

ϕB(x,y) = ϕB(y,x) for all x,y ⇐⇒ BT = B,

ϕB(x,y)∗ = ϕB(y,x) for all x,y ⇐⇒ B∗ = B.

In the first case we say that the form ϕB and the matrix B are symmetric. In second
case we say they are Hermitian.

(b) Positive Semi-Definite. We have

ϕB(x,x) ≥ 0 for all x ⇐⇒ B = ATA (or B = A∗A) for some matrix A.

In this case the form ϕB and the matrix B are called positive semi-definite.80

(c) Positive Definite. Let ϕB be positive semi-definite, so that B = ATA (or B = A∗A)
as in part (b). Then we have

ϕB(x,x) = 0 implies x = 0 ⇐⇒ the matrix A has independent columns.

In this case the form ϕB and the matrix B are called positive definite.

(d) Negative. If B = −ATA (or B = −A∗A) for some matrix A then we have

ϕB(x,x) ≤ 0 for all x,

in which case we say that ϕB and B are negative semi-definite. If, in addition, the
matrix A has independent columns then

ϕB(x,x) = 0 implies x = 0,

in which case we say that ϕB and B are negative definite.

79Recall: For any matrix A with complex entries, A∗ denotes the conjugate transpose matrix. If x is a column
vector then x∗ is a row vector.

80Some books use the alternate term non-positive definite.
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(e) Indefinite. If B is not of the form ±ATA (or ±A∗A) for some matrix A, then there
exist points x and y such that

ϕB(x,x) > 0 and ϕB(y,y) < 0.

In this case we say that ϕB and B are indefinite.

Example: The identity matrix I corresponds to the standard dot product ϕI(x,y) = xTy on
Rn and the standard Hermitian product ϕI(x,y) = x∗y on Cn, both of which are positive
definite. Indeed, we can write I = IT I, where I has independent columns.

Remark: Many problems in applied mathematics seek to minimize an expression of the form
xTBx (or x∗Bx). If we know that B = ATA (or B = A∗A) for some matrix A with indepen-
dent columns then we are guaranteed that a unique minimum exists. Indeed, from part (b)
we know that xTBx ≥ 0 for all x and from part (c) we know that xTBx > 0 for all x 6= 0.

Proof. We only prove the complex versions, since the real versions are just a special case.
Furthermore, we will only prove one direction of (b) and (c). The other directions are harder
and we will prove them after discussing the Spectral Theorem.

(a): If bij is the ij entry of the matrix B then we have seen that ϕB(ei, ej) = bij where ei and
ej are standard basis vectors. Suppose that ϕB(x,y)∗ = ϕB(y,x) for all x,y ∈ Cn, then in
particular we must have

b∗ij = ϕB(ei, ej)
∗ = ϕB(ej , ej) = bij ,

and hence B∗ = B. Conversely, suppose that B∗ = B. Then for all x,y ∈ Cn we have

ϕB(x,y)∗ = (x∗By)∗

= y∗B∗(x∗)∗

= y∗Bx

= ϕB(y,x).

(b): Suppose that B = A∗A for some matrix A, and let ‖v‖ =
√

v∗v be the standard Hermitian
norm on Cn. Then for all x ∈ Cn we have

ϕB(x,x) = x∗Bx

= x∗A∗Ax

= (Ax)∗(Ax)

= ‖Ax‖2 ≥ 0.

(c): Continuing from (b), suppose that ϕB(x,x) = 0, so that ‖Ax‖2 = 0. This implies that
Ax = 0 because of properties of the standard Hermitian norm.81 But if A has independent

81Recall that ‖v‖2 = |v1|2 + · · ·+ |vn|2, so that ‖v‖ = 0 if and only if |vi| = 0 (and hence vi = 0) for all i.
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columns then this implies that x = 0. There are many ways to see this. One method uses the
fact that (ATA)−1 exists to get

Ax = 0

ATAx = AT0

ATAx = 0

x = (ATA)−10

x = 0.

(d): This follows from (b) and (c), and the fact that

ϕ−B(x,x) = xT (−B)x = −xTBx = −ϕB(x,x).

(e): This follows from (b), (c) and (d). �

As with linear forms, it is also possible to define bilinear (sesquilinear) forms on infinite
dimensional vector spaces. Let V be any Hermitian inner product space over C and let
B : V → V be any linear operator.82 Then we can define a function ϕB : V × V → C by

ϕB(x,y) = 〈x, By〉.

In the finite dimensional case this corresponds to 〈x, By〉 = x∗By, where B is a matrix. If
B∗ is the conjugate transpose matrix, then we observe that

〈B∗x,y〉 = (B∗x)∗y = x∗(B∗)∗y = x∗By = 〈x, By〉.

This computation suggests a way to define a “conjugate transpose operator” B∗ : V → V ,
even when V is infinite dimensional. The definition is really a theorem.

Theorem (Adjoint Operators). Let V be a complex Hilbert space and consider a linear
operator B : V → V . If B is continuous with respect to the standard norm ‖−‖ =

√
〈−,−〉

then there exists a unique linear operator B∗ : V → V , which is also continuous, satisfying

〈B∗u,v〉 = 〈u, Bv〉 for all u,v ∈ V .

The operator B∗ is called the adjoint of B.83

These ideas are particularly important in quantum mechanics. In the standard statistical
interpretation, a nonzero vector in Hilbert space ψ ∈ V corresponds to the state of a quantum
system. An operator Q : V → V satisfyiing Q∗ = Q corresponds to an observable quantity.
The outcome of a measurement is random but the expected value of quantity Q on state ψ is

〈ψ,Qψ〉 or 〈ψ|Q|ψ〉 in Dirac notation.

Those who study quantum mechanics will notice that it is mostly linear algebra, but the
notation is different and the vectors and operators are sometimes just pretend.84

82Yet another fancy word that just means “function”.
83An operator is continuous if and only if it is bounded
84Indeed, we have seen that the “functions” δ(x) and e2πix are treated as elements of L2(C), even though
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9.3 Quadratic Forms

Let V be a vector space over R. Given a bilinear form ϕ : V × V → R we define the
corresponding quadratic form Q : V → R by

Q(x) := ϕ(x,x).

In the case of Euclidean space V = Rn suppose that ϕ(x,y) = ϕB(x,y) = xTBy for a square
matrix B. Then the corresponding quadratic form is

QB(x) = xTBx.

Quadratic forms give a relationship between polynomials of degree 2 and linear algebra. For
example, consider a polynomial in two variables:

f(x, y) = 2 + x− y + 3x2 + 2xy + 4y2.

We can express this in terms of linear algebra as follows:

f(x, y) = 2 +
(
1 −1

)(x
y

)
+
(
x y

)(3 2
0 4

)(
x
y

)
.

Indeed, for any 2× 2 matrix B we observe that

xTBx =
(
x y

)(a b
c d

)(
x
y

)
=
(
x y

)(ax+ by
cx+ dy

)
= x(ax+ by) + y(cx+ dy)

= ax2 + bxy + cyx+ dy2

= ax2 + (b+ c)xy + dy2.

This formula shows that the choice of b and c is not unique. It is common to choose b = c
so that the corresponding matrix B is symmetric. Thus we can express any polynomial
αx2 + βxy + γy2 in terms of a symmetric matrix:

αx2 + βxy + γy2 =
(
x y

)( α β/2
β/2 γ

)(
x
y

)
.

And we can rewrite the polynomial f(x, y) above using a symmetric matrix:

f(x, y) = 2 +
(
1 −1

)(x
y

)
+
(
x y

)(3 1
1 4

)(
x
y

)
.

e2πix is not square integrable and δ(x) doesn’t really exist. Furthermore, the theorem on adjoints applies to
continuous operators, but many operators of interest in quantum mechanics, such as position and momentum,
are not continuous.

95



More generally, let x = (x1, . . . , xn) be a vector of n unknowns. Then any polynomial f(x) =
f(x1, . . . , xn) of degree 2 has a unique expression of the form

f(x) = b+ bTx + xTBx,

where b is a scalar, bT is a row vector and B is a symmetric matrix. For example, in the case
n = 3 it is common to write x = (x, y, z) instead of x = (x1, x2, x3). Then we have

f(x, y, z) = b+ b1x+ b2y + b3z + b11x
2 + b22y

2 + b33z
2 + b12xy + b13xz + b23yz

= b+
(
b1 b2 b3

)xy
z

+
(
x y z

) b11 b12/2 b13/2
b12/2 b22 b23/2
b13/2 b23/2 b33

xy
z


= b+ bTx + xTBx.

Thus the degree zero terms correspond to a scalar b, the degree 1 terms correspond to a
vector bT ,85 and the degree 2 terms correspond to a matrix B. To describe higher degree
polynomials we would need cubes of numbers, hypercubes of numbers, etc. Such objects are
called “tensors” and they are more difficult to work with. Luckily, degree 2 polynomials are
sufficient for most applications.86

Here are three simplest examples of quadratic forms. Let

B =

(
1 0
0 1

)
so that QB(x) = xTBx = x2 + y2.

The graph of QB(x, y) in R3 looks like a paraboloid with a unique minimum at (0, 0):

85It doesn’t matter whether we write the degree 1 terms as bTx or xTb. I am simply following the convention
from Section 1.1, where linear forms correspond to row vectors.

86It is a curious fact that most physical laws can be expressed in terms of first and second derivatives. Higher
derivatives are almost never useful.
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Indeed, this matrix is positive definite because it can be factored as B = IT I, where I is the
identity matrix, which has independent columns. Next, let

B =

(
1 0
0 0

)
so that QB(x) = xTBx = x2.

The graph of QB(x, y) in R3 is a parabolic cylinder:

This time the minimum is not unique, since QB(0, y) = 0 for any value of y. Indeed, this
matrix can be factored as

B = ATA =

(
1
0

)(
1 0

)
,

where the matrix A does not have independent columns. Finally, let

B =

(
1 0
0 −1

)
so that QB(x) = xTBx = x2 − y2.

This time the graph of QB(x, y) in R3 is a saddle:
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Since QB takes both positive and negative values, it follows from the previous section that B
cannot be factored as B = ATA for any matrix A, although this is a bit hard to see directly.

In the next chapter we will prove the Spectral Theorem, which makes the analysis of quadratic
forms much easier. As a preview, we will prove the following results. Let B be a square matrix
satisfying BT = B. Then:

• The eigenvalues of B are real.

• B is positive semi-definite if and only if all eigenvalues are ≥ 0.

• B is positive definite if and only if all eigenvalues are > 0.

• B if indefinite if and only if there exist both positive and negative eigenvalues.

9.4 Multivariable Taylor Expansion

From calculus we are familiar with the idea of a Taylor series. Suppose that a function
f : R→ R is differentiable k times at the point p ∈ R. Then for small values of x we have

f(p+ x) = f(p) + f ′(p)x+
1

2
f ′′(p)x2 + · · ·+ 1

k!
f (k)(p)xk + higher terms,

where the higher terms are vanishingly small.87

The concept of Taylor series can be generalized to higher dimensions using a little bit of linear
algebra. Consider a real valued function f : Rn → R written as

f(x) = f(x1, . . . , xn),

87The exact nature of the higher terms will not concern us; we don’t do analysis in this course.
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where x ∈ Rn is the input vector. We will denote first partial derivatives by

fi =
∂

∂xi
f,

and second partial derivatives by

fij =
∂

∂xj

∂

∂xi
f.

Note that fi and fij are themselves functions from Rn to R. Suppose that the first and second
partials exist and are continuous at some point p ∈ Rn. Then Clairaut’s theorem tells us that

fij(p) = fji(p) for all i, j.

Furthermore, we define the gradient vector at p:

(∇f)p =

f1(p)
...

fn(p)


and the Hessian matrix at p:

(Hf)p =

f11(p) · · · f1n(p)
...

...
fn1(p) · · · fnn(p)

 .

Note that the Hessian matrix is symmetric. Then for small vectors x ∈ Rn, the multivariable
Taylor series tells us that

f(p + x) = f(p) + (∇f)Tp x +
1

2
xT (Hf)px + higher terms,

where the higher terms are vanishingly small. Note the relationship to linear and bilinear
forms. The linear part of the Taylor series is a linear form

x 7→ (∇f)Tpx = f1(p)x1 + f2(p)x2 + · · ·+ fn(p)xn,

and the quadratic part of the Taylor series is a quadratic form

x 7→ 1

2
xT (Hf)px =

1

2

∑
fij(p)xixj .

Higher terms of the Taylor series can be described by multilinear forms, but, as I said, these
don’t come up much in applications.

For example, consider again the polynomial function, with (x1, x2) = (x, y):

f(x, y) = 2 + x− y + 3x2 + 2xy + 4y2.
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We compute the first and second partial derivatives:

f1 = 1 + 6x+ 2y,

f2 = −1 + 2x+ 8y,

f11 = 6,

f12 = 2,

f21 = 2,

f22 = 8.

This gives the following gradient vector and Hessian matrix:

∇f =

(
1 + 6x+ 2y
−1 + 2x+ 8y

)
and Hf =

(
6 2
2 4

)
.

The Taylor expansion at p = (0, 0) is

f(0 + x, 0 + y) = f(0, 0) + (∇f)T(0,0)x +
1

2
xT (Hf)(0,0)x

= 2 +
(
1 −1

)(x
y

)
+

1

2

(
x y

)(6 2
2 8

)(
x
y

)
,

which we already computed in the previous section. The Taylor expansion at p = (1, 1) is

f(1 + x, 1 + y) = f(1, 1) + (∇f)T(1,1)x +
1

2
xT (Hf)(1,1)x

= 11 +
(
9 9

)(x
y

)
+

1

2

(
x y

)(6 2
2 8

)(
x
y

)
.

And the Taylor expansion at p =
(−10

44 ,
8
44

)
is

f

(
−10

44
+ x,

8

44
+ y

)
= f

(
−10

44
,

8

44

)
+ (∇f)T(−10

44
, 8
44)x +

1

2
xT (Hf)(−10

44
, 8
44)x

=
79

44
+
(
0 0

)(x
y

)
+

1

2

(
x y

)(6 2
2 8

)(
x
y

)
=

79

44
+
(
x y

)(3 1
1 4

)(
x
y

)
.

Note that p =
(−10

44 ,
8
44

)
is a critical point of f , since the gradient vector vanishes: (∇f)p = 0.

Recall that (∇f)p is the direction of greatest increase of f near the point p. If (∇f)p = 0 then
the function is in equilibrium because it can’t decide which way is “up”. Here is a picture:
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A multivariable function f : Rn → R near a critical point p is approximately a quadratic form:

f(p + x) = f(p) +
1

2
xT (Hf)px + higher terms.

Thus we have the following facts, which are sometimes called the multivariable second deriva-
tive test. Assume that (∇f)p = 0. Then:

• f has a local minimum at p if and only if (Hf)p is positive definite.

• f has a local maximum at p if and only if (Hf)p is negative definite.

Indeed, if (Hf)p is positive definite then we have

xT (Hf)px ≥ 0 for all x, and xT (Hf)px = 0 if and only if x = 0.

so that88

f(p + x) ≥ f(p) for all x, and f(p + x) = f(p) if and only if x = 0,

If (Hf)p is positive (or negative) semi-definite then there is a local minimum (or maximum)
in some directions, but in some directions the function is constant. Otherwise, if (Hf)p is
indefinite then there exist small x and y such that f(p + x) > f(p) and f(p + y) < f(p).
Geometrically, this is a higher dimensional saddle point.

88Remember, the higher order terms are vanishingly small, so they don’t affect the inequality.
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In the previous example, it happens that

the matrix B =

(
3 1
1 4

)
is positive definite,

so the function f(x, y) = f(x, y) = 2 + x − y + 3x2 + 2xy + 4y2 has a local minimum at
p =

(−10
44 ,

8
44

)
. To verify that B is positive definite, I computed the eigenvalues 7 +

√
5 and

7−
√

5, which are both positive. Later I will show you how to find a matrix A with independent
columns such that B = ATA. Such a matrix is not unique; here is one example, called the
Cholesky decomposition:

A =

(√
3
√

3/3

0
√

33/3

)
.

Check:

ATA =

( √
3 0√

3/3
√

33/3

)(√
3
√

3/3

0
√

33/3

)
=

(
3 1
1 4

)
.

10 Determinants

10.1 Multilinear Forms

We have studied linear and bilinear forms. Now we discuss the general situation. Let V be a
vector space over R, and recall the notation for Cartesian product:

V k := V × V × · · · × V = {(x1, . . . ,xk) : xi ∈ Rn for all i}.

A multilinear k-form is a function
ϕ : V k → R

that is linear in each input. In other words, for any index i we have

ϕ
(
v1, . . . ,vi−1,

∑
ajuj ,vi+1, . . . ,vk

)
=
∑

aiϕ(v1, . . . ,vi−1,uj ,vi+1, . . . ,vk).

(This time we don’t bother with Hermitian forms, since it’s not clear where to put the complex
conjugates.) Just as with linear and bilinear forms, k-forms can be added and multiplied by
scalars. That is, given k-forms ϕ,ψ and scalar a, we define the k-form ϕ+ aψ by

(ϕ+ aψ)(v1, . . . ,vk) = ϕ(v1, . . . ,vk) + aψ(v1, . . . ,vk).

Thus we obtain a vector space of multilinear k-forms:89

T k(V ) = {multilinear k-forms ϕ : V k → R}.

In the case k = 1 we also use the notation of the dual space

V ∨ = T 1(V ) = {linear forms V → R}.
89The letter T is for “tensor”.
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For example, consider Euclidean space V = Rn. In the previous section we proved that T 1(Rn)
is isomorphic to the vector space of row vectors:

T 1(Rn) ∼= {1× n row vectors} = R1×n,

and hence
dim T 1(Rn) = n.

We also proved that T 2(Rn) is isomorphic to the vector space of n× n matrices:

T 2(Rn) ∼= {n× n matrices} = Rn×n,

and hence90

dim T 1(Rn) = n2.

More generally, I claim that
dim T k(Rn) = nk.

In order to prove this we will construct a “standard basis” for T k(Rn).

Theorem (The Dual Standard Basis). Let e1, . . . , en be the standard basis for Rn. Now
we will construct a corresponding “standard basis” for the dual space (Rn)∨ = T 1(Rn). For
all 1 ≤ i ≤ n, let εi : Rn → R be the linear form defined by picking out the ith coordinate:

εi(x) = εi

x1

...
xn

 = xi.

To see that this εi is linear, consider any linear combination
∑
ajxj ∈ Rn, where xij is the

ith entry of the vector xj ∈ Rn. Then we have

εi

(∑
ajxj

)
= εi


∑
ajx1j

...∑
ajxnj

 =
∑

ajxij =
∑

ajεi(xj).

In the previous section we showed that every linear form ϕ : Rn → R can be expressed as
ϕ(x) = bTx for some unique vector b = (b1, . . . , bn). Equivalently, each linear form ϕ can be
expressed as

ϕ = b1ε1 + · · ·+ bnεn,

for some unique scalars b1, . . . , bn. This shows that ε1, . . . , ε2 is indeed a basis for (Rn)∨. In
terms of matrices, note that

εi(x) = εi

x1

...
xn

 = xi =
(
0 · · · 0 1 0 · · · 0

)x1

...
xn

 ,

90An n×n matrix is uniquely determined by its n2 entries. More formally, let Eij the the n×n matrix with
1 in the ij position and zeros elsewhere. Then the set of matrices Eij with 1 ≤ i, j ≤ n is a basis for Rn×n.
More generally, one can show that Rm×n has dimension mn.
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which shows that the linear function εi corresponds to a standard row vector:

[εi] =
(
0 · · · 0 1 0 · · · 0

)
.

Finally, we say that the bases e1, . . . , en ∈ Rn and ε1, . . . , εn ∈ (Rn)∨ are “dual” because

εi(ej) =

{
1 i = j,

0 i 6= j.

If we were only going to talk about row vectors and column vectors then this level of abstraction
is completely unnecessary. However, it becomes necessary when we talk about k-forms.

Tensor Product of Forms. Let V be a vector space over R. Consider a k-form ϕ : V k → R
and an `-form ψ : V ` → R. Then the tensor product ϕ⊗ψ is a (k+ `)-form defined as follows:

(ϕ⊗ ψ)(v1, . . . ,vk,vk+1, . . . ,vk+`) := ϕ(v1, . . . ,vk) · ψ(vk+1, . . . ,vk+`).

It is straightforward to check that this function is linear, and hence ϕ⊗ψ ∈ T k+`(V ). One can
also check that the tensor product is associative, hence if ϕ,ψ, ω are k, `,m-forms, respectively,
then we obtain a (k + `+m)-form:

ϕ⊗ ψ ⊗ ω = (ϕ⊗ ψ)⊗ ω = ϕ⊗ (ψ ⊗ ω).

For example, for any standard 1-forms εi and εj we obtain a 2 form εi⊗ εj defined as follows:

(εi ⊗ εj)(v1,v2) = εi(v1) · εj(v2).

And for any standard 1-forms εi, εj , εk we obtain a 3-form εi ⊗ εj ⊗ εk by

(εi ⊗ εj ⊗ εk)(v1,v2,v3) = εi(v1) · εj(v2) · εk(v3).

To be more explicit let’s consider an example with V = R3. Then we have

(ε1 ⊗ ε2)

 1
−1
1

 ,

2
3
4

 = ε1

 1
−1
1

 · ε2

2
3
4

 = (1)(3) = 3

and

(ε2 ⊗ ε1)

 1
−1
1

 ,

2
3
4

 = ε2

 1
−1
1

 · ε1

2
3
4

 = (−1)(2) = −2,

which shows that ε1 ⊗ ε2 and ε2 ⊗ ε1 define different bilinear functions. In other words, we
see that the tensor product is not commutative.

Theorem (The Standard Basis of k-Forms). Let e1, . . . , en be the standard basis of Rn
and let ε1, . . . , εn be the dual standard basis of T 1(Rn). Then I claim that the following set
is a basis for the vector space of k-forms:

{εi1 ⊗ εi2 ⊗ · · · ⊗ εik : i1, i2, . . . , ik ∈ {1, 2, . . . , n}} .
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Note that this basis contains nk elements, and hence

dim T k(Rn) = nk.

We won’t bother to prove this since we have already proved the cases k = 1 and k = 2 in the
previous section. The general proof is similar, but with more horrible notation. To see how
this works, we will repeat our proof for k = 2 in the new language. Let B be an n× n matrix
with ij entry bij and consider the 2-form

ϕB(x,y) = xTBy.

Note that for any basis vectors ei, ej we have

ϕB(ei, ej) = eTi Bej = bij .

Furthermore, for any vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) we have

ϕB(x,y) = xTBy =
∑

bijxiyj .

On the other hand, since (εi ⊗ εj)(x,y) = xiyj , we can express this as

ϕB(x,y) = xTBy =
∑

bijxiyj =
∑

bij(εi ⊗ εj)(x,y) =
(∑

bij(εi ⊗ εj)
)

(x,y),

and hence
ϕB =

∑
bij(εi ⊗ εj).

More generally, any 3-form ϕ ∈ T 3(Rn) corresponds to an n× n× n cube of numbers bijk:

ϕ =
∑

bijk(εi ⊗ εj ⊗ εk).

These are some kind of “higher dimensional matrices”, but they are much harder to work
with. In this course we will focus only on very special kinds of k-forms.

Symmetric and Alternating k-Forms. We say that a k-form ϕ ∈ T k(V ) is symmetric if
switching any two inputs leaves the output unchanged. For example, if ϕ is symmetric then

ϕ(v2,v1,v3, . . . ,vk) = ϕ(v1,v2,v3, . . . ,vk).

We say that a k-form ϕ is alternating if switching any two inputs multiplies the output by −1.
For example, if ϕ is alternating then

ϕ(v2,v1,v3, . . . ,vk) = −ϕ(v1,v2,v3, . . . ,vk).

To be more explicit, let’s consider V = R3. I claim that the 2-form ϕ = ε1 ⊗ ε2 + ε2 ⊗ ε1 is
symmetric. Indeed, for any vectors x,y ∈ R3 we observe that

ϕ(x,y) = (ε1 ⊗ ε2 + ε2 ⊗ ε1)

x1

x2

x3

 ,

y1

y2

y3


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= (ε1 ⊗ ε2)

x1

x2

x3

 ,

y1

y2

y3

+ (ε2 ⊗ ε1)

x1

x2

x3

 ,

y1

y2

y3


= ε1

x1

x2

x3

 · ε2

y1

y2

y3

+ ε2

x1

x2

x3

 · ε1

y1

y2

y3


= x1y2 + x2y1

is equal to

ϕ(y,x) = (ε1 ⊗ ε2 + ε2 ⊗ ε1)

y1

y2

y3

 ,

x1

x2

x3


= (ε1 ⊗ ε2)

y1

y2

y3

 ,

x1

x2

x3

+ (ε2 ⊗ ε1)

y1

y2

y3

 ,

x1

x2

x3


= ε1

y1

y2

y3

 · ε2

x1

x2

x3

+ ε2

y1

y2

y3

 · ε1

x1

x2

x3


= y1x2 + y2x1

= x1y2 + x2y1.

On the other hand, the 2-form ψ = ε1 ⊗ ε2 − ε2 ⊗ ε1 is alternating since

ψ(x,y) = (ε1 ⊗ ε2 − ε2 ⊗ ε1)(x,y) = x1y2 − x2y1

and

ψ(y,x) = (ε1 ⊗ ε2 − ε2 ⊗ ε1)(y,x) = y1x2 − y2x1 = −(x1y2 − x2y1) = −ψ(x,y).

Since the sum of symmetric forms is symmetric, and the sum of alternating forms is alternating,
we can define the following vector spaces91

Sk(V ) = the space of symmetric k-forms V k → R,
Ak(V ) = the space of alternating k-forms V k → R.

For small k and n, it is not too hard to write down a basis for Sk(Rn) in terms of the standard
basis of T k(Rn). To save space, let’s write

εij = εi ⊗ εj , εijk = εi ⊗ εj ⊗ εk, etc.

91Alternating forms are also called anti-symmetric. In advanced calculus, a differential form is an alternating
k-form whose coefficients can change from point to point. More precisely, a differential form on a k-dimensional
manifold assigns an alternating k-form to the tangent space at each point.
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Then, for example, we have

S1(R2) = Span{ε1, ε2},
S2(R2) = Span{ε11, ε12 + ε21, ε22},
S3(R2) = Span{ε111, ε112 + ε121 + ε211, ε122 + ε212 + ε211, ε222},

and

S1(R3) = Span{ε1, ε2, ε3},
S2(R3) = Span{ε11, ε22, ε33, ε12 + ε21, ε13 + ε31, ε23 + ε32},
S3(R3) = Span{ε111, ε222, ε333,

ε112 + ε121 + ε211, ε113 + ε131 + ε311, ε223 + ε232 + ε322,

ε221 + ε212 + ε122, ε331 + ε313 + ε133, ε332 + ε323 + ε233,

ε123 + ε132 + ε213 + ε231 + ε312 + ε321}.

In particular, we have

dimS1(R3) = 2, dimS2(R3) = 6, dimS3(R3) = 10.

Maybe you can see a pattern here. In general, one can use a combinatorial argument92 to
show that

dimSk(Rn) =

(
n+ k − 1

k

)
.

Let’s test this on the special case k = 2. Recall from the previous section that a symmetric
bilinear form is the same thing as a symmetric n× n matrix, hence S2(Rn) can be identified
with the space of symmetric n × n matrices. A symmetric matrix is uniquely determined by
the n diagonal elements and the n(n− 1)/2 elements above the diagonal. (We don’t need to
specify the entries below the diagonal because they are equal to the above-diagonal elements.)
Hence we must have

dimS2(Rn) = n+
n(n− 1)

2
=

2n+ n(n− 1)

2
=
n2 + n

2
=

(n+ 1)n

2
,

which agrees with the formula(
n+ 2− 1

2

)
=

(
n+ 1

2

)
=

(n+ 1)n

2
.

It is trickier to find a basis for the space of alternating k-forms. Here are some small examples:

A1(R2) = Span{ε1, ε2},
92There is one basis element of Sk(Rn) for each weakly increasing sequence 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n of k

numbers between 1 and n. Such a weakly increasing sequence can be encoded as a word of length n + k − 1
containing k “stars” and n−1 “bars”. For example, the word ∗∗|∗ ||∗∗∗ corresponds to 1 ≤ 1 ≤ 2 ≤ 4 ≤ 4 ≤ 4.
Such a word has length k + (n − 1) = n + k − 1. The number of such words is

(
n+k−1

k

)
since from n + k − 1

possible positions, we must choose k positions to place the stars.
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A2(R2) = Span{ε12 − ε21},
Ak(R2) = {0} for k > 2,

A1(R3) = Span{ε1, ε2, ε3},
A2(R3) = Span{ε12 − ε21, ε13 − ε31, ε23 − ε32},
A3(R3) = Span{ε123 + ε231 + ε312 − ε132 − ε213 − ε321},
Ak(R3) = {0} for k > 3.

You will prove on the homework that dimAk(Rn) = 0 for all k > n. That is, if k > n then
any alternating k-form on Rn must be the zero function that sends any k-tuple of vectors in
Rn to zero. For 0 ≤ k ≤ n I claim that93

dimAk(Rn) =

(
n

k

)
.

We won’t prove this theorem in general, but we will prove the special case when k = n:

dimAn(Rn) =

(
n

n

)
= 1.

In other words, there exists a unique (up to scalar multiplication) alternating n-form on Rn.
At the risk of spoiling the surprise, I will tell you right now that this unique form is called the
determinant.

According to the examples listed above, we have

A2(R2) = Span{ε12 − ε21},
A3(R3) = Span{ε123 + ε231 + ε312 − ε132 − ε213 − ε321}.

Recall that ε12− ε21 represents the 2-form ε1⊗ ε2− ε2⊗ ε1, which we have already discussed.
When applied to two vectors x = (x1, x2) and y = (y1, y2) in R2 it gives

(ε12 − ε21)(x,y) = ε12(x,y)− ε21(x,y) = x1y2 − x2y1.

In general, if ϕ ∈ T k(Rn) is a k-form on Rn and if A is a n × k matrix with columns
a1, . . . ,ak ∈ Rn, it is convenient to define

ϕ(A) := ϕ(a1, . . . ,ak).

Thus for any 2× 2 matrix we have

(ε12 − ε21)(A) = (ε12 − ε21)

(
a1 b1
a2 b2

)
= ε12

(
a1 b1
a2 b2

)
− ε21

(
a1 b1
a2 b2

)
= a1b2 − a2b1,

93The definition of “alternating” doesn’t really apply to 0-forms and 1-forms. However, it is convenient to
define A0 := T 0 := {0} and A1 := T 1, so the dimension formula is still correct when k = 0 and k = 1.
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and for any 3× 3 matrix

A =

a1 b1 c1

a2 b2 c2

a3 b3 c3


we have

(ε123 + ε231 + ε312 − ε132 − ε213 − ε321)(A)

= ε123(A) + ε231(A) + ε312(A)− ε132(A)− ε231(A)− ε321(A),

= a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b3c1 − a3b2c1.

You may recognize these formulas from your previous linear algebra course. But where do
they come from? And how do we know that there are no other alternating 2-forms on R2 and
no other alternating 3-forms on R3?

10.2 Uniqueness of the Determinant

As we have seen, the formula for the determinant of a 3 × 3 matrix is rather complicated.
I could give a general formula right now, but it is actually more useful to work with the
properties of the determinant. Explicit formulas for the determinant are messy, but the
properties of the determinant are easy to describe.

As before, we will think of a k-form ϕ ∈ T k(Rn) as a function sending n × k matrices to
scalars. That is, for any matrix A with columns a1, . . . ,ak ∈ Rn we will write

ϕ(A) := ϕ(a1, . . . ,ak).

This function is “multilinear in the columns of A”. For example, consider some n×3 matrices

A =
(

u v a
)
, B =

(
u v b

)
, C =

(
u v a + λb

)
,

with u,v,a,b ∈ Rn and λ ∈ R. Then for any 3-form ϕ ∈ T 3(R3) we have

ϕ(C) = ϕ(A) + λ · ϕ(B).

Warning: Multilinear functions are not linear. For example, consider any bilinear
function ϕ ∈ T 2(Rn), and consider any two n× 2 matrices

A =
(

a1 a2

)
and B =

(
b1 b2

)
, hence A+B =

(
a1 + b1 a2 + b2

)
.

Then we have

ϕ(A+B) = ϕ(a1 + b1,a2 + b2)

= ϕ(a1,a2) + ϕ(b1,b2) + ϕ(a1,b2) + ϕ(b1,a2)

= ϕ(A) + ϕ(B) + ϕ(a1,b2) + ϕ(b1,a2),

which is not equal to ϕ(A) + ϕ(B).94

94For the same reason, we will have det(A+B) 6= det(A) + det(B).
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As mentioned in the previous section, there exists a unique (up to scalar multiplication)
alternating n-form on Rn, which can be interpreted as the determinant of an n × n matrix.
In this section we will prove that there is no more than one such function, so that

dimAn(Rn) ≤ 1,

and in the next section we will show that there is at least one such function, so that

dimAn(Rn) ≥ 1.

Theorem (Uniqueness of the Determinant). Let ϕ be a function sending n×n matrices
to scalars. We say that ϕ is a determinant function if it satisfies the following three properties:

(1) Multilinear. The function ϕ is linear in each individual column.

(2) Alternating. If A′ is obtained from A by swapping two columns, then ϕ(A′) = −ϕ(A).

(3) Normalized. The function ϕ sends the identity matrix In to 1.

In other words, a determinant function is an alternating n-form ϕ ∈ An(Rn) that is appropri-
ately normalized so that

ϕ(In) = ϕ(e1, . . . , en) = 1.

I claim that

there is at most one determinant function.

In order to streamline the proof I will isolate several lemmas, which have independent interest.

Lemma A. Let ϕ be a determinant function. If A has a repeated column then

ϕ(A) = 0.

Proof. Suppose that the ith and jth columns are equal and let A′ be the matrix obtained
from A by switching the ith and jth columns. On the one hand we have A′ = A. On the
other hand, property (2) tells us that

ϕ(A′) = −ϕ(A)

ϕ(A) = −ϕ(A)

2ϕ(A) = 0

ϕ(A) = 0.

�

Lemma B. Let ϕ be a determinant function. If A has dependent columns then

ϕ(A) = 0.
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Proof. Let A have columns a1, . . . ,an ∈ Rn. If these columns are dependent then there exists
some i such that ai can be expressed as a linear combination of the other columns. Without
loss of generality,95 suppose that i = 1, so we can write

a1 = b1a2 + · · ·+ bnan,

for some scalars b2, . . . , bn. Now let Â1(aj) denote the matrix A with the first column replaced
by aj . From property (1) we have

ϕ(A) = b1 · ϕ(Â1(a2)) + · · ·+ bn · ϕ(Â1(an)).

But each matrix Â1(aj) with j 6= 1 has a repeated column, so from Lemma A we must have

ϕ(A) = b1 · ϕ(Â1(a2)) + · · ·+ bn · ϕ(Â1(an))

= b1 · 0 + b2 · 0 + · · ·+ bn · 0
= 0.

�

The next lemma refers to the elementary matrices, which we discussed in the previous chapter:

Di(λ) =


1

1
λ

1
1

 ,

Lij(λ) =


1

1 · · · λ

1
...
1

1

 ,

Tij =


1

0 · · · 1
... 1

...
1 · · · 0

1

 .

Lemma C. Let ϕ be a determinant function. Then for any square matrix A we have

ϕ(ADi(λ)) = λ · ϕ(A),

ϕ(ALij(λ)) = ϕ(A),

95By applying property (2) we can swap the 1st and ith columns, which does not affect whether the deter-
minant is zero or nonzero.
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ϕ(ATij) = −ϕ(A).

Proof. First, note that ADi(λ) has the same columns as A except that the ith column has
been scaled by λ, hence ϕ(ADi(λ)) = λ ·ϕ(A) follows from property (1). Next, note that ATij
is obtained from A by switching columns i and j, hence the identity ϕ(ATij) = −ϕ(A) is just
a restatement of (2). Finally, note that kth column of ALij(λ) is equal to the kth column of
A, except in the case k = j, in which case

(jth column of ALij(λ)) = (jth column of A) + λ · (ith column of A).

To simplify notation, let a1, . . . ,an be the columns of A and let Âj(v) denote the matrix A
with the jth column replaced by vector v. Then from property (1) we have

ϕ(ALij(λ)) = ϕ(A) + λ · ϕ(Âj(ai)).

But the matrix Âj(ai) has a repeated column, so it follows from Lemma A that

ϕ(ALij(λ)) = ϕ(A) + λ · 0 = ϕ(A).

�

Lemma D. Let ϕ be a determinant function. Then we have

ϕ(Di(λ)) = λ, ϕ(Lij(λ)) = 1, ϕ(Tij) = −1.

Proof. Taking A = I in Lemma C and using property (3) gives96

ϕ(Di(λ)) = ϕ(IDi(λ)) = λ · ϕ(I) = λ,

ϕ(Lij(λ)) = ϕ(ILij(λ)) = ϕ(I) = 1,

ϕ(Tij) = ϕ(ITij) = −ϕ(I) = −1.

�

Lemma E. Let ϕ be a determinant function. For elementary matrices E1, . . . , Ek we have

ϕ(E1E2 · · ·Ek) = ϕ(E1)ϕ(E2) · · ·ϕ(Ek).

Proof. By applying Lemma D, we can rephrase Lemma C as saying that

ϕ(AE) = ϕ(A)ϕ(E) for any elementary matrix E.

If E1, . . . , Ek are elementary matrices, then it follows by induction that

ϕ(E1 · · ·Ek) = ϕ(E1 · · ·Ek−1)ϕ(Ek)

96This is our first and only use of property (3).
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= ϕ(E1) · · ·ϕ(Ek−1)ϕ(Ek).

�

Proof of the Theorem. Let δ1 and δ2 be any two determinant functions. Our goal is to
show that δ1 = δ2. If A is not invertible then the columns of A are dependent and it follows
from Lemma B that δ1(A) = 0 = δ2(A). So let us suppose that A is invertible. In this case
we can apply column operations to reduce A to the identity matrix:

AE1E2 · · ·Ek = I.

Since elementary matrices are invertible, this becomes

A = E−1
k · · ·E

−1
1 .

If E is elementary then E−1 is also elementary, so Lemma D implies that δ1(E−1) = δ2(E−1).
Finally, by Lemma E we have

δ1(A) = δ1(E−1
k · · ·E

−1
1 )

= δ1(E−1
k ) · · · δ1(E−1

1 )

= δ2(E−1
k ) · · · δ2(E−1

1 )

= δ2(E−1
k · · ·E

−1
1 )

= δ2(A).

�

Thus we have proved that there exists at most one determinant function. From this point on,
we will use the notation det(A) to refer to this function.

We end this section by giving a new criterion for invertibility of square matrices.

Theorem. For any square matrix A we have

A is invertible ⇐⇒ det(A) 6= 0.

Proof. If A is not invertible then A has dependent columns and it follows from Lemma B
that det(A) = 0. Conversely, suppose that A is invertible. In the previous chapter we showed
that a square matrix is invertible if and only if its Reduced Row Echelon Form is an identity
matrix, so that

Ek · · ·E2E1A = I

for some elementary matrices E1, . . . , Ek. From Lemma E it follows that

A = E−1
1 E−1

2 · · ·E
−1
k

det(A) = det(E−1
1 )det(E−1

2 ) · · · det(E−1
k ) 6= 0.

�

Note that we only use elementary matrices Di(λ) with λ 6= 0 so that det(E) 6= 0 for every
elementary matrix E.
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10.3 Algebraic Properties of the Determinant

In the previous section we studied the application of determinant functions to elementary
matrices, and we used this to prove that there exists at most one determinant function. In
this section we will apply the same lemmas to prove some interesting algebraic properties of
determinants. Only in the next section will we finally prove that determinants exist!

Theorem. For any square matrices A and B we have

(a) det(AT ) = det(A),

(b) det(AB) = det(A)det(B),

(c) det(A−1) = 1/det(A).

Proof. (a): Note that AT is invertible if and only if A is invertible, hence det(AT ) = 0 if and
only if det(A) = 0. If det(A) 6= 0 then A is invertible and we can write

A = E1 · · ·Ek

for some elementary matrices E1, . . . , Ek. Note that the transpose ET of an elementary matrix
E is also elementary, and from Lemma C we have det(ET ) = det(E). It follows that

AT = ETk · · ·ET1
det(AT ) = det(ETk · · ·ET1 )

= det(ETk ) · · · det(ET1 )

= det(Ek) · · · det(E1)

= det(E1) · · · det(Ek)

= det(E1 · · ·Ek)
= det(A).

(b): Note that AB is invertible if and only if both of A and B are invertible, so that det(AB) =
0 if and only if det(A)det(B) = 0. If det(A) 6= 0 and det(B) 6= 0 then A and B are both
invertible, hence we can write

A = E1 · · ·Ek,
B = F1 · · ·F`,

for some elementary matrices E1, . . . , Ek and F1, . . . , F`. It follows that

det(AB) = det(E1 · · ·EkF1 · · ·F`)
= det(E1) · · · det(Ek)det(F1) · · · det(F`)

= [det(E1) · · · det(Ek)][det(F1) · · · det(F`)]

= det(E1 · · ·Ek)det(F1 · · ·F`)
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= det(A)det(B).

(c): If A is invertible then det(A) 6= 0 and from (b) we obtain

A−1A = I

det(A−1A) = det(I)

det(A−1)det(A) = 1

det(A−1) = 1/det(A).

�

As you see, the elementary matrices are quite useful.

10.4 Formulas for the Determinant

I hope you have developed an appreciation for the remarkable properties of determinants. In
this section I will prove that determinants actually exist, and in the next section I will finally
tell you what determinants “really are”. I guess I could have told you that first, but it didn’t
fit the narrative.

There are several equivalent ways to define the determinant of an n × n matrix. If A is not
invertible then we must have det(A) = 0, so let us suppose that A is invertible. In this case
we can perform row (or column) operations to transform A into the identity matrix, which
allows us to write A as a product of elementary matrices:

A = E1 · · ·Ek.

Then from Lemma E in Section 2.2 we must have

det(A) = det(E1) · · · det(Ek),

where the determinants of elementary matrices are trivial to compute. You might think we
could use this formula to define the determinant, but the factorization of A into elementary
matrices is not unique, and it’s not clear that we wouldn’t get different values of det(A) from
different factorizations of A. Essentially this has to do with the uniqueness of the RREF, but
I don’t want to prove this. Instead I’ll just give an example computation.

Computing the Determinant by Elimination. Consider again the matrix

A =

1 2 3
1 1 1
2 4 1

 .

First we perform down-elimination steps to put A in upper triangular form:

L31(−2)L21(−1)A =

1 2 3
0 −1 −2
0 0 −5

 . (∗)

115



Then we scale the rows to turn the pivots into ones:

D3(−1/5)D2(−1)L31(−2)L21(−1)A =

1 2 3
0 1 2
0 0 1

 .

Then we perform up-elimination to obtain an identity matrix:

L12(−2)L13(−3)L23(−1)D3(−1/5)D2(−1)L31(−2)L21(−1)A =

1 0 0
0 1 0
0 0 1

 .

Taking the elementary matrices to the other side gives

A = L21(−1)−1L31(−2)−1D2(−1)−1D3(−1/5)−1L23(−1)−1L13(−3)−1L12(−2)−1

= L21(1)L31(2)D2(−1)D3(−5)L23(1)L13(3)L12(2),

and taking the determinant of each side gives

det(A) = 1 · 1 · (−1) · (−5) · 1 · 1 · 1
= 5.

Note that this is the product of the pivot entries in step (∗). Hence we could have stopped
there. In general, if no row transpositions are required, then the determinant is just the
product of the diagonal entries after down-elimination.

Next I will give the traditional definition of the determinant, which expresses it as an “al-
ternating sum” over permutations. After that I will give a recursive formula, which is more
useful.

Permutation Definition of the Determinant. Let Sn denote the set of permutations, i.e.,
the set of bijective functions {1, . . . , n} → {1, . . . , n}. It is convenient to express a permutation
by listing the sequence of values:

σ = (σ(1), σ(2), . . . , σ(n)).

Each permutation σ ∈ Sn has a well-defined sign, or parity:

sgn(σ) ∈ {1,−1}.

Essentially this tells us the number of swaps necessary to obtain the list (σ(1), . . . , σ(n)) from
the list (1, . . . , n), or vice versa. The number of swaps is not unique, but it turns out that it is
always even, or always odd. For example, we can get from (1, 2, 3) to (3, 2, 1) using 3 swaps:

(1, 2, 3)→ (2, 1, 3)→ (2, 3, 1)→ (3, 2, 1),

Or we can get there using 5 swaps:

(1, 2, 3)→ (1, 3, 2)→ (3, 1, 2)→ (2, 1, 3)→ (2, 3, 1)→ (3, 2, 1).
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But we could never get there using an even number of swaps.97 Since we can get from (1, 2, 3)
to (3, 2, 1) using only odd numbers of swaps, we define

sgn(3, 2, 1) = −1.

Of the n! permutations in Sn, it turns out that exactly half are “even” and half are “odd”.
For example, here is the sign table for S3:

σ sgn(σ)

(1, 2, 3) +1
(2, 3, 1) +1
(3, 1, 2) +1
(1, 3, 2) −1
(2, 1, 3) −1
(3, 2, 1) −1

Finally, recall the standard basis of k-forms:

εi1 ⊗ εi2 ⊗ · · · ⊗ εik for all i1, . . . , ik ∈ {1, . . . , n}.

Then we define the determinant function det ∈ An(Rn) as follows:

det =
∑
σ∈Sn

sgn(σ) · εσ(1) ⊗ εσ(2) ⊗ · · · ⊗ εσ(n).

For example, when n = 3, the above table of signs gives

det = ε1 ⊗ ε2 ⊗ ε3 + ε2 ⊗ ε3 ⊗ ε1 + ε3 ⊗ ε1 ⊗ ε2

− ε1 ⊗ ε3 ⊗ ε2 − ε2 ⊗ ε1 ⊗ ε3 − ε3 ⊗ ε2 ⊗ ε1.

Equivalently, if A is an n× n matrix with ij entry aij then we define

det(A) =
∑
σ∈Sn

sgn(σ) · aσ(1),1aσ(2),2 · · · aσ(n),n.

One can check that this function satisfies the three properties of a determinant function, but
to do so requires a more thorough study of permutations than we have time for.

Laplace Expansion. The permutation definition of the determinant is explicit but it’s mostly
useless. Another, recursive, definition called Laplace expansion or expansion by cofactors has
many applications.

For any n × n matrix A we let Âij denote the (n − 1) × (n − 1) matrix obtained from A by
deleting the ith row and the jth column. To expand along the ith row, we fix some i and
then compute

det(A) =
∑
j

(−1)i+jaij det(Âij).

97It is a bit tricky to prove this so we won’t bother. It fits better in a course on “group theory”.
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To expand along the jth column we fix some j and compute

det(A) =
∑
i

(−1)i+jaij det(Âij).

One must check that these formulas agree with the permutation definition of the determi-
nant. Alternatively, one could prove that these formulas obey the three rules for determinant
functions. But I’m not going to do this. Instead I will just give some examples.

First we compute a general 3× 3 determinant by expanding along the second row:

det

a1 b1 c1

a2 b2 c2

a3 b3 c3

 = −a2 · det

(
b1 c1

b3 c3

)
+ b2 · det

(
a1 c1

a3 c3

)
− c2 · det

(
a1 b1
a3 b3

)
= −a2(b1c3 − b3c1) + b2(a1c3 − a3c1)− c2(a1b3 − a3b1)

= a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1.

Next we expand a specific our favorite matrix along the second column:

det

1 2 3
1 1 1
2 4 1

 = −2 · det

(
1 1
2 1

)
+ 1 · det

(
1 3
2 1

)
− 4 · det

(
1 3
1 1

)
= −2(1− 2) + 1(1− 6)− 4(1− 3)

= −2(−1) + 1(−5)− 4(−2)

= 2− 5 + 8

= 5.

And also along the first row:

det

1 2 3
1 1 1
2 4 1

 = 1 · det

(
1 1
4 1

)
− 2 · det

(
1 1
2 1

)
+ 3 · det

(
1 1
2 4

)
= 1(1− 4)− 2(1− 2) + 3(4− 2)

= 1(−3)− 2(−1) + 3(2)

= −3 + 2 + 6

= 5.

10.5 Cramer’s Rule (Optional)

While we’re on the subject, there is a famous trick relating determinants to solutions of linear
systems. Let A be a square n× n matrix and consider the linear system

Ax = b
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a11 · · · a1n

...
...

an1 · · · ann


x1

...
xn

 =

b1...
bn

 .

Assume that A is invertible, so the system has a unique solution x = (x1, . . . , xn). Then the
ith coordinate of the solution is given by

xi =
det(Âi(b))

det(A)
,

where Âi(b) is the matrix obtained from A by replacing its ith column with b:

Âi(b) =
(

a1 · · · ai−1 b ai+1 · · · an
)
.

Proof. Consider the matrix

Xi := Îi(x) =
(

e1 · · · ei−1 x ei+1 · · · en
)

=


1 x1

1
...
xi
... 1
xn 1

 .

By Laplace expansion along the ith column, we observe that98

det(Xi) = (−1)i+ixidet(In−1) = xi.

Next we observe that

AXi = A
(

e1 · · · ei−1 x ei+1 · · · en
)

=
(
Ae1 · · · Aei−1 Ax Aei+1 · · · Aen

)
=
(

a1 · · · ai−1 b ai+1 · · · an
)

= Âi(b),

and hence

AXi = Âi(b)

det(A)det(Xi) = det(Âi(b))

det(Xi) = det(Âi(b))/det(A)

xi = det(Âi(b))/det(A).

98The matrix obtained by deleting the ith row and column of Xi is the (n−1)× (n−1) identity matrix In−1.
Every other (n− 1)× (n− 1) matrix in the expansion has a row (also a column) of zeros, hence its determinant
is zero.
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For example, let A be the 3×3 matrix from the previous section and consider the linear system1 2 3
1 1 1
2 4 1

x1

x2

x3

 =

1
0
0

 .

Then we have

x1 = det

1 2 3
0 1 1
0 4 1

/det

1 2 3
1 1 1
2 4 1

 =
−3

5
,

x2 = det

1 1 3
1 0 1
2 0 1

/det

1 2 3
1 1 1
2 4 1

 =
1

5
,

x3 = det

1 2 1
1 1 0
2 4 0

/det

1 2 3
1 1 1
2 4 1

 =
2

5
.

Cramer’s Rule is useful when we want to pick out a specific coordinate of the solution. We
can use this idea to give an explicit formula for the entries of an inverse matrix. Let A be
an invertible n × n square matrix and let X =

(
x1 · · · xn

)
be a matrix whose columns

x1, . . . ,xn ∈ Rn are unknown vectors. If X is the inverse of A then we must have

AX = I

A
(

x1 · · · xn
)

=
(

e1 · · · en
)(

Ax1 · · · Axn
)

=
(

e1 · · · en
)
,

which is equivalent to n matrix equations: Axi = ei for each i. Let xij be the ij entry of the
unknown matrix X, which is the ith entry of the jth column vector xj . Then Cramer’s Rule
says that

xij = ith coordinate of xj

= ith coordinate of the solution to Axj = ej

= det(Âi(ej))/det(A),

where Âi(ej) is the matrix obtained from A by replacing its ith column with ej . By Laplace
expansion along the ith column we have

det(Âi(ej)) = (−1)i+j det(Âji),
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where Âji is the (n − 1) × (n − 1) matrix obtained from A by deleting the jth row and ith
column. If det(A) 6= 0 then we conclude that

(ij entry of A−1) =
1

det(A)
(−1)i+j det(Âji).

Warning: Note that the positions of i and j are switched in this formula!99

For example, suppose that

AX = I,(
a11 a12

a21 a22

)(
x11 x12

x21 x22

)
=

(
1 0
0 1

)
.

Then we have

x11 = (−1)1+1 det(Â11)/det(A) = a22/det(A),

x12 = (−1)1+2 det(Â21)/det(A) = −a12/det(A),

x21 = (−1)2+1 det(Â12)/det(A) = −a21/det(A),

x22 = (−1)2+2 det(Â22)/det(A) = a11/det(A),

which is just the usual formula for the inverse of a 2× 2 matrix:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

10.6 Geometric Interpretation

My bias is that algebra is based on geometry,100 hence for me the “true meaning” of the
determinant is its geometric interpretation.

Consider two vectors in the plane, u,v ∈ R2 with angle θ between them. The area of the
parallelogram they generate is ‖u‖‖v‖| sin θ|.101 Indeed, in the following picture the red
parallelogram and the blue rectangle have the same area:

99I have forgotten this many times.
100And geometry is based on physics. I believe that physics is the true foundation of mathematics, not

axiomatic set theory.
101The absolute value accounts for negative angles.
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On the other hand, we can interpret this area as a determinant. Let A be the 2 × 2 matrix
with columns u and v:

A =
(

u v
)
.

I claim that the area of the parallelogram equals (the absolute value of) the determinant of
A. To prove this we use a clever trick. First we observe that√

det(ATA) =
√

det(AT )det(A) =
√

det(A)det(A) =
√

det(A)2 = |det(A)|.

But the determinant of ATA can also be computed as follows:

ATA =

(
uT

vT

)(
u v

)
ATA =

(
‖u‖2 u • v

u • v ‖v‖2
)

det(ATA) = ‖u‖2‖v‖2 − (u • v)2

= ‖u‖2‖v‖2 − (‖u‖‖v‖ cos θ)2

= ‖u‖2‖v‖2(1− cos2 θ)

= ‖u‖2‖v‖2 sin2 θ.

So we conclude that

|det(A)| =
√

det(ATA) =

√
‖u‖2‖v‖2 sin2 θ = ‖u‖‖v‖| sin θ|.

This trick is much more important than it looks. Suppose now that our parallelogram lives in
n-dimensional space, generated by vectors u,v ∈ Rn with angle θ:

122



For geometric reasons, the area of the parallelogram is still ‖u‖‖v‖| sin θ|, but now the n× 2
matrix A =

(
u v

)
is not square, so det(A) is not defined. However, the matrix ATA is

still square, so we may still consider det(ATA), and the same calculation as above shows that√
det(ATA) = ‖u‖‖v‖| sin θ|.

In general, we have the following theorem.

Theorem (Geometric Interpretation of the Determinant). Let A be an n× k matrix
with columns a1, . . . ,ak ∈ Rn, which generate a k-parallelotope living in n-dimensional space:
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Let Volk(A) denote the volume of this k-parallelotope, measured within the k-dimensional
subspace that it spans. We call this the k-volume of the k-parallelotope. Then we have102

Volk(A) =
√

det(ATA).

If k = n, then we are measuring the full n-dimensional volume of an n-parallelotope in Rn. In
this case the matrix A is square, and we obtain

Voln(A) = |det(A)|.

Note that we already proved this theorem in the case k = 2. The proof of the general case
proceeds in four steps:

(1) For n× n matrices A we have Voln(A) = |det(A)|.

(2) For n× n matrices A we have |det(A)| =
√

det(ATA).

(3) It follows from (1) and (2) that the n-volume of an n-parallelotope in Rn depends only
on the lengths and angles between its generating vectors.

(4) Hence we also have Volk(A) =
√

det(ATA), even when k 6= n.

102This volume can very well be zero, which happens when the columns of A are not independent. In this case,
the k-parallelotope generated by a1, . . . ,ak is “flat”, i.e., it lives in a smaller-dimensional subspace of Rn. For
example, a 3-parallelogram generated by dependent vectors is actually some kind of 2-dimensional hexagon. I
guess there is a recursive formula for the lower-dimensional volume but I don’t want to work it out.
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The hardest part is (1), which we will prove below. The proof of (2) is a simple
calculation, which was given above. For the proof of (3) let A be n× n. We observe that the
ij entry of the n× n matrix ATA is

aTi aj = ai • aj = ‖ai‖‖aj‖ cos θij ,

where θij is the angle between ai and aj . Since from (1) we have

Voln(A) = |det(A)| =
√

det(ATA),

and since the entries of ATA only depend on the lengths ‖ai‖ and angles θij , it follows that
the volume Voln(A) only depends on the lengths and angles. But now suppose that A is k×n
with columns a1, . . . ,ak ∈ Rn. In this case the ij entry of ATA is still given by

aTi aj = ai • aj = ‖ai‖‖aj‖ cos θij ,

hence det(ATA) has exactly the same formula in terms of ‖ai‖ and θij as it does when A is a
k × k square matrix. Then from the square case we conclude that

Volk(A) = some formula involving the lengths ‖ai‖ and angles θij =
√

det(ATA).

This completes the proof, except for part (1). �

Before diving into the proof of (1), we consider the case k = 3. The technical name for a
3-parallelogram is a parallelepiped.

Volume of a Parallelepiped. Let A be an n× 3 matrix with columns a1,a2,a3 ∈ Rn, and
let θij be the angle between vectors ai and aj , which can be computed via the dot product:

θij = arccos

(
ai • aj
‖ai‖‖aj‖

)
.

Then the volume (i.e., the 3-volume) of the parallelepiped generated by a1,a2,a3 is given by

Vol3(A)2 = det(ATA)

= det

 ‖a1‖2 a1 • a2 a1 • a3

a1 • a2 ‖a2‖2 a2 • a3

a1 • a3 a2 • a3 ‖a3‖2


= det

 ‖a1‖2 ‖a1‖‖a2‖ cos θ12 ‖a1‖‖a3‖ cos θ13

‖a1‖‖a2‖ cos θ12 ‖a2‖2 ‖a2‖‖a3‖ cos θ23

‖a1‖‖a3‖ cos θ13 ‖a2‖‖a3‖ cos θ23 ‖a3‖2

 ,

which after some simplification becomes

Vol3(A) = ‖a1‖‖a2‖‖a3‖
√

(1 + 2 cos θ12 cos θ13 cos θ23 − (cos2 θ12 + cos2 θ13 + cos2 θ23)).
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This formula is much more difficult to derive without determinants.103

Proof of (1). For an n× n matrix A we need to prove that

|det(A)| = Voln(A).

Actually, we will prove that
det(A) = ±Voln(A),

where the sign depends on the ordering of the columns, and is not relevant to the geometry.
Thus we will show that the determinant can be interpreted as a “signed volume”.104 According
to Section 2.2, we only need to show that the function Voln from (Rn)n to R satisfies the three
rules of a determinant function:

• Multilinear. The function Voln(A) is linear in each individual column of A.

• Alternating. If A′ is obtained from A by switching two columns, then

Voln(A′) = −Voln(A).

• Normalized. We have Voln(In) = 1.

The third property is part of the definition of volume. It just says that the unit n-cube has
n-volume 1. And we can just assume that the second property is true, since we don’t care
about the sign of the volume. Thus we only need to show that Voln is multilinear.

There is a subtle difficulty here, since to prove a theorem about volume, one must have a
formal definition of volume, which we don’t. In fact, the most common formal definition of
volume is based the determinant! But any proof using this formalization would be circular.

Instead of developing a rigorous “measure theory”,105 we will proceed intuitively. It is intu-
itively obvious that scaling one of the columns scales the volume by the same amount. For
example, doubling one side of a parallelogram doubles the area:

103If n = 3 then we can also express the volume in terms of the cross product, but doing so breaks the
symmetry, and the cross product doesn’t generalize to higher dimensions.
104This should be familiar from Calculus, since the area under a curve is actually a “signed area”, with regions

below the x-axis having “negative area”. See the next section.
105Measure theory is the term for the modern, rigorous, theory of integration.
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Thus we only need to show that Voln preserves addition in each column. In the case of
parallelograms, we need to show that the areas of the parallelograms generated by u,w and
v,w add to the area of the parallelogram generated by u + v and w. For example, in the
following picture we need to show that the areas of the red and green parallelograms add to
the area of the blue parallelogram:

The proof uses the dotted line, which is parallel to w. This line divides the blue parallelogram
into two pieces, which have the same areas as the red and green parallelograms. This follows
because parallelograms with the same base and height have the same area.

In higher dimensions the scaling argument is still plausible but the addition argument is harder
to visualize. Instead of trying to generalize the above picture, we will base our argument on
a general geometric principle called Cavalieri’s Principle, which we take as an axiom.106

Cavalieri’s Principle. An n-prism in Rn has the following form. Let V ⊆ Rn be an (n− 1)-
dimensional subspace. For any subset S ⊆ V and for any vector a ∈ Rn that is not in V , we
define the “prism over S generated by a”:

PrismS(a) = {p + ta : p ∈ S and 0 ≤ t ≤ 1}.

Then Cavalieri’s principle says that

Voln(PrismS(a)) = Voln(PrismS(a + v)) for any vector v ∈ V .

More colloquially:

two prisms with the same base and the same height have the same volume.

Here is a picture:

106This principle is often taken as an axiom, for example when deriving the volume of a sphere in R3 without
calculus.
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For any n× n matrix A we will show that applying an elementary matrix of the form Lij(λ)
to A does not change the volume of the n-parallelotope:

Voln(ALij(λ)) = Voln(A).

To be precise, let A have columns a1, . . . ,an ∈ Rn and let Sj be the (n − 1)-parallelogram
living in the (n−1)-dimensional subspace V ⊆ Rn generated by the vectors a1, . . . ,an, except
for aj . We can view the n-parallelotope generated by A as PrismSj (aj). If A′ is obtained from
A by replacing column aj by itself plus any vector v ∈ V , then Cavalieri’s principle says

Voln(A′) = Voln(PrismSj (aj + v)) = Voln(PrismSj (aj)) = Voln(A).

We are interested in the special case when v = λai for some i 6= j, in which case A′ = ALij(λ).

And that’s enough about that.

10.7 Application to Calculus

In the previous section we showed that the a determinant can be viewed as the n-volume of
an n-parallelotope living in Rn. Now we apply this idea to volumes of arbitrary shapes.

Scaling Factor. Consider an n × n matrix A with columns a1, . . . ,an ∈ Rn. We can think
of A as the linear function Rn → Rn that sends x 7→ Ax. Hence A sends the unit n-cube
generated by the standard basis vectors e1, . . . , en to the n-parallelotope generated by the
vectors Aei = ai. Since the unit n-cube has volume 1 (by definition), we see that

Voln(A) = |det(A)|
Voln(A) = |det(A)| · 1

Voln(n-parallelotope generated by a1, . . . ,an) = |det(A)| ·Voln(unit n-cube).

128



More generally, consider an n × n matrix B with columns b1, . . . ,bn ∈ Rn. Then A sends
the n-parallelotope generated by b1, . . . ,bn to the n-parallelotope generated by Ab1, . . . , Abn,
which are the columns of AB. Hence we have

Voln(image of the parallelotope b1, . . . ,bn under the function A)

= Voln(parallelotope generated by Ab1, . . . , Abn)

= Voln(Ab1, . . . , Abn)

= Voln(AB)

= |det(AB)|
= |det(A)det(B)|
= |det(A)| · |det(B)|
= |det(A)| ·Voln(B)

= |det(A)| ·Voln(parallelotope b1, . . . ,bn).

For example, the unit n-cube corresponds to the identity matrix B = In. It is also worth
mentioning the case when A = λIn for some scalar λ, so that A is the function that dilates
Rn by a factor of λ. In this case we have107

det(λIn) = λn,

so the function A scales volumes in Rn by a factor of λn. Indeed, if you double the side length
of a cube in R3 then its volume gets multiplied by 8 = 23.

We can think of a square matrix A in two ways. If we think of it as a collection of numbers then
the determinant is the (signed) volume of the parallelotope generated by the columns. On the
other hand, if we think of A as a linear function Rn → Rn then we should think of |det(A)|
as a “volume scaling factor”. Indeed, we have shown that applying A to any parallelotope in
Rn scales its volume by |det(A)|. I claim that the same idea holds for arbitrary108 subsets of
Rn. To be precise, for any subset S ⊆ Rn we define the image set

A(S) := {the set of points Ap for all p ∈ S}.

In this case I claim that
Voln(A(S)) = |det(A)| ·Voln(S).

The idea of the proof is that any reasonable subset of Rn can be approximated as a union of
tiny parallelotopes. To simplify the discussion we will use tiny cubes. Suppose that the set
S ⊆ Rn is a union of tiny cubes. Then the image A(S) ⊆ Rn is a union of tiny parallelotopes,
each of whose volume has been scaled by |det(A)|. But the total volume is just the sum of
the volumes of the tiny pieces. Hence the total volume is also scaled by |det(A)|. Here is a
picture:

107This follows from multilinearity. Multiplying one column by λ multiplies the determinant λ. Multiplying
each of the n columns by λ multiplies the determinant by λn.
108Arbitrary “measurable” subsets. The real numbers are wild enough that they admit pathological examples

such as “sets whose volume cannot be defined”. I am happy to ignore such things.
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Thinking of determinants as volume scaling factors of linear functions gives an intuitive ex-
planation for the identity det(AB) = det(A)det(B). Indeed, for any subset S ⊆ Rn and for
any n× n matrices A,B we have

Voln((AB)(S)) = |det(AB)| ·Voln(S),

but also

Voln((AB)(S)) = Voln(A(B(S))

= |det(A)| ·Voln(B(S))

= |det(A)| · |det(B)| ·Voln(S),

which implies that |det(AB)| = |det(A)| · |det(B)|. (The sign is a bit trickier to handle.)
This idea also gives meaning to the determinant of an abstract linear function f : V → V ,
independent of choosing a basis for V .

Linear Approximation. We have seen that a linear function A : Rn → Rn scales the n-
volume of an arbitrary shape S ⊆ Rn by a factor of |det(A)|. In this section we will generalize
from linear to non-linear functions.

A general function r : Rm → Rn has the form

r(x1, . . . , xn) = r(x) = (r1(x), . . . , rm(x)),

where each component function ri(x1, . . . , xn) sends Rn → R. Suppose that each ri has
continuous partial derivatives near some point p ∈ Rn, and consider the Taylor expansion:

ri(p + x) = ri(p) + (∇ri)
T
px + higher terms,
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where the higher terms are small when x is close to 0. Then we collect the components into
a column vector:

r(p + x) =

 r1(p + x)
...

rm(p + x)


≈

 r1(p) + (∇r1)Tpx
...

rm(p) + (∇rm)Tpx



=

 r1(p)
...

rm(p)

+

 (∇r1)Tpx
...

(∇rm)Tpx



= r(p) +

 (∇r1)Tp
...

(∇rm)Tp

x

= r(p) +


∂r1
∂x1

(p) · · · ∂r1
∂xn

(p)
...

...
∂rm
∂x1

(p) · · · ∂rm
∂xn

(p)

x.

The m× n matrix of partial derivatives of the components of r is called the Jacobian matrix:

Jr :=

∂r1/∂x1 · · · ∂r1/∂xn
...

...
∂rm/∂x1 · · · ∂rm/∂xn

 .

This matrix plays the role of the “linear part” of the multi-multivariable Taylor expansion:

r(p + x) = r(p) + (Jr)px + higher terms.

In summary, suppose that a possibly non-linear function r : Rn → Rm behaves nicely near
a point p ∈ Rn. Then near this point the function r is approximately equal to the linear
function corresponding to the m × n Jacobian matrix (Jr)p. If r happens to be linear,
corresponding to an m× n matrix A, then one can check that (Jr)p = A for any point p. If
r is non-linear then the matrix (Jr)p changes from point to point.

Application to Integration. In the previous sections we showed the following:

• If a function r : Rm → Rn has continuous partial derivatives near a point p ∈ Rn then
we can approximate r near p by an m× n matrix (Jr)p.

• A linear function A : Rn → Rn scales volume by the factor |det(A)|.
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Combining these ideas gives us a method to compute the volumes of parametrized shapes in
Rn. Before showing some examples, I will state the general theorem.

Theorem (Volume of a k-dimensional submanifold of Rn). We wish to compute the
k-volume of a k-dimensional subset T ⊆ Rn. To do this, we look for a parametrization function
r : Rk → Rn whose image is T . Suppose that r sends the subset S ⊆ Rk to the subset T ⊆ Rn.
Then we can compute109 the k-volume of T by integrating a suitable “volume stretch factor”
over the region S ⊆ Rk using standard Euclidean coordinates:

Volk(T ) = Volk(r(S)) =

∫
p∈S

√
det((Jr)Tp(Jr)p) · dp.

Remark: We require the shapes S, T and the function r to be sufficiently nice. This involves
several technical conditions that I am happy to ignore. Basically, S and T should be reasonably
smooth, and r should parametrize T without any overlaps or kinks.

Proof. A tiny cube at the point p ∈ S has a tiny volume dp. The function r is approximately
linear at p, given by the n× k matrix (Jr)p. This matrix sends the tiny cube at the point p
to a tiny k-parallelotope at the point r(p). For any small shape near p, the linear function
(Jr)p scales its volume by a factor of110√

det((Jr)Tp(Jr)).

Hence the volume of the tiny k-parallelotope at the point r(p) is√
det((Jr)Tp(Jr)) · (volume of the tiny cube) =

√
det((Jr)Tp(Jr)) · dp.

Then we just add up all these tiny volumes to get the k-volume of T . �

To end this section, I will illustrate how this result unifies several formulas from Calculus III.

Example: Arc Length. Let r : R→ Rn be a parametrized path in Rn. Usually we think of
the parameter as time, and we write r(t) = (x1(t), x2(t), . . . , xn(t)). The Jacobian matrix at
time t is just the velocity vector:

Jr(t) =

∂x1/∂t
...

∂xn/∂t

 = r′(t).

In this case, (Jr)T (Jr) is just a scalar, and the 1-volume (i.e., length) scaling factor is just
the speed of the parametrization:

(Jr)T (Jr) = r′(t)T r(t)

109In fact, this formula is often used as the definition of volume.
110We only proved this in the case k = n, when (Jr)p is a square matrix and the scaling factor reduces to
|det((Jr)p)|. The general case follows by the same argument as in 2.6.
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(Jr)T (Jr) = ‖r′(t)‖2

det((Jr)T (Jr)) = ‖r′(t)‖2√
det((Jr)T (Jr)) = ‖r′(t)‖.

Then the theorem tells us that the arc length of the curve is just the integral of the speed:

(length of the curve r(t) between times t = a and t = b) =

∫ b

a
‖r′(t)‖ dt.

Of course this makes sense because distance is the time integral of speed.

Example: Surface Area. Let r : R2 → Rn be a parametrization for a 2-dimensional surface
T ⊆ Rn. It is common to write r(u, v) = (x1(u, v), . . . , xn(u, v)), where each coordinate xi is
a function from R2 to R. The Jacobian matrix is

Jr =

∂x1/∂u ∂x1/∂v
...

...
∂xn/∂u ∂xn/∂v

 =

 | |
ru rv
| |

 ,

where ru and rv are the “velocity vectors” of r in the u and v directions111

111If one of u or v is fixed then you can think of the other as time.
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In this case the 2-volume (i.e., area) scaling factor is the area of the parallelogram generated
by ru and rv:

(Jr)T (Jr) =

(
− ru −
− rv −

) | |
ru rv
| |


=

(
‖ru‖2 ru • rv
ru • rv ‖rv‖2

)
det((Jr)T (Jr)) = ‖ru‖2‖rv‖2 − (ru • rv)

2

= ‖ru‖2‖rv‖2 − (|ru‖‖rv‖ cos θuv)
2

= ‖ru‖2‖rv‖2(1− cos2 θuv)

= ‖ru‖2‖rv‖2 sin2 θuv√
det((Jr)T (Jr)) = ‖ru‖‖rv‖| sin θuv|,

where θuv is the angle between the velocity vectors ru and rv. In the special case of a surface
in R3, we can also describe this area as the length of the cross product vector:

‖ru × rv‖ = ‖ru‖‖rv‖| sin θuv|.

To compute the area of the surface, we add up all of the areas of tiny parallelograms:

(area of the surface T ⊆ Rn) =

∫ √
‖ru‖2‖rv‖2 − (ru • rv)2 · dudv.

Example: Change of Coordinates. A parametrization of an n-dimensional shape in n-
dimensional space is sometimes viewed as a “change of coordinates” r : Rn → Rn. For
example, take the parametrization of R2 by polar coordinates:

r(r, θ) =

(
x(r, θ)
y(r, θ)

)
=

(
r cos θ
r sin θ

)
.
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The Jacobian stretch factor at the point (r, θ) is

Jr =

(
∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
√

det((Jr)T (Jr)) = |det(Jr)|

= |r cos2 θ + r sin2 θ|
= |r|.

Hence the area of a region T in the x, y-plane, which is parametrized by a region S in the
r, θ-plane is given by112 ∫

S
r · drdθ.

Since a change of coordinates maps a space into itself, changes of coordinates can be composed.
Suppose we have functions r : Rn → Rn and s : Rn → Rn, with composition r ◦ s : Rn →
Rn. The multi-multivariable version of the chain rule says that the Jacobian matrix of the
composition r ◦ s is equal to the product of the Jacobian matrices of r and s. That is, for any
point p ∈ Rn we have

(J(r ◦ s))p = (Jr)s(p) · (Js)p.

112In order to ensure the “niceness” of the parametrization, we will take r ≥ 0 (so that |r| = r) and 0 ≤ θ < 2π.
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Hence the the Jacobian scaling factors multiply:

|det((J(r ◦ s))p)| = |det((Jr)s(p))| · |det((Js)p)|.

Observe that the notation is getting complicated. Indeed, the subject of differential geometry
is known for its impenetrable notation. Since no two authors can understand each other, they
often invent their own personal notations. Einstein’s notation is the most popular among
physicists.

11 Eigenvalues and Eigenvectors

11.1 A Motivating Example

In order to motivate the concepts of eigenvalues and eigenvectors I will develop one specific
example in detail. Some of the steps will seem miraculous, and only make sense later when
we discuss the general theory.

Our example comes from the theory of “Markov chains”. Consider the following matrix:

A =

(
.8 .3
.2 .7

)
.

This matrix has the special property that each of its columns sums to 1. In matrix notation:113

(
1 1

)
A =

(
1 1

)(.8 .3
.2 .7

)
=
(
.8 + .2 .3 + .7

)
=
(
1 1

)
.

By induction, this implies that every power of A has columns that sum to 1:(
1 1

)
An =

(
1 1

)
(AAn−1)

= (
(
1 1

)
A)An−1

=
(
1 1

)
An−1

...

=
(
1 1

)
.

Such a matrix is called a Markov matrix or a stochastic matrix. We can interpret the matrix
entries as probabilities. Suppose that a certain particle can be in one of two states. At each
discrete time step, the particle can change states, according to the following probabilities:

113Jargon: Later we will say that
(
1 1

)
is a “left eigenvector” of A with “eigenvalue” 1.
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That is, if the particle is currently in state 1 then it has an 80% chance to stay in state 1 and
a 20% chance to transition to state 2. If the particle is in state 2 then it has a 70% chance to
stay and a 30% chance to stay. This is why the columns of A must sum to 1.

Now let’s consider the first few powers of A:

A =

(
.8 .3
.2 .7

)
,

A2 =

(
.7 .45
.3 .55

)
,

A3 =

(
.65 .525
.35 .475

)
,

...

A10 =

(
0.600390625 0.5994140625
0.399609375 0.4005859375

)
.

Do you see any pattern here? It seems likely that

An →
(
.6 .6
.4 .4

)
as n→∞,

but the entries of the matrices look complicated. Nevertheless, at the end of this section we
will obtained exact formulas for the entries of each power An.

We have shown that each column of each power An sums to 1. This fact has a probabilistic in-
terpretation. Let pk and qk be the probabilities that the particle is in state 1 or 2, respectively,
after k seconds, and let p0, q0 denote the initial probabilities. Then I claim that114

pn =

(
pn
qn

)
= A

(
pn−1

qn−1

)
= Apn−1.

114Alternatively, suppose that we have an ensemble of particles and let xn, yn denote the expected number
of particles in each state. Then the same theory will hold.
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To prove this we use the law of total probability (which I won’t explain here). Given any two
events S and T , we have the following identities:

P (S) = P (T )P (S|T ) + P (T ′)P (S|T ′),
P (S′) = P (T )P (S′|T ) + P (T ′)P (S′|T ′).

Let Sn be the event that “the particle is in state 1 after n seconds”, so that

pn = P (Sn) and qn = P (S′n).

The transition matrix A tells us that

P (Sn|Sn−1) = .8,

P (S′n|Sn−1) = .2,

P (Sn|S′n−1) = .3,

P (S′n|S′n−1) = .7,

which are independent of n. Hence we have

pn = P (Sn)

= P (Sn−1)P (Sn|Sn−1) + P (S′n−1)P (Sn|S′n−1)

= pn−1(.8) + qn−1(.3)

and

qn = P (S′n)

= P (Sn−1)P (S′n|Sn−1) + P (S′n−1)P (S′n|S′n−1)

= pn−1(.2) + qn−1(.7),

as desired. But enough about probability.

Given the initial distribution p0 = (p0, q0), the distribution after n seconds is given by

pn = Apn−1,

= AApn−2

...

= AA · · ·Ap0

= Anp0.

Our goal is to find explicit formulas for pn and qn in terms of p0 and q0.

Now comes the key trick. We have the following mysterious identitites:

A

(
3
2

)
=

(
3
2

)
and A

(
1
−1

)
=

1

2

(
1
−1

)
. (∗)
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Jargon: We say that (3, 2) and (1,−1) are “eigenvectors” of A with corresponding “eigenval-
ues” 1 and 1/2. More generally, if Ax = λx for some vector x and scalar λ, then the action
of An on x is easy to compute:

Anx = (An−1A)x

= An−1(Ax)

= An−1(λx)

= λAn−1x

...

= λnx.

Once we know (∗), the rest of the solution is straightforward. First we want to express our
initial condition p0 as a linear combination of eigenvectors. In other words, we want to find a
and b such that

p0 = a

(
3
2

)
+ b

(
1
−1

)
=

(
3 1
2 −1

)(
a
b

)
.

Since the two eigenvectors are not parallel, the matrix of eigenvectors is invertible, hence(
a
b

)
=

(
3 1
2 −1

)−1(
p0

q0

)
= −1

5

(
−1 −1
−2 3

)(
p0

q0

)
= −1

5

(
−p0 − q0

−2p0 + 3q0

)
=

(
1/5

p0 − 3/5

)
. p0 + q0 = 1

Then we obtain the solution:

p0 =
1

5

(
3
2

)
+

(
p0 −

3

5

)(
1
−1

)
Anp0 =

1

5
An
(

3
2

)
+

(
p0 −

3

5

)
An
(

1
−1

)
pn =

1

5

(
3
2

)
+

(
p0 −

3

5

)(
1

2

)n(
1
−1

)
(
pn
qn

)
=

(
3/5 + (p0 − 3/5)/2n

2/5− (p0 − 3/5)/2n

)
.
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As n → ∞ we observe that pn → (3/5, 2/5), regardless of the initial probabilities p0 and q0.
The fact that the initial condition is irrelevant is sometimes called the “ergodic property” (or
the “mixing property”).

But we can do more. Suppose that Ax1 = λ1x1 and Ax2 = λ2x2 for some eigenvectors x1,x2

and eigenvalues λ1, λ2. We can express both of these conditions simultaneously by forming
the matrices

X =
(

x1 x2

)
and Λ =

(
λ1 0
0 λ2

)
.

Then we have

AX = A
(

x1 x2

)
=
(
Ax1 Ax2

)
=
(
λ1x1 λ2x2

)
=
(

x1 x2

)(λ1 0
0 λ2

)
= XΛ.

This equation holds even when A is n × n and X is n × 2. If A is 2 × 2 and if the vectors
x1,x2 are not parallel, then the matrix X is square and invertible, hence

AX = XΛ

A = XΛX−1.

In this case, we say that we have “diagonalized” the matrix A. In our case, we have(
.8 .3
.2 .7

)
=

(
3 1
2 −1

)(
1 0
0 1/2

)(
3 1
2 −1

)−1

.

The powers of A behave well with respect to this factorization. This follows from two key
properties. First, the powers of a diagonal matrix are easy to compute:

Λn =

(
λ1 0
0 λ2

)n
=

(
λn1 0
0 λn2

)
.

Second, there is a miraculous cancellation in the powers of XΛX−1:

An = (XΛX−1)n

= (XΛX−1)(XΛX−1) · · · (XΛX−1)

= XΛ(X−1X)Λ(X−1X) · · · (X−1X)ΛX−1

= XΛΛ · · ·ΛX−1

= XΛnX−1.
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Putting these together gives us explicit formulas for the entries of An:(
.8 .3
.2 .7

)n
=

(
3 1
2 −1

)(
1 0
0 1/2

)n(
3 1
2 −1

)−1

=

(
3 1
2 −1

)(
1n 0
0 (1/2)n

)(
3 1
2 −1

)−1

=

(
3 1
2 −1

)(
1n 0
0 (1/2)n

)(
−1

5

)(
−1 −1
−2 3

)
=

(
3 1
2 −1

)(
1n 0
0 (1/2)n

)(
−1

5

)(
−1 −1
−2 3

)
=

1

5

(
3 1
2 −1

)(
1 0
0 (1/2)n

)(
1 1
2 −3

)
=

1

5

(
3 1
2 −1

)(
1 1

2/2n −3/2n

)
=

1

5

(
3 + 2/2n 3− 3/2n

2− 2/2n 2 + 3/2n

)
.

These exact formulas would be very difficult to obtain without the trick of eigenvalues and
eigenvectors. By letting n go to infinity, we confirm our experimental observation that

An → 1

5

(
3 3
2 2

)
=

(
.6 .6
.4 .4

)
as n→∞.

Finally, let me mention an alternative expression for An that is often more useful. For any
vectors x1,x2,y1,y2 and scalars λ1, λ2, one can check that

(
x1 x2

)(λ1 0
0 λ2

)( yT1

yT2

)
= λ1x1y

T
1 + λ2x2y

T
2 .

Thus in our case we have(
.8 .3
.2 .7

)n
=

(
3
2

)(
1/5 1/5

)
+

(
1

2

)n(
1
−1

)(
2/5 −3/5

)
.

This expression emphasizes the fact that An converges to a rank 1 matrix:

An →
(

3
2

)(
1/5 1/5

)
as n→∞.

Remember: This section is just for motivation. I will explain all of the ideas later.

11.2 The Characteristic Polynomial

Let A be a square matrix over R or C. We say that λ ∈ C is an eigenvalue of A when there
exists a nonzero vector x satisfying Ax = λx. Let me emphasize this:

λ is an eigenvalue of A ⇐⇒ there exists some x 6= 0 satisfying Ax = λx.
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If Ax = λx then we say that x is a λ-eigenvector of A.

It is not immediately clear that eigenvalues exist. Our first result will show that any matrix
has at least one eigenvalue. To do this we will rewrite the definition of eigenvalues in terms
of determinants.115 The following equivalences follow from results in the previous chapter:

λ is an eigenvalue of A ⇐⇒ Ax = λx for some x 6= 0

⇐⇒ (λx−Ax) = 0 for some x 6= 0

⇐⇒ λIx−Ax = 0 for some x 6= 0

⇐⇒ (λI −A)x = 0 for some x 6= 0

⇐⇒ the nullspace N (λI −A) contains a nonzero vector

⇐⇒ dimN (λI −A) ≥ 1

⇐⇒ the matrix λI −A is not invertible

⇐⇒ det(λI −A) = 0.

This last equivalence is the most convenient way to study eigenvalues. In summary,

λ is an eigenvalue of A ⇐⇒ det(λI −A) = 0.

If λ is an eigenvalue of an n×n matrix A, we observe that the set of λ-eigenvectors is a subspace
of Rn. Indeed, the λ-eigenvectors of A are just the vectors in the nullspace N (λI − A). We
say that

N (λI −A) = the λ-eigenspace of A.

When λ is not an eigenvalue the matrix λI−A is invertible, so in this case the “λ-eigenspace”
is trivial: N (λI−A) = {0}. Before going further with the theory, we compute the eigenvalues
of a general 2× 2 matrix:

A =

(
a b
c d

)
.

We have

det(λI −A) = det

(
λ

(
1 0
0 1

)
−
(
a b
c d

))
= det

(
λ− a −b
−c λ− d

)
= (λ− a)(λ− d)− (−b)(−c)
= λ2 − (a+ d)λ+ (ad− bc).

Hence the eigenvalues of A are

λ =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

115There is a popular textbook called Linear Algebra Done Right in which the author goes to great lengths to
avoid the use of determinants in the theory of eigenvalues. There is another well-known textbook called Linear
Algebra Done Wrong, which I greatly prefer.
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Let ∆ = (a+ d)2 − 4(ad− bc) denote the discriminant of this quadratic polynomial. If ∆ = 0
then the matrix A has only one eigenvalue. Now suppose that A has real entries. If ∆ > 0 then
A has two distinct real eigenvalues and if ∆ < 0 then A has two distinct complex eigenvalues.

After finding the eigenvalues, it is an easy matter to find all of the eigenvectors. Consider our
example from the previous section:

A =

(
.8 .3
.2 .7

)
.

The eigenvalues are the roots of the polynomial equation

det(λI −A) = 0

λ2 − (.8 + .7)λ+ (.8)(.7)− (.2)(.3) = 0

λ2 − 1.5λ+ 0.5 = 0,

which are

λ =
1

2
(1.5±

√
(1.5)2 − 4(0.5))

=
1

2
(1.5±

√
0.25)

=
1

2
(1.5± 0.5)

= 1 and 1/2.

To find the 1-eigenvectors, we use row reduction to compute the nullspace of 1I −A. First we
observe that the matrix 1I −A has dependent rows (hence also dependent columns):

1I −A =

(
1 0
0 1

)
−
(
.8 .3
.2 .7

)
=

(
.2 −.3
−.2 .3

)
.

Indeed, this must be the case because 1 is an eigenvalue. Then we compute the RREF:

(1I −A)x = 0  

(
.2 −.3
−.2 .3

)
x =

(
0
0

)
RREF
 

(
1 −3/2
0 0

)
x =

(
0
0

)
.

It follows that there is a line of 1-eigenvectors:116

x = t

(
3/2
1

)
.

Next we compute the (1/2)-eigenspace:(
1

2
I −A

)
x = 0  

(
−.3 −.3
−.2 −.2

)
x =

(
0
0

)
RREF
 

(
1 1
0 0

)
x =

(
0
0

)
.

116In the previous section I chose x = (3, 2) to avoid fractions.
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Thus we have also have a line of (1/2)-eigenvectors:117

x = t

(
−1
1

)

The procedure is the same for larger matrices. Given the eigenvalues, we can find all of the
eigenvectors by row reduction. The hard part is to find the eigenvalues.118 In general, we
define the characteristic polynomial of a square matrix A:

χA(λ) := det(λI −A).

This is, indeed, a polynomial in λ. Furthermore, if A is n× n then χA(λ) is a polynomial of
degree n. In general the coefficients are quite complicated, but two of the coefficients have
special names. We have

χA(λ) = λn − tr(A)λn−1 + · · ·+ (−1)ndet(A),

where the trace of a square matrix is defined as the sum of its diagonal entries:

tr(A) = tr

a11 · · · a1n

...
...

an1 · · · ann

 := a11 + a22 + · · ·+ ann.

We already know this formula for 2× 2 matrices, and the general case is not hard to check.

If matrices A and B satisfy B = XAX−1 for some invertible matrix X, then I claim that A
and B have the same characteristic polynomial:

χXAX−1(λ) = χA(λ).

To prove this, we note that

χB(λ) = det(λI −B)

= det(λXX−1 −XAX−1)

= det(X(λI −A)X−1)

=���
�det(X)det(λI −A)���

��det(X)−1

= det(λI −A)

= χA(λ).

117In the previous example I chose x = (1,−1) because I didn’t want a negative sign in the first coordinate.
118Solving polynomials equations is a non-linear problem. There are no exact algorithms, but there are

reasonably good approximation schemes. The state of the art for computing eigenvalues is the QR algorithm,
which doesn’t use the characteristic polynomial at all.
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By comparing the coefficients of χA(λ) and χB(λ), it follows that119

tr(XAX−1) = tr(A) and det(XAX−1) = det(A).

The eigenvalues of a square matrix A are the roots of the characteristic polynomial. It follows
from the Fundamental Theorem of Algebra that

Every square matrix has at least one eigenvalue.

Indeed, since the characteristic polynomial χA(λ) has degree n, the FTA says that there exist
complex numbers λ1, . . . , λn ∈ C such that

χA(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn).

We can expand this to get

χA(λ) = λn − (λ1 + · · ·+ λn)λn−1 + · · ·+ (−1)nλ1 · · ·λn.

Then comparing the coefficients with our previous expansion for χA(λ) gives

tr(A) = λ1 + · · ·+ λn and det(A) = λ1 · · ·λn.

That is, the trace of A equals the sum of the eigenvalues (with multiplicities) and the deter-
minant of A equals the product of the eigenvalues (with multiplicities). This is often useful.

Remarks:

• I guess we could say that every n × n matrix has n eigenvalues, but they need not be
distinct. For example, the identity matrix In has characteristic polynomial

det(λIn − In) = det

λ− 1
. . .

λ− 1

 = (λ− 1)n,

hence 1 is the only eigenvalue. The corresponding eigenspace is all of Rn. Indeed, every
vector x ∈ Rn is a 1-eigenvector of the identity matrix: Inx = x = 1x.

• A real matrix has at least one complex eigenvalue, but it need not have any real eigen-
values. For example, consider the matrix that rotates counterclockwise by 90◦:

A =

(
0 −1
1 0

)
.

The characteristic polynomial is

det(λI −A) =

(
λ 1
−1 λ

)
= λ2 + 1,

hence the eigenvalues are ±i. The corresponding eigenspaces are

N (iI −A) = t

(
1
−i

)
and N (−iI −A) = t

(
1
i

)
.

Hence A is a real matrix with no real eigenvalues and no real eigenvectors.
119Of course, we already knew this property of the determinant.
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11.3 Diagonalization

We say that a square matrix A is diagonalizable when it has a basis of eigenvectors. So far we
have seen only diagonalizable matrices. Here is the simplest example of a matrix that is not
diagonalizable:

A =

(
1 1
0 1

)
.

The characteristic polynomial is

det(λI −A) = det

(
λ− 1 −1

0 λ− 1

)
= (λ− 1)2,

hence 1 is the only eigenvalue. But the 1-eigenspace is only one dimensional:

(1I −A)x = 0  

(
0 −1
0 0

)
x =

(
0
0

)
 x = t

(
1
0

)
.

Non-diagonalizable matrices are quite a nuisance. Fortunately, they are rare. The next result
shows that any n× n matrix with n distinct eigenvalues is diagonalizable.

Theorem (Distinct Eigenvalues Implies Diagonalizable). Let A be an n × n matrix.
Suppose that the characteristic polynomial factors as

χA(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn),

where the complex numbers λ1, . . . , λn ∈ C are distinct. Furthermore, let x1, . . . ,xn ∈ Cn be
some nonzero vectors satisfying Axi = λixi.

120 Then I claim that x1, . . . ,xn is a basis for Cn.

Warning: This theorem is not sharp. If the characteristic polynomial of a matrix has a
repeated factor then the matrix may or may not be diagonalizable. For example, the following
two matrices both have characteristic polynomial (λ− 1)2:(

1 1
0 1

)
and

(
1 0
0 1

)
.

The matrix on the left is not diagonalizable, but the matrix on the right is diagonalizable. In-
deed, every vector is a 1-eigenvector for the identity matrix. I will give a sharp characterization
of diagonalizability in the next section.

Proof. It is enough to show that the set x1, . . . ,xn is linearly independent. Then the subspace
of Cn spanned by x1, . . . ,xn is n-dimensional, hence it must be the whole space.

First we observe that the vectors x1, . . . ,xn are distinct. Indeed, suppose we had xi = xj = x
for some i 6= j. This would imply that

Ax = Ax

120Such vectors exist because λ1, . . . , λn are eigenvalues.
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λix = λjx

(λi − λj)x = 0.

But by assumption we have λi − λj 6= 0 and x 6= 0, which gives a contradiction. This is no
big deal; it just says that a given vector can’t be an eigenvector for two different eigenvalues.

We will prove by induction on k that the set of vectors x1, . . . ,xk is independent for any
1 ≤ k ≤ n, and it will follow that the set x1, . . . ,xn is independent. The result is trivial
for k = 1 because any set containing one vector is by convention called independent. It is
not logically necessary, but let’s also consider the case k = 2, to get a feel for the general
argument. Suppose that we have

b1x1 + b2x2 = 0

for some scalars b1, b2 ∈ C. Our goal is to show that b1 = 0 and b2 = 0. First multiply both
sides on the left by A to obtain

A(b1x1 + b2x2) = A0

b1Ax1 + b2Ax2 = 0

b1λ1x1 + b2λ2x2 = 0.

Subtract λ2 times the first equation from this equation to obtain

(b1λ1x1 + b2λ2x2)− λ2(b1x1 + b2x2) = 0

b1(λ1 − λ2)x1 + b2(λ2 − λ2)x2 = 0

b1(λ1 − λ2)x1 = 0.

Since λ1 − λ2 6= 0 and x1 6= 0 this implies that b1 = 0. But then substituting into the first
equation gives

b1x1 + b2x2 = 0

0x1 + b2x2 = 0

b2x2 = 0,

which implies that b2 = 0 because x2 6= 0.

Now we prove the general case. Fix some k ≥ 2 and suppose that we have

b1x1 + b2x2 + · · ·+ bkxk = 0 (1)

for some scalars b1, . . . , bk ∈ C. Our goal is to show that b1 = b2 = · · · = bk = 0. To do this
we multiply both sides on the left by A to obtain

A(b1x1 + b2x2 + · · ·+ bkxk) = A0

b1Ax1 + b2Ax2 + · · ·+ bkAxk = 0

b1λ1x1 + b2λ2x2 + · · ·+ bkλkxk = 0. (2)
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Then we consider the equation (2)− λk(1):(
k∑
i=1

biλixi

)
− λk

(
k∑
i=1

bixi

)
= 0

k∑
i=1

bi(λi − λk)xk = 0

0xk +
k−1∑
i=1

bi(λi − λk)xi = 0

k−1∑
i=1

bi(λi − λk)xi = 0.

By induction, the vectors x1, . . . ,xk−1 are independent, hence for any 1 ≤ i ≤ k − 1 we must
have bi(λi − λk) = 0. But by assumption we have λi 6= λk, and hence bi = 0, for any 1 ≤ i ≤
k − 1. Finally, we substitute back into equation (1) to obtain 0x1 + · · · + 0xk−1 + bkxk = 0,
which implies that bk = 0 because xk 6= 0. �

This result implies that “almost all” matrices are diagonalizable. To see this, we will use the
concept of the discriminant of a polynomial. For example, consider the general 2× 2 matrix

A =

(
a b
c d

)
.

The characteristic polynomial is

χA(λ) = λ2 − (a+ d)λ+ (ad− bc),

and hence the eigenvalues are

λ =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

The quantity ∆(a, b, c, d) = (a+d)2−4(ad−bc) is called the discriminant of the characteristic
polynomial. If ∆ 6= 0 then we observe that A has two distinct eigenvalues, hence is diago-
nalizable. If we choose the entries a, b, c, d of the matrix A at random then it would be quite
unlikely to have ∆(a, b, c, d) = 0. To be more precise, we can view the set of 2× 2 matrices as
a 4-dimensional vector space:

C2×2 = the vector space of 2× 2 matrices with complex entries.

Inside this 4-dimensional vector space, the set of matrices satisfying ∆(a, b, c, d) = 0 forms a
“3-dimensional subset”.121 By analogy, consider a 2-dimensional plane in R3. A randomly

121For a general polynomial f(x1, . . . , xn) in n variables, the set of points x ∈ Cn satisfying f(x) = 0 forms
an (n− 1)-dimensional subset. I don’t want to be too precise about this.
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chosen point in R3 will not lie on this plane. Similarly, a randomly chosen point in a 4-
dimensional vector space will not lie in a given 3-dimensional shape.

This discussion generalizes to square matrices of any size. Given an n×n matrix A with entries
aij , there is a certain polynomial ∆(A) in the n2 variables aij such that ∆(A) = 0 if and only
if A has a repeated eigenvalue. Since the equation ∆(A) = 0 defines an (n2 − 1)-dimensional
subset of the n2-dimensional space of n × n matrices, a randomly chosen matrix will have
distinct eigenvalues, and hence will be diagonalizable.

Why do we call it diagonalization? Let A be a diagonalizable n×n matrix and let x1, . . . ,xn ∈
Cn be a basis of eigenvectors with corresponding eigenvalues Axi = λixi. (Here we do not
assume that the eigenvalues are distinct.) We can write the n equations Axi = λixi simulta-
neously as a matrix equation:(

Ax1 · · · Axn
)

=
(
λ1x1 · · · λnxn

)
A
(

x1 · · · xn
)

=
(

x1 · · · xn
)λ1

. . .

λn


AX = XΛ,

where Λ is a diagonal matrix containing the eigenvalues. Since the columns of X are inde-
pendent by assumption, the matrix X is invertible and we can write

A = XΛX−1 or X−1AX = Λ.

Thus we have used the eigenvector matrix X to convert A into the diagonal matrix Λ. In
other words, we have “diagonalized” A. We will see below that this is extremely useful.

11.4 Evaluating a Polynomial at a Matrix

Matrices can be added, multiplied by scalars, and raised to powers. This allows us to consider
polynomials of matrices. More precisely, we can “evaluate” polynomials at matrices. Consider
a polynomial in one variable, with complex coefficients:

f(x) = b0 + b1x+ · · ·+ bkx
k.

Then for any n× n matrix A we define the n× n matrix f(A) by122

f(A) := b0In + b1A+ b2A
2 + · · ·+ bkA

k.

This evaluation behaves well with respect to eigenvalues and eigenvectors. That is, for any
vector x and scalar λ, we have

Ax = λx =⇒ f(A)x = f(λ)x.

Indeed, if Ax = λx then we can show by induction that Amx = λmx for any m ≥ 0:

122Here we use the convention that A0 = In.
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• Base Case. A0x = Inx = x = λ0x.

• Induction Step. If Am−1x = λm−1x then

Amx = A(Am−1x) = Am(λm−1x) = λm−1(Ax) = λm−1λx = λmx.

Then for any polynomial f(x) = b0 + b1x+ · · ·+ bkx
k we have

f(A)x = (b0In + b1A+ · · ·+ bkA
k)x

= b0Inx + b1Ax + · · ·+ bkA
kx

= b0x + b1λx + · · ·+ bkλ
kx

= (b0 + b1λ+ · · ·+ bkλ
k)x

= f(λ)x.

Now suppose that the matrix A is a “root” of the polynomial f(x). That is, suppose that
f(A) is the zero matrix. Then every eigenvalue of A is also a root of f(x):

f(A) = O =⇒ every eigenvalue of A satisfies f(λ) = 0.

Indeed, if Ax = λx and f(A) = O then we have

f(λ)x = f(A)x = Ox = 0.

And if x 6= 0 then this implies f(λ) = 0. Here are some examples.

Projections. Any matrix satisfying P 2 = P has eigenvalues in the set {0, 1}. Indeed, if
P 2 − P = O then any eigenvalue λ of P satisfies

λ2 − λ = 0

λ(λ− 1) = 0

λ = 0 or 1.

This doesn’t mean that both eigenvalues must occur. For example, the zero matrix satisfies
O2 = O and its only eigenvalue is 0, while the identity matrix satisfies I2 = I and its only
eigenvalue is 1.

At the end of this section we will show that any matrix satisfying P 2 = P is diagonalizable.
Assuming this for now, we can prove that any n× n matrix satisfying P 2 = P is a (possibly
non-orthogonal) projection matrix. To do this, let x1, . . . ,xn be a basis of eigenvectors. Since
the only possible eigenvalues are 1 and 0, we can sort the eigenvectors so that Pxi = 1xi = xi
for 0 ≤ i ≤ r and Pxi = 0xi = 0 for r < i ≤ n.123 This gives the factorization

P = X

(
Ir Or,n−r

On−r,r On−r, n− r

)
X−1.

123We allow the possibilities r = 0 (all eigenvalues are 0) and r = n (all eigenvalues are 1).
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Now let A be the n× r matrix consisting of the first r columns of X and let B be the r × n
matrix consisting of the first r rows of X−1. Then we have

P =
(
A ∗

)( Ir Or,n−r

On−r,r On−r, n− r

)(
B

∗

)
=
(
A ∗

)( B

O

)
= AB +O = AB.

And we also have(
Ir Or,n−r

On−r,r In−r,n−r

)
= In = X−1X =

(
B

∗

)(
A ∗

)
=

(
BA ∗

∗ ∗

)
,

which implies that BA = Ir. In summary:

P 2 = P =⇒ P = AB for some A,B satisfying BA = Ir, where r = rank(P ).

This is the projection onto the column space U = C(A), in a direction parallel to the null
space V = N (B). Picture:

The projection is orthogonal if and only if V = U⊥. In this case we have N (B) = C(A)⊥ =
N (AT ), which impliess that R(A) = N (B)T = N (AT )⊥ = R(AT ). Since R(B) = R(AT ) we
can find an invertible r×r matrix S of row operations such that B = SAT . But then BA = Ir
implies SATA = Ir and hence S = (ATA)−1. Finally, we conclude that

P = AB = ASAT = A(ATA)−1AT ,

which agrees with our previous formula for orthogonal projections.
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Reflections. Any matrix satisfying F 2 = I has eigenvalues in the set {1,−1}. Indeed, if
F 2 − I = O then any eigenvalue λ of F satisfies

λ2 − 1 = 0

λ2 = 1

λ = 1 or − 1.

Consider the unique matrix P satisfying F = 2P − I and P = (F + I)/2. We observe that

P 2 =
1

4
(F 2 + 2F + I2) =

1

2
(I + 2F + I) =

1

4
(2F + 2I) =

1

2
(F + I) = P,

so that P is a projection. Let U and V be the 1-eigenspace and 0-eigenspace of P as in
the previous example, then U is the 1-eigenspace of F and V is the (−1)-eigenspace of F .
Geometrically, F is the reflection across the subspace U in the direction of V . Picture:

In terms of matrices, if F is a matrix of rank r satisfying F 2 = I then we can find two r×(n−r)
matrices A,B satisfying BA = Ir, such that

F = 2P − I = 2AB − I.

This is the reflection across the column space U = C(A), parallel to the nullspace V = N (B).

Rotations. Any matrix satisfying Rn = I has eigenvalues in the set {e2πik/n : k ∈ Z}. Indeed,
since Rn − I = O, any eigenvalue λ of R must satisfy λn − 1 = 0, and hence must be an nth
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root of unity. Such matrices can be quite complicated. For a simple example, we consider the
2× 2 rotation matrix:

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The characteristic polynomial is

χRθ(λ) = λ2 − 2 cos θλ+ 1,

hence the eigenvalues are124

λ =
2 cos θ ±

√
4 cos2 θ − 4

2

=
2 cos θ ± 2

√
cos2 θ − 1

2

=
2 cos θ ± 2

√
− sin2 θ

2

=
2 cos θ ± 2i sin θ

2
= cos θ ± i sin θ

= e±iθ.

The case θ = 0 corresponds to the identity matrix, with eigenvalues (1, 1) and the case θ = π
corresponds to the negative identity matrix, with eigenvalues (−1,−1). In all other cases, the
eigenvalues (and hence also the eigenvectors) are not real. If θ = 2π/n then the eigenvalues
λ = e±2πi/n satisfy λn = 1. This agrees with the fact that

(R2π/n)n = I.

Next, we give an alternative proof for the existence of eigenvalues, which does not use deter-
minants.125

Theorem (Existence of Eigenvalues). Let A be any n × n matrix with real or complex
entries and consider an arbitrary nonzero vector v ∈ Cn. Since Cn is n-dimensional, the
following n+ 1 vectors must be linearly dependent:126

v, Av, A2x, . . . , Anv.

In other words, we can find scalars b0, b1, . . . , bn, not all zero, such that

b0v + b1Av + b2A
2v + · · ·+ bnA

nv = 0.

In fact, one of the scalars b1, . . . , bn must be nonzero, otherwise we would have b0v = 0 and
b0 6= 0, which contradicts the fact that v 6= 0. We can rewrite the previous equation as

(b0I + b1A+ b2A
2 + · · ·+ bnA

n)v = 0,

124It’s a bit reckless to take square roots in this way, but it gives the correct answer.
125This proof is the motivation for Axler’s approach in Linear Algebra Done Right.
126Indeed, any collection of n+ 1 vectors in Cn is linearly dependent.
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f(A) = 0,

for the polynomial f(x) = b0 +b1x+b2x
2 + · · · bnxn, which has degree between 1 and n because

not all of b1, . . . , bn are zero. Let’s say deg(f) = k. By the Fundamental Theorem of Algebra
we can factor f(x) as

f(x) = (x− α1)(x− α2) · · · (x− αk),

for some complex numbers α1, . . . , αk ∈ C, not necessarily distinct. Now the equation f(A)v =
0 becomes127

(A− α1I)(A− α2I) · · · (A− αkI)v = 0.

To save notation, let’s write Ai = A− αiI. Thus we have

A1A2 · · ·Akv = 0.

Since v 6= 0, this implies that the matrix A1 · · ·Ak is not invertible. And since a product of
invertible matrices is invertible, this implies that at least one of the factors, say Ai, is not
invertible. Finally, since Ai = A− αiI is not invertible, we conclude that αi is an eigenvalue
of A. In particular, we have shown that A has an eigenvalue. �

Building on this idea, we can give a sharper result about diagonalization. The proof is tricky
so you can feel free to skip it.

Theorem (Existence of Diagonalization). A square matrix A is diagonalizable if and
only if we have f(A) = O for some polynomial with no repeated roots.

Proof. First suppose that A has a basis of eigenvectors x1, . . . ,xn with corresponding eigen-
values Axi = λixi. Some of these eigenvalues might be repeated. Let µ1, . . . , µk be the list of
eigenvalues with repetition removed, and consider the polynomial

f(x) = (x− µ1) · · · (x− µk),

which has no repeated roots. We will show that f(A) = O. To do this, we observe that the
matrices (A− µiI) and (A− µjI) commute for any i, j:

(A− µiI)(A− µjI) = A2 − (µi + µj)A+ µiµjI = (A− µjI)(A− µi − I).

We will use this to show that f(A)v = 0 for any eigenvector v. Then since there exists a basis
of eigenvectors, it will follow from this that f(A)v = 0 for any vector v, and hence f(A) is
the zero matrix. So let v be an eigenvector with eigenvalue µi.

128 Then we have129

f(A)v =

∏
j

(A− µjI)

v

127There is a subtle point hiding here. Given a polynomial f(x) and square matrices A,B, it is not generally
true that f(AB) = f(A)f(B). However, if AB = BA then we do have f(AB) = f(A)f(B). Since the matrices
A− α1I, . . . , A− αkI commute with each other, we are okay in this case.
128Recall that every eigenvalue is in the list µ1, . . . , µk.
129We used commutativity to pull the factor A− µiI to the right.
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=

∏
j 6=i

(A− µj)

 (A− µi)v

=

∏
j 6=i

(A− µj)

 (Av − µv)

=

∏
j 6=i

(A− µj)

0

= 0.

Thus we have shown that a diagonalizable matrix A satisfies an equation f(A) = O for some
polynomial f(x) with no repeated roots.

Conversely, suppose that an n×n matrix A satisfies f(A) = O for some polynomial f(x) with
no repeated roots. Suppose that deg(f) = k and write

f(x) = (x− λ1) · · · (x− λk)

for some distinct complex numbers λ1, . . . , λk ∈ C. We want to show that A has a basis of
eigenvectors. First we define the null spaces

Eλi = N (A− λiI) = {x : Ax = λix}.

Note that Eλi 6= {0} if and only if λi is an eigenvalue, in which case Eλi is the corresponding
eigenspace. We don’t really care if all of the numbers λi are eigenvalues. Indeed, some of
them might not be. Our goal is merely to show that the spaces Eλ1 , . . . , Eλk are big enough
to fill up all of Cn. To be precise, we will show that

• Eλi ∩ Eλj = {0} for all i 6= j,

• Cn = {x1 + · · ·+ xk : xi ∈ Eλi for all i}.

Then by concatenating bases for Eλ1 , . . . , Eλk we will obtain a basis for Cn that consists of
eigenvectors of A. For the first statement, suppose that x ∈ Eλi∩Eλj so that λix = Ax = λjx.
If x 6= 0 then this implies that λi = λj and hence i 6= j, because the λi are distinct. The
second statement is trickier. First we consider the partial fraction expansion of 1/f(x):

1

f(x)
=

1

(x− λ1) · · · (x− λk)
=
∑
i

αi
x− λi

,

for some scalars α1, . . . , αk ∈ C, not necessarily distinct.130 Now consider the polynomials

pi(x) =
αif(x)

x− λi
= αi

∏
j 6=i

(x− λj),

130I won’t prove the existence of the partial fraction expansion. It depends on the theory of greatest common
divisors in the ring of polynomials.

155



and note that

p1(x) + · · · pk(x) =
α1f(x)

x− λ1
+ · · ·+ αkf(x)

x− λk
= f(x) ·

∑
i

αi
x− λi

= f(x) · 1

f(x)

= 1.

Finally, consider any vector x ∈ Cn and write xi := pi(A)x. On the one hand, by evaluating
the polynomial equation (x− λi)pi(A) = αif(x) at A we have

(A− λiI)xi = (A− λiI)pi(A)x = αif(A)x = Ox = 0,

and hence xi ∈ Eλi . On the other hand, by evaluating the polynomial equation p1(x) + · · ·+
pk(x) = 1 at A we have

x1 + · · ·+ xk = p1(A)x + · · ·+ pk(A)x

= (p1(A) + · · · pk(A))x

= Ix

= x,

as desired. �

That was a tricky proof, but it’s a useful theorem. In particular, it implies that any matrix
satisfying P 2 = P , and hence P 2−P = O, is diagonalizable because the polynomial x2− x =
x(x−1) has distinct roots. Furthermore, any matrix satisfying Rn = I, and hence Rn−I = O,
is diagonalizable because the polynomial xn − 1 has distinct roots:

xn − 1 = (x− 1)(x− e2πi/n)(x− e4πi/n) · · · (x− e2πi(n−1)/n).

Finally, we examine what goes wrong for a specific non-diagonalizable matrix. Consider the
following small matrices with repeated eigenvalues:

A =

(
λ 0
0 λ

)
and B =

(
λ 1
0 λ

)
Each of these has characteristic polynomial (x− λ)2:

(x− λ)2 = det

(
x− λ 0

0 x− λ

)
= det

(
x− λ −1

0 x− λ

)
.

In the next section we will show that every matrix satisfies its own characteristic polynomial,
which we can easily verify for these two matrices:

(A− λI)2 =

(
0 0
0 0

)2

=

(
0 0
0 0

)
and (B − λI)2 =

(
0 1
0 0

)2

=

(
0 0
0 0

)
.
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The matrix A also satisfies the polynomial f(x) = x − λ, which has no repeated roots. This
confirms that A is diagonalizable; in fact, it is diagonal. On the other hand, the matrix B
is not diagonalizable. This is easy to check directly. Instead, we will prove it indirectly, by
showing that B cannot satisfy any polynomial with distinct roots. The basic reason is that

(B − λI)2 = O but B − λI 6= O.

Indeed, consider any polynomial g(x) = (x− λ1) · · · (x− λk) with distinct roots λ1, . . . , λk. If
g(B) = O then one of the matrices B−λjI must be non-invertible, so that λj is an eigenvalue
and hence λj = λ. Since the λi are distinct, this implies that the λi with i 6= j are not
eigenvalues. Then since g(B) = O equals B − λI times a product of invertible matrices
B − λiI for i 6= j, we conclude that B − λI = O. Contradiction.

Remark: In the next chapter we will say more about non-diagonalizable matrices.

11.5 The Functional Calculus

Why are diagonalizable matrices good? As we mentioned in the first section, if we can diag-
onalize a matrix A then we can find explicit formulas for the entries of its powers Ak. More
generally, diagonalizing a matrix allows us to compute any polynomial evaluation of the matrix
f(A). We can even compute convergent power series, such as

exp(A) := I +A+
1

2
A2 + · · ·+ 1

k!
Ak + · · · .

To begin, suppose that an n× n matrix A has a basis of eigenvectors x1, . . . ,xn, with corre-
sponding eigenvalues Axi = λixi. (The eigenvalues are not necessarily distinct.) Then, as we
showed in the previous section, we can write

A = XΛX−1 =
(

x1 · · · xn
)λ1

. . .

λn

( x1 · · · xn
)−1

.

This factorization is compatible with polynomial evaluation. That is, for any polynomial f(x),
I claim that

f(A) = X · f(Λ) ·X−1.

If A (hence also Λ) is invertible, then we can even allow negative powers of x in the polynomial.
Such expressions are called Laurent polynomials:

f(x) = b−`x
−` + b−`+1x

−`+1 + · · ·+ bk−1x
k−1 + bkx

k for some k, ` ≥ 0.

Actually, we will prove the more general fact that A = XBX−1 implies f(A) = X ·f(B) ·X−1

for any polynomial f(x), and for any Laurent polynomial f(x) when A (hence also B) is
invertible. The first step is to prove that

(XBX−1)k = XBkX−1 for all k ≥ 0, and also for k < 0 when B is invertible.
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For this we use induction. When k = 0 we have XB0X−1 = XInX
−1 = XX−1 = In =

(XBX−1)0. Then for k ≥ 1 we have

(XBX−1)k = (XBX−1)(XBX−1)k−1

= (XBX−1)(XBk−1X−1) induction

= XB(X−1X)Bk−1X−1

= XBBk−1X−1

= XBkX−1.

If B is invertible, then for all k ≥ 0 we also have

(XBX−1)−k = [(XBX−1)−1]k = (XB−1X−1)k = X(B−1)kX−1 = XB−kX−1.

Finally, for any polynomial f(x) = b0 + b1x+ · · ·+ bkx
k we have

f(A) = b0I + b1A+ b2A
2 + · · ·+ bkA

k

= b0I + b1(XBX−1) + b2(XBX−1)2 + · · ·+ bk(XBX
−1)k

= b0(XX−1) + b1(XBX−1) + b2(XB2X−1) + · · ·+ bk(XB
kX−1)

= X(b0I + b1B + b2B
2 + · · ·+ bkB

k)X−1

= X · f(B) ·X−1.

The proof for Laurent polynomials is the same.

So far, this is not very useful. It becomes useful because of the following basic observation.

Multiplication of Diagonal Matrices is Easy. The formula for a general matrix product
AB is complicated. However, multiplication of diagonal matrices is easy:a1

. . .

an


b1 . . .

bn

 =

a1b1
. . .

anbn

 .

It follows that for any diagonal matrix Λ and any (Laurent) polynomial f(x) we have

f(Λ) = f

λ1

. . .

λn

 =

f(λ1)
. . .

f(λn)

 .

This is the reason why diagonalization is a powerful technique.

Here is a first application. Recall the following results from the previous two sections:

• If the characteristic polynomial χA(x) has distinct roots then A is diagonalizable.
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• If f(A) = O for some polynomial f(x) with distinct roots then A is diagonalizable.

The next theorem ties these results together.

The Cayley-Hamilton Theorem. Let A be a square matrix with characteristic polynomial
χA(x) = det(xI −A). Then we have

χA(A) = O.

This is a strange idea, so let’s first examine the 2× 2 case. Consider the matrix

A =

(
a b
c d

)
,

with characteristic polynomial

χA(λ) = λ2 − (a+ d)λ+ (ad− bc).

Then one can check (as Cayley and Hamilton did) that

χA(A) = A2 − (a+ d)A+ (ad− bc)I

=

(
a b
c d

)2

− (a+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
= some calculations

=

(
0 0
0 0

)
.

Why on earth should this be true? It is because of diagonalization.

Proof of Cayley-Hamilton. Suppose first that A is diagonalizable, with A = XΛX−1. For
any eigenvalue λ of A, the characteristic polynomial satisfies χA(λ) = 0 by definition. Hence

χA(A) = X · χA(Λ) ·X−1 = X

χA(λ1)
. . .

χA(λn)

X−1 = XOX−1 = O.

The result for non-diagonalizable matrices follows by continuity. That is, any non-diagonalizable
matrix is a limit of diagonalizable matrices. And the entries of the matrix χA(A) are contin-
uous functions of the entries of A. But each entry of χA(A) is zero for any diagonal matrix.
Hence the entries of the limit are zero.131 �

Remark: The Cayley-Hamilton is actually more general than this. It holds over any commu-
tative ring. As written, our proof only works over the complex numbers.

131This is a typical way to deal with non-diagonalizable matrices, i.e., view them as limits of diagonalizable
matrices in the space Cn×n of square matrices.
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Next we consider two examples of infinite power series.

The Geometric Series. Consider an n×n matrix A. Suppose that A is diagonalizable with

A = XΛX−1 = X

λ1

. . .

λn

X−1.

Evaluating A at the polynomial f(x) = 1− x gives

I −A = X(I − Λ)X−1 = X

1− λ1

. . .

1− λn

X−1.

If none of the eigenvalues is 1 then I − Λ (hence also I −A) is invertible, and we obtain

(I −A)−1 = X(I − Λ)−1X−1 = X

1/(1− λ1)
. . .

1/(1− λn)

X−1.

On the other hand, for all k ≥ 0 we can evaluate the polynomial f(x) = 1 + x+ · · ·+ xk at A
to obtain

I +A+ · · ·+Ak = X(I + Λ + · · ·+ Λk)X−1

= X

1 + λ1 + · · ·+ λk1
. . .

1 + λn + · · ·+ λkn

X−1.

Finally, suppose that the eigenvalues satisfy 0 < |λi| < 1 for all i. Then the usual geometric
series for scalars implies that

I + Λ + · · ·+ Λk → (I − Λ)−1 as k →∞.

The convergence is componentwise in each entry of the matrix. For a fixed invertible matrix
X, the function B 7→ XBX−1 is continuous in the matrix entries, hence

X(I + Λ + · · ·+ Λk)X−1 → X(I − Λ)−1X−1 as k →∞.

In summary, for a diagonalizable matrix A with eigenvalues satisfying 0 < |λ| < 1, we have

I +A+ · · ·+Ak → (I −A)−1 componentwise.

And by continuity, the result also holds for non-diagonalizable matrices.132 On a previous
homework you proved a weaker version of this result, using more difficult techniques. Diago-
nalization makes things easier because it turns matrix arithmetic into scalar arithmetic.

132Basically, this is because the eigenvalues depend continuously on the matrix entries. I don’t want to get
specific about it.
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The Matrix Exponential. Given a square matrix A, the functional calculus allows us to
define f(A) for any power series f(x) = a0 + a1x + a2

2 + · · · , as long as this power series
converges when evaluated at the eigenvalues of A. For example, consider the power series
definition of the exponential function

exp(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · .

It is a basic theorem of analysis that exp(x) converges for any complex number x ∈ C. In
order to define exp(A) we first suppose that A is diagonalizable:

A = XΛX−1 = X

λ1

. . .

λn

X−1.

For any k ≥ 0 we have

k∑
i=0

1

i!
Ai = X

(
k∑
i=0

1

i!
Λi

)
X−1 = X


∑k

i=0
1
i!λ

i
1

. . . ∑k
i=0

1
i!λ

i
n

X−1.

Since the power series for exp(x) converges everywhere, we have

k∑
i=1

1

i!
· Λi →

exp(λ1)
. . .

exp(λn)

 as k →∞.

Then since conjugation by the fixed matrix X is continuous, we conclude that

k∑
i=1

1

i!
·Ai → X

exp(λ1)
. . .

exp(λn)

X−1 as k →∞.

This establishes the existence of the matrix exponential for any diagonalizable matrix A:133

exp(A) = I +A+
1

2!
A2 +

1

3!
A3 + · · · .

Let me warn you that

exp(A+B) 6= exp(A) exp(B) for general matrices A,B.

133We can also prove existence for non-diagonalizable matrices using a continuity argument, though this
proof doesn’t tell us how to compute exp(A) in the non-diagonalizable case. The computation of exp(A) for
non-diagonalizable A uses the Jordan canonical form.
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The proof of exp(x+y) = exp(x) exp(y) relied on the fact that scalars commute. If AB = BA
then this same proof carries over, and we have

exp(A+B) = exp(A) exp(B) for matrices satisfying AB = BA.

Later we will see that the matrix exponential is the key to solving differential equations. In
that context we will consider the series

exp(At) = I +At+
t2

2!
A2 +

t3

3!
A3 + · · · ,

where t is a real variable representing time.

For now, we present two example computations. First consider the matrix

A =
1

6

(
5 4
2 −2

)
.

The characteristic polynomial is

det(xI −A) = (x− 5/6)(x+ 2/6)− (−4/6)(−2/6)

= x2 − (1/2)x− (1/2)

= (x− 1)(x+ 1/2),

hence the eigenvalues are 1 and −1/2. Since this 2 × 2 matrix has 2 distinct eigenvalues, we
know that it is diagonalizable. After some computation we find the eigenvectors:

A

(
4
1

)
= 1

(
4
1

)
and A

(
1
−2

)
= −1

2

(
1
−2

)
.

Hence we obtain the diagonalization:

A =

(
4 1
1 −2

)(
1 0
0 −1/2

)(
4 1
1 −2

)−1

=
1

9

(
4 1
1 −2

)(
1 0
0 −1/2

)(
2 1
1 −4

)
.

Finally, we obtain the exponential:

exp(A) =
1

9

(
4 1
1 −2

)(
exp(1) 0

0 exp(−1/2)

)(
2 1
1 −4

)
.

The last example is more interesting. Consider the matrix that rotates by 90◦:

R =

(
0 −1
1 0

)
.

For any real number θ, we will show that

exp(Rθ) =

(
cos θ − sin θ
sin θ cos t

)
= cos θ ·

(
1 0
0 1

)
+ sin θ ·

(
0 −1
1 0

)
,
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which is the matrix that rotates by θ. This is a matrix version of Euler’s formula

eiθ = cos θ + i sin θ,

where the 90◦ rotation matrix R plays the role of the imaginary unit i. We begin by computing
the eigenvalues. The characteristic polynomial is

det(xI −R) = det

(
x 1
−1 x

)
= x2 + 1,

hence there are two distinct eigenvalues: i and −i. It is no surprise that these are complex
conjugates, since the complex eigenvalues of real matrices come in conjugate pairs. (See the
homework.) With a bit of work, one finds the eigenvectors

R

(
1
−i

)
= i

(
1
−i

)
and R

(
1
i

)
= −i

(
1
i

)
,

and hence the exponential:

exp(Rθ) =

(
1 1
−i i

)(
exp(iθ) 0

0 exp(−iθ)

)(
1 1
−i i

)−1

.

Then some simplification using Euler’s formula eiθ = cos θ + i sin θ gives the desired result.

But this makes the result look like a miracle. We can gain more insight by looking at the real
and imaginary parts of the complex eigenvalues. Let x = (1,−i), so that x = (1, 0)− i(0, 1).
Since Rx = ix we must also have exp(Rθ)x = exp(iθ)x,134 and hence

exp(Rθ)

(
1
0

)
− i exp(Rθ)

(
0
1

)
= exp(Rθ)

(
1
−i

)
= exp(iθ)

(
1
−i

)
= (cos θ + i sin θ)

(
1
−i

)
Euler’s formula

=

(
cos θ + i sin θ
sin θ − i cos θ

)
=

(
cos θ
sin θ

)
− i
(
− sin θ
cos θ

)
.

Since the matrix exp(Rθ) has real entries, comparing real and imaginary parts gives

exp(Rθ)

(
1
0

)
=

(
cos θ
sin θ

)
and exp(Rθ)

(
0
1

)
=

(
− sin θ
cos θ

)
,

which is the desired result.

Remark: In general, complex eigenvalues of real matrices lead to rotation. We will examine
this in the next section.
134The proof that Ax = λx implies f(A)x = f(λ)x for polynomials f(x) carries over to power series.
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11.6 Complex Eigenvalues and Eigenvectors of Real Matrices

For any complex number a+ ib ∈ C with a, b ∈ R we will denote its complex conjugate by

α = a+ ib = a− ib.

Recall that complex conjugation satisfies the following properties:

• α+ β = α+ β,

• αβ = α · β,

• αk = (α)k,

• α = α if and only if α ∈ R.

Given a polynomial f(x) = b0 +b1x+ · · ·+bnxn with real coefficients and a complex number
α ∈ C, it follows from these properties that

f(α) = b0 + b1α+ · · ·+ bnαn

= b0 + b1 · α+ · · ·+ bn · αn

= b0 + b1α+ · · ·+ bn(α)n

= f(α).

In particular, we see that α is a root of f(x) if and only if α is a root of f(x). Indeed, if
f(α) = 0 then

f(α) = f(α) = 0 = 0,

and if f(α) = 0 then

f(α) = f(α) = f(α) = 0 = 0.

It follows from this that

the non-real roots of a real polynomial come in conjugate pairs.

And, as an interesting consequence,

every real polynomial of odd degree has as least one real root.

We will apply these observations to eigenvalues of real matrices.

Complex Eigenvalues of a Real Matrix. Let A be an n × n matrix with real entries,
so the characteristic polynomial χA(x) = det(xI − A), has real coefficients. According to
the previous result, the characteristic polynomial can be factored as

χA(x) = (x− λ1) · · · (x− λn−2m)(x− α1)(x− α1) · · · (x− αm)(x− αm),

for some real numbers λi ∈ R and non-real complex numbers αi ∈ C. If n is even, then the
matrix A need not have any real eigenvalues. For example, the real matrix(

0 −1
1 0

)
,
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has characteristic polynomial (x− i)(x+ i). On the other hand, if n is odd then the number
n− 2m must be ≥ 1, so that A has at least one real eigenvalue.

Complex Eigenvectors. If a real matrix A has a real eigenvalue λ, then the corresponding
eigenvectors are real.135 Indeed, the space of λ-eigenvectors is the null space N (λI−A), which
can be computed by elimination over R. What about complex eigenvalues? Suppose that a
real n × n matrix A has a complex eigenvalue λ ∈ C, and let x ∈ Cn be a corresponding
eigenvector:

Ax = λx.

If λ is not real then x cannot have real entries. Indeed, if x ∈ Rn then since A has real entries
we would have λx = Ax ∈ Rn which implies that λ ∈ R. Let us suppose that λ = a+ ib with
a, b ∈ R and b 6= 0. Then we can write

x = u + iv

for unique real vectors u,v ∈ Rn with v 6= 0. By expanding the equation Ax = λx we obtain

Au + iAv = A(u + iv)

= Ax

= λx

= (a+ ib)(u + iv)

= (au− bv) + i(bu + av).

Since the vectors Au, Av, au−bv and bu + av have real entries, it follows by comparing real
and imaginary parts that {

Au = au − bv,
Av = bu + av,

which can be expressed as a matrix equation:

A
(

u v
)

=
(

u v
)( a b
−b a

)
.

Next, I claim that the vectors u and v are linearly independent over C.136 To see this, we note
that the conjugate vector x = u − iv is an eigenvector of A corresponding to the conjugate
eigenvalue λ = a− ib. Indeed, since A has real entries, conjugating both sides of the equation
Ax = λx gives137

Ax = Ax = Ax = λx = λx.

Since λ 6= λ, the vectors x,x ∈ C correspond to different eigenvalues, hence they are linearly
independent over C. But then since(

x x
)

=
(

u v
)(1 1

i −i

)
, where

(
1 1
i −i

)
is invertible,

135Technically, every λ-eigenvector is a scalar multiple of a real vector. You could take a real λ-eigenvector x
and scale it to get a complex λ-eigenvector ix, but why would you want to do that?
136In this section we will only discuss linear independence over C, which implies linear independence over R.
137The equation Ax = Ax needs to be checked. It follows from the standard properties.
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we conclude that u and v are linearly independent. In particular, we have

A =
(

u v
)( a b
−b a

)(
u v

)−1
.

Furthermore, for any y ∈ Cn we have

(
y x x

)
=
(

y u v
)1

1 1
i −i

 ,

which implies that the set y,x,x is independent if and only if y,u,v is independent.

Real Diagonalizable Matrices. Finally, we discuss diagonalization of real matrices. Let A
be a real n× n matrix. As we saw above, the characteristic polynomial can be factored as

χA(x) = (x− λ1) · · · (x− λn−2m)(x− α1)(x− α1) · · · (x− αm)(x− αm),

where λ1, . . . , λn−2m are real and α1, . . . , αm ∈ C are non-real.

Suppose that A is diagonalizable over C. This means that we can find nonzero vectors
y1, . . . ,yn−2m ∈ Cn and x1, . . . ,xm ∈ Cn such that Ayi = λiyi and Axi = αixi, hence
also Axi = αixi, and such that

y1, . . . ,yn−2m,x1,x1, . . . ,xm,xm

is a basis for Cn. If X is the n×n (invertible) matrix with these column vectors, then we have

A = X



λ1

. . .

λn−2m

α1

α1

. . .

αm
αm


X−1.

Now we will eliminate the complex numbers from this factorization. Since the eigenvalues
λ1, . . . , λn−2m are real, we can choose the eignevectors y1, . . . ,yn−2m to be real. Next we
write xi = ui + ivi for real vectors ui,vi with vi 6= 0. From the previous remarks we see that

y1, . . . ,yn−2m,u1,v1, . . . ,um,vm
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is a basis for Cn consisting of real vectors. Furthermore, if Y is the (invertible) matrix with
these columns, then we have

A = Y



λ1

. . .

λn−2m

a1 b1
−b1 a1

. . .

am bm
−bm am


Y −1.

This is not quite a “diagonalization”, but it has the virtue using only real numbers.

11.7 Normal Operators

In this chapter we have studied the evaluation of polynomials (also power series and Laurent
polynomials) at matrices. This discussion has left out one important operation; namely, the
transpose and conjugate transpose. In this final section we consider the relationship between
eigenvalues and (conjugate) transposition.

The main role is played by normal matrices. We say that a matrix A is normal when it
commutes with its (conjugate) transpose:

A∗A = AA∗.

These matrices are extremely common in applications and include the following four families:

• Real symmetric matrices AT = A.

• Complex Hermitian matrices A∗ = A.

• Real orthogonal matrices AT = A−1.

• Complex unitary matrices A∗ = A−1.

Of course, these families could be dealt with separately. The reason to combine them under
the concept of normal matrices is because of the following fundamental theorem, which we
will prove in the next chapter.

The Spectral Theorem. Let A be a square matrix over R or C. Then

A∗A = AA∗ ⇐⇒ A has an orthonormal basis of eigenvectors.

Actually, some people think it undignified to call this the Spectral Theorem. They say that
the true Spectral Theorem applies to operators on infinite dimensional Hilbert spaces. Recall,

167



if V is a real or complex Hilbert space and if A : V → V is a bounded138 linear operator then
there exists a unique bounded linear operator A∗ : V → V satisfying

〈Ax,y〉 = 〈x, A∗y〉 for all x,y ∈ V .

As with many results in functional analysis, the proof is 80% algebra and 20% analysis, which
is mostly plausible from geometric intuition.

Anyway, it is convenient to state and prove the results of this section in a language that
applies also to Hilbert spaces. Our first theorem was proved by Cauchy in 1829, as part of his
extension of the Principal Axes Theorem to higher dimensions. Cauchy’s original proof was
quite complicated, but today’s proof is a one-liner.139

Cauchy’s Reality Theorem. A real symmetric matrix has real eigenvalues.

Actually, we will prove the following more general statement, since it has the same proof.

Theorem. A self-adjoint operator on a complex inner product space has real eigenvalues.

Proof. Let V be a real or complex inner product space and let A : V → V be an operator
satisfying A∗ = A. If Ax = λx for some scalar λ and nonzero vector x 6= 0 then we have

λ‖x‖2 = λ〈x,x〉
= 〈x, λx〉
= 〈x, Ax〉
= 〈A∗x,x〉
= 〈Ax,x〉 A∗ = A

= 〈λx,x〉
= λ〈x,x〉
= λ‖x‖2.

Since ‖x‖ 6= 0 this implies that λ = λ, and hence λ is real. �

The next theorem has a similar proof.

Theorem. Unitary (and real orthogonal) operators have eigenvalues of length 1. That is,
they have eigenvalues of the form eiθ.

Proof. Let V be a real or complex inner product space and let A : V → V be an operator
satisfying A∗A = I. If Ax = λx for some scalar λ and nonzero vector x 6= 0 then we have

‖x‖2 = 〈x,x〉
138This means that A sends the unit ball to a bounded set. It is equivalent to A being continuous.
139“Dazzled by the brilliance of the new theory of determinants, mathematicians overlooked simple inner

product considerations”, Hawkins, The Mathematics of Frobenius in Context, page 98.
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= 〈x, Ix〉
= 〈x, A∗Ax〉 A∗A = I

= 〈Ax, Ax〉
= 〈λx, λx〉
= λ〈λx,x〉
= λλ〈x,x〉
= |λ|2‖x‖2.

Since ‖x‖ 6= 0 this implies that |λ| = 1. �

Though it doesn’t involve eigenvalues, we should probably include the following result.

Theorem. Unitary operators preserve lengths and angles.

Proof. This follows from the fact that unitary operators preserve the inner product. If
A∗A = I then for all vectors x,y we have

〈Ax, Ay〉 = 〈x, A∗Ay〉 = 〈x, Iy〉 = 〈x,y〉.

�

We have seen that the important families of normal matrices have quite restricted eigenvalues:

• Real symmetric matrices AT = A and complex Hermitian matrices A∗ = A matrices
have real eigenvalues.

• Real orthogonal matrices ATA = I and complex unitary matrices A∗A = I have eigen-
values of the form eiθ.

On the other hand, a general normal matrix can have any eigenvalues you want. Indeed,
consider any complex numbers λ1, . . . , λn ∈ C and let Λ be the diagonal matrix with these
numbers on the diagonal. Then for any unitary matrix U∗U = I, the matrix

A = UΛU∗

is normal and has eigenvalues λ1, . . . , λn.

What about eigenvectors? In this case, the key property is shared by all normal operators.
This result is a precursor to the Spectral Theorem.

Theorem (Normal with Distinct Eigenvalues ⇒ Orthogonal Eigenvectors). Let
A∗A = AA∗ be a normal operator on an inner product space. Then

Ax = λx and Ay = µy with λ 6= µ =⇒ 〈x,y〉 = 0.

We will work up to the proof by a series of lemmas.
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Lemma 1. If A∗A = AA∗ then 〈Ax, Ay〉 = 〈A∗x, A∗y〉 for all x,y.

Proof. We have 〈Ax, Ay〉 = 〈x, A∗Ay〉 = 〈x, AA∗y〉 = 〈A∗x, A∗y〉. �

Lemma 2. If A∗A = AA∗ then we have Ax = 0 if and only if A∗x = 0.

Proof. Putting y = x in Lemma 1 gives ‖Ax‖2 = 〈Ax, Ax〉 = 〈A∗x, A∗x〉 = ‖A∗x‖2. Hence

Ax = 0 ⇐⇒ ‖Ax‖ = 0 ⇐⇒ ‖A∗x‖ = 0 ⇐⇒ A∗x = 0.

�

Lemma 3. Let A∗A = AA∗. Then for any vector x and scalar λ we have

Ax = λx ⇐⇒ A∗x = λx.

Proof. Consider the matrix B = λI −A, with B∗ = λI −A∗. Then B is normal:

B∗B = (λI −A∗)(λI −A)

= λλI − λA− λA∗ +A∗A

= λλI − λA− λA∗ +AA∗ A∗A = AA∗

= (λI −A)(λI −A∗)
= BB∗.

Hence applying Lemma 2 gives

Ax = λx ⇐⇒ Bx = 0 ⇐⇒ B∗x = 0 ⇐⇒ A∗x = λx.

Proof of the Theorem. Let A∗A = AA∗ and suppose that Ax = λx and Ay = µy with
λ 6= µ. Then from Lemma 3 we have A∗x = λx, hence

λ〈x,y〉 = 〈λx,y〉
= 〈A∗x,y〉 Lemma 3

= 〈x, Ay〉
= 〈x, µy〉
= µ〈x,y〉.

Finally, since (λ− µ)〈x,y〉 = 0 and λ 6= µ we have 〈x,y〉 = 0. �

In particular, this shows that an n×n normal matrix A∗A = AA∗ with n distinct eigenvalues
has an orthogonal basis of eigenvectors. The Spectral Theorem says that this is still true
even when A has repeated eigenvalues. The hard part is to show that there are enough
eigenvectors to fill up the whole space. See the next chapter.

NOTE TO SELF: Maybe I should discuss the “polarization” A = (A + A∗)/2 + (A− A∗)/2,
i.e., the “real and imaginary parts” of A. This plays a role later in the proof of the Spectral
Theorem.
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12 Factorization Theorems

12.1 Gram-Schmidt and QR Factorization

Most of the theorems in this chapter deal with orthonormal bases. In this section we lay
the groundwork by showing how any basis can be converted into an orthonormal basis. The
procedure is quite general. First we consider an infinite dimensional inner product space V
over R or C. Afterwards we will consider finite dimensional spaces and matrices.

Given any linearly independent set a1,a2, . . . ∈ V the Gram-Schmidt procedure produces
linearly independent vectors b1,b2, . . . ∈ V with the following properties:140

• 〈bi,bj〉 = 0 for i 6= j,

• Span{a1, . . . ,ak} = Span{b1, . . . ,bk}.

The definition is recursive:

• First set b1 := a1.

• Then for any k ≥ 1 set bk+1 := ak+1 − Projk(ak+1), where Projk : V → V is the
orthogonal projection onto the subspace spanned by b1, . . . ,bk. To be precise, we set

bk+1 := ak+1 −
〈ak+1,b1〉
〈b1,b1〉

b1 − · · · −
〈ak+1,bk〉
〈bk,bk〉

bk.

You will prove on the homework that this procedure has the desired properties. Afterwards,
we can easily turn b1,b2, . . . ∈ V into an orthonormal set by dividing each bk by its length.

Before applying this to matrices, we give one application to infinite dimensional function
spaces. Consider the real Hilbert space L2[−1, 1] with inner product

〈f(x), g(x)〉 =

∫ 1

−1
f(x)g(x) dx.

And consider the “obvious” basis 1, x, x2, . . . ∈ L2[−1, 1].141 Note that these functions are not
orthogonal. For example,

〈1, x2〉 =

∫ 1

−1
x2 dx =

1

3
x3

∣∣∣∣1
−1

=
1

3
(1)3 − 1

3
(−1)3 =

1

3
+

1

3
=

2

3
6= 0.

Applying the Gram-Schmidt procedure to the non-orthogonal basis 1, x, x2, . . . produces the
orthogonal basis of Legendre polynomials: P0(x), P1(x), P2(x), . . .. These are used in physics
in the study of spherically symmetric potentials. For example, they determine the “shapes”

140If a1,a2, . . . is a Hilbert space basis, with appropriate convergence properties, then the vectors b1,b2, . . .
will also be a Hilbert space basis, though we won’t prove this.
141It can be shown that this is, indeed, a Hilbert space basis.
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of electron orbitals. To be precise, we first define the associated Legendre function for integers
`,m ∈ Z with 0 ≤ m ≤ `:

Pm` (x) = (1− x2)m/2 · d
m

dxm
P`(x).

Then the radial equation for the shape of the (`,m)-orbital is142

ρ = (constant) · |Pm` (cos θ)|.

Now we turn to matrices. The matrix form of Gram-Schmidt is called QR factorization.
Given an invertible n×n matrix A, we will produce a unitary matrix Q∗Q = I and an upper-
triangular matrix R such that A = QR. If A has real entries then Q and R will have real
entries. In this case QTQ = I is real orthogonal.

Let a1, . . . ,an be a basis for Cn. Then the Gram-Schmidt basis b1, . . . ,bn satisfies

a1 = b1,

a2 = b2 +
〈a2,b1〉
〈b1,b1〉

b1,

...

an = bn +
〈an,bn−1〉
〈bn−1,bn−1〉

bn−1 + · · ·+ 〈an,b1〉
〈b1,b1〉

b1,

which can be expressed as a matrix equation:

A = BU

(
a1 · · · an

)
=
(

b1 · · · bn
)


1 〈a2,b1〉
〈b1,b1〉 · · · · · ·

〈an,b1〉
〈b1,b1〉

1
...

. . .
...

1 〈an,bn−1〉
〈bn−1,bn−1〉

1


By construction, the columns of B are orthogonal. We can make them orthonormal by scaling
the kth column bk by 1/‖bk‖. If S is the diagonal matrix with entries 1/‖bk‖, then the matrix
Q = BS has orthonormal columns qk = bk/‖bk‖, hence Q∗Q = I. To convert A = BU into
A = QR we define R = S−1U so that

A = BU

= B(SS−1)U

= (BS)(S−1U)

= QR.

142This example is just for fun. See Griffiths, Introduction to Quantum Mechanics, Equation 4.32.
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It turns out that the matrix R = S−1U has a nice form. To see this, we first observe that

〈ak,bk〉 = 〈bk + stuff orthogonal to bk,bk〉 = 〈bk,bk〉 = ‖bk‖2,

which implies that

〈ak,qk〉 =

〈
ak,

bk
‖bk‖

〉
=

1

‖bk‖
〈ak,bk〉 =

1

‖bk‖
‖bk‖2 = ‖bi‖.

Furthermore, for any 1 ≤ i < k we have

‖bi‖ ·
〈ak,bi〉
〈bi,bi〉

= ‖bi‖ ·
〈ak,bi〉
‖bi‖2

=
1

‖bi‖
· 〈ak,bi〉 =

〈
ak,

bi
‖bi‖

〉
= 〈ak,qi〉.

Putting these together gives

R = S−1U

=

‖b1‖
. . .

‖bn‖




1 〈a2,b1〉
〈b1,b1〉 · · · · · ·

〈an,b1〉
〈b1,b1〉

1
...

. . .
...

1 〈an,bn−1〉
〈bn−1,bn−1〉

1



=

〈a1,q1〉 · · · 〈an,q1〉
. . .

...
〈an,qn〉

 .

In summary, for any n× n invertible matrix A with columns ai, we can find an n× n unitary
matrix Q∗Q = I with columns qi, such that

(
a1 · · · an

)
=
(

q1 · · · qn
)〈a1,q1〉 · · · 〈an,q1〉

. . .
...

〈an,qn〉


A = QR.

And if A is real then we can choose Q and R with real entries.

Due to rounding errors, the matrix Q computed from Gram-Schmidt is only approximately
orthogonal. It is worth mentioning another method, due to Householder, that gives an exactly
orthogonal matrix. This method also has an interesting theoretical consequence:

Any real orthogonal matrix ATA = I is a composition of reflections.

This method uses the Householder reflection matrices:

Hv = I − 2
vvT

‖v‖2
for v ∈ Rn.
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Recall that

Pv = v(vvT )−1vT =
vvT

vTv
=

vvT

‖v‖2

is the matrix that projects orthogonally onto the line spanned by v, hence I−Pv is the matrix
that projects onto the orthogonal hyperplane v⊥ = {x ∈ Rn : xTv = 0}. From the remarks
in the previous chapter, this implies that 2Pv − I is the matrix that reflects across the line v
and 2(I−Pv)− I = I−2Pv = Hv is the matrix that reflects across the hyperplane v⊥. Since
P 2
v = Pv and P Tv = Pv, we find that

H−1
v = Hv and HT

v = Hv.

In particular, Hv is an orthogonal matrix.

The key trick of the Householder algorithm is that Hva = r for any a, r satisfying ‖a‖ = ‖r‖
and a− r = v. Picture:

Here is the algorithm.

Householder QR. We are given an invertible matrix A with first column a ∈ Rn.

• Let r := (‖a‖, 0, . . . , 0), v := a− r and H1 := Hv, so that H1a = r. Then we have

H1A =
(
H1a ∗ · · · ∗

)
=
(

r ∗ · · · ∗
)

=


‖a‖ ∗ · · · ∗

0
...
0

A′

 ,

for some matrix A′ of size (n− 1)× (n− 1).
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• Let a′ ∈ Rn−1 be the first column of A′, let r′ = (‖a′‖, 0, . . . , 0) ∈ Rn−1 and let v′ =
a′ − r′, so that Hv′a

′ = r′. Then the matrix

H2 :=


1 0 · · · 0

0
...
0

Hv′

 ,

satisfies

H2H1A =


1 0 · · · 0

0
...
0

Hv′



‖a‖ ∗ · · · ∗

0
...
0

A′



=


‖a‖ ∗ · · · ∗

0
...
0

H2A
′



=



‖a‖ ∗ ∗ · · · ∗

0 ‖a′‖ ∗ · · · ∗

0
...
0

0
...
0

A′′


,

for some matrix A′′ of size (n− 2)× (n− 2). We observe that the matrix H2 is itself a

Householder reflection matrix. To see this, let w =
(

0 (v′)T
)T

, so that ‖w‖ = ‖v′‖.
Then we have

Hw = I − 2
wwT

‖w‖

= I − 2

‖v′‖

(
0

v′

)(
0 (v′)T

)

=


1 0 · · · 0

0
...
0

In−1

−


0 0 · · · 0

0
...
0

−2v′(v′)T

‖v′‖


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=


1 0 · · · 0

0
...
0

In−1 − 2v′(v′)T

‖v′‖



=


1 0 · · · 0

0
...
0

Hv′


= H2.

• Continuing in this way for n− 1 steps gives an upper triangular matrix:

Hn−1 · · ·H2H1A =



‖a‖ ∗ · · · · · · ∗

‖a′‖
...

. . .
...

‖a(n−1)‖ ∗
b

 = R,

where each Hi is a Householder matrix Hvi for some vector vi ∈ R. Note that the
diagonal entries of R are nonzero since we have assumed that A is invertible. The real
number b can be positive or negative.

• Finally, since each Householder reflection is equal to its own inverse, we obtain

Hn−1 · · ·H2H1A = R

A = H1H2 · · ·Hn−1R

A = QR.

As a consequence, we will prove that every real orthogonal matrix is a composition of reflec-
tions. Suppose that ATA = I and consider the Householder factorization

Hn−1 · · ·H2H1A = R.

Now each matrix on the left is orthogonal. Since a product of orthogonal matrices is orthog-
onal, we conclude that R is also orthogonal. In particular, the rows of R are orthonormal.
Since R is also upper-triangular, this implies that R is diagonal:

R =


‖a‖

‖a′‖
. . .

‖a(n−1)‖
b


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Finally, since each row of R has length 1, we conclude that

R =


1

1
. . .

1
±1


If the last entry is +1 then R = I and we obtain

A = H1H2 · · ·Hn−1I = H1H2 · · ·Hn−1,

which shows that A is a product of n − 1 reflection matrices. If the last entry of R is −1,
then Hn := R equals the Householder matrix Hen , where en = (0, . . . , 0, 1). In this case we
see that A is a product of n reflection matrices:

A = H1H2 · · ·Hn−1R = H1H2 · · ·Hn−1Hn.

Remark: There is some restriction on n. Since each reflection matrix has determinant −1, a
product of n reflection matrices has determinant (−1)n. Hence an orthogonal matrix A satis-
fying det(A) = +1 can only be expressed as an even product of reflections and an orthogonal
matrix satisfying det(A) = −1 can only be expressed as an odd product of reflections.

12.2 Schur Triangularization

Given a square matrix A, we always want to find a simpler matrix B that is similar to
A. That is, we want to find a simpler matrix B and an invertible matrix X such that
A = XBX−1. Then for any polynomial function f(x) (more generally, for power series or
Laurent polynomials) we can compute

f(A) = X · f(B) ·X−1.

The nicest possible situation is when B is diagonal and X is orthogonal or unitary: X−1 =
XT or X−1 = X∗. This is the subject of the Spectral Theorem in the next section. But
diagonalization is not always possible. There are three different theorems for dealing with
non-diagonalizable matrices:

• Schur triangularization.

• Jordan normal form.

• Singular value decomposition.

We will deal with all three of these in this chapter. We begin with Schur triangularization.
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We say that a matrix is upper-triangular if all entries below the main diagonal are zero:143

T =


t11 ∗ · · · ∗

t22
...

. . . ∗
tnn


These matrices have some nice properties:

• The eigenvalues of T are the diagonal entries. Indeed, the characteristic polynomial is

χT (x) = (x− t11)(x− t22) · · · (x− tnn).

• Products and sums of upper-triangular matrices behave as products and sums for the
diagonal entries. Thus for any polynomial f(x) we have

f(T ) =


f(t11) ∗ · · · ∗

f(t22)
...

. . . ∗
f(tnn)


Unfortunately, the entries above the diagonal are messy.

• If T is invertible then T−1 is also upper-triangular, and the previous formula also applies
for Laurent polynomials f(x).

• If the largest eigenvalue satisfies |λ| < 1 then one can show that T k → O as k → ∞,
though the proof is a bit tricky.144

Here is our main theorem.

Theorem (Schur Triangularization). For any square matrix A over R or C, there exists
an upper-triangular matrix T and a unitary matrix U−1 = U∗ such that

A = UTU−1

A = UTU∗

(
a1 · · · an

)
=
(

u1 . . . un
)

t11 ∗ · · · ∗

t22
...

. . . ∗
tnn




u∗1

...

u∗n

 .

Even if A is real, the matrices U and T will generally have complex entries. However, if A is
a real matrix with real eigenvalues then we can choose U and T to be real.

143Similarly, a lower-triangular matrix has zeros above the main diagonal.
144This is easy for diagonalizable matrices.
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Proof. We use induction on the size of A. First we note that the theorem is trivially true for
1× 1 matrices, i.e., for scalars: (a) = (1)(a)(1). Now let A have shape n× n for some n ≥ 2.
We have seen that every real matrix has a (possibly complex) eigenvalue. Let t11 ∈ C be an
eigenvalue of A and let u1 be a corresponding eigenvector of length 1.145 Now let U1 be any
unitary matrix with first column u1:

U1 =
(

u1 · · · un
)
.

To find such a matrix, we first complete u1 to a basis, u1,x2, . . . ,xn, then apply Gram-Schmidt
to convert this into an orthonormal basis u1,u2, . . . ,un.146 Since these vectors satisfy u∗1u1 = 1
and u∗iu1 = 0 for i ≥ 2, we observe that

U∗1AU1 =


u∗1

...

u∗n

( Au1 Au2 · · · Aun
)

=


u∗1

...

u∗n

( t11u1 Au2 · · · Aun
)

=


t11u

∗
1u1

t11u
∗
2u1

...
t11u

∗
nu1

∗ · · · ∗



=


t11 ∗ · · · ∗

0
...
0

A2

 ,

for some matrix A2 of shape (n− 1)× (n− 1). By induction there exists an (n− 1)× (n− 1)
unitary matrix U2 such that T2 := U∗2A2U2 is upper-triangular. Now define the matrix

U := U1


1 0 · · · 0

0
...
0

U2

 .

145Just take any eigenvector and scale it. If t11 is real and if A has real entries then we can choose u1 to have
real entries, in which case we can choose U1 to have real entries.
146Any set of independent vectors can be completed to a basis using Steinitz exchange.
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We observe that this matrix is unitary:

U∗U =


1 0 · · · 0

0
...
0

U∗2

U∗1U1


1 0 · · · 0

0
...
0

U2



=


1 0 · · · 0

0
...
0

U∗2




1 0 · · · 0

0
...
0

U2



=


1 0 · · · 0

0
...
0

U∗2U2



=


1 0 · · · 0

0
...
0

In−1


= In.

And we observe that the matrix T := U∗AU is upper triangular, as desired:

T = U∗AU

=


1 0 · · · 0

0
...
0

U∗2

U∗1AU1


1 0 · · · 0

0
...
0

U2



=


1 0 · · · 0

0
...
0

U∗2




t11 ∗ · · · ∗

0
...
0

A2




1 0 · · · 0

0
...
0

U2



=


t11 ∗ · · · ∗

0
...
0

U∗2A2U2


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=


t11 ∗ · · · ∗

0
...
0

T2

 .

�

Before moving on, I will mention one application. If A = XTX−1 for some (upper or lower)
triangular matrix T , then the eigenvalues of A are the diagonal entries of T . One could
imagine using this to compute the eigenvalues of A. Unfortunately, the proof of Schur
triangularization assumes that we already know the eigenvalues of A.

Nevertheless, this is still the good idea, and it is behind the most powerful algorithm for
computing eigenvalues. This algorithm uses the QR factorization (which does not assume
knowledge of the eigenvalues) in a surprising way to recursively approximate the Schur de-
composition, and hence the eigenvalues. It was discovered in the late 1950s by Francis and
Kublanovskaya. I will present only the most basic version. The real world version uses extra
tricks and optimizations.

The QR Algorithm for Computing Eigenvalues. Given a square matrix A, we recur-
sively define unitary matrices Q1, Q2, . . . and upper-triangular matrices R1, R2, . . . as follows:

• Compute a QR factorization: A = Q1R1.

• Next, compute a QR factorization of the matrix R1Q1:147

R1Q1 = Q2R2.

• Continue to compute Qk+1 and Rk+1 from the matrix RkQk:

RkQk = Qk+1Rk+1.

Let’s write A1 := A = Q1R1 and Ak := QkRk. Since the Q in the QR factorization is unitary,
we have Rk = Q∗kAk and hence

Ak+1 = RkQk = Q∗kAkQk.

This implies that the sequence of matrices A = A1, A2, . . . all have the same eigenvalues. The
theorem says the following.

Theorem. Suppose that A has eigenvalues with distinct absolute values:148

|λ1| > |λ2| > · · · > |λn|.
147This is a strange idea, but it leads to great results.
148There are modified versions of the algorithm that work for all square matrices.

181



Then the matrix Ak = RkQk in the QR algorithm converges to an upper triangular matrix,
whose diagonal entries are the eigenvalues of A.

It is difficult to find a proof of this written down.149 The only full proof I can find is in
Wilkinson, The Algebraic Eigenvalue Problem (1965), page 516. Here is a sketch.

Sketch of a Proof. Define Q̃k := Q1Q2 · · ·Qk and R̃k = R1R2 · · ·Rk. Since the sets of
unitary matrices and upper triangular matrices are closed under multiplication,150 we see that
Q̃k is unitary and R̃k is upper triangular. I claim that Ak+1 = Q̃∗kAQ̃k and Ak = Q̃kR̃k.
Indeed, we have

Ak+1 = Q∗kAkQk

= Q∗kQ
∗
k−1Ak−1Qk−1Qk

...

= Q∗k · · ·Q∗2Q∗1AQ1Q2 · · ·Qk
= (Q1 · · ·Qk)∗A(Q1 · · ·Qk)
= Q̃∗kAQ̃k

and

Ak = (Q1R1) · · · (Q1R1)

= Q1(R1Q1) · · · (R1Q1)R1

= Q1(Q2R2) · · · (Q2R2)R1

= Q1Q2(R2Q2) · · · (R2Q2)R2R1

= Q1Q2(Q3R3) · · · (Q3R3)R2R1

...

= (Q1Q2 · · ·Qk)(Rk · · ·R2R1)

= Q̃kR̃k.

From our assumption that A has distinct eigenvalues, we can diagonalize A as

A = XΛX−1 = X

λ1

. . .

λn

X−1.

By multiplying X−1 on the left by elementary matrices we can write X−1 = LΓ where Γ is
upper triangular and L is lower triangular with 1s on the diagonal. The key to the whole
proof is to observe that ΛkLΛ−k is lower triangular and converges to the identity matrix as

149Pure math books tend not to discuss it and applied math books tend not to prove it.
150Jargon: These sets are groups.
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k →∞. Indeed, if `ij is the ij entry of L (so that `ii = 1 and `ij = 0 when i < j) then the ij
entry of ΛkLΛ−k is

(ΛkLΛ−k)ij =


0 i < j,

1 i = j,

`ij(λi/λj)
k i > j.

Since we have assumed that |λ1| > · · · > |λn|, it follows that the entries below the diagonal
go to zero as k →∞.

By combining these ingredients, Wilkinson shows that the sequences Q̃k and R̃k converge, and
that the the sequence Qk converges to a diagonal matrix, hence Ak = QkRk converges to an
upper triangular matrix. Let’s say Q̃k → U and Ak → T , for unitary U and upper triangular
T . Then in the limit we obtain the Schur triangularization:

A = Q̃kAk+1Q̃
∗
k → UTU∗.

�

Remark: The proof uses the fact QR factorization is unique up to multiplication with a
unitary diagonal matrix D: QR = (QD)(D−1R). This follows from the the fact that any
unitary upper triangular matrix must be diagonal.

12.3 The Spectral Theorem

The Spectral Theorem might be viewed as the “fundamental theorem” of spectral theory. It
characterizes the best kind of matrices; namely, those that possess an orthonormal basis of
eigenvectors. Here is the statement.

The Spectral Theorem. Let A be a square matrix with real or complex entries. Then

A has an orthonormal basis of eigenvectors ⇐⇒ A is normal, i.e., A∗A = AA∗.

Remarks: This theorem also applies to infinite dimensional Hilbert spaces, with suitable
notions of continuity and convergence. The original version of the theorem applies to real
symmetric matrices AT = A, in which case we can choose the eigenvectors to be real.

You will find many different proofs in the literature. One proof uses the Schur Triangulariza-
tion, which is convenient because we proved this in the previous section.

Proof using Schur Triangularization. One direction is easy. If A has an orthonormal
basis of eigenvectors then we can find unitary U∗U = I and diagonal Λ such that A = UΛU∗.
But then A is normal because diagonal matrices are normal:

A∗A = (UΛU∗)∗(UΛU∗)

= UΛ∗U∗UΛU∗

= UΛ∗ΛU∗
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= UΛΛ∗U∗ Λ∗Λ = Λ∗Λ

= (UΛU∗)(UΛ∗U∗)

= AA∗.

Conversely, suppose that A∗A = AA∗. By Schur’s Theorem, any square matrix A can be
written as A = UTU∗ where U∗U = I is unitary and T is upper-triangular. Thus we have

T = U∗AU,

which implies that T ∗T = TT ∗ by the previous argument. Finally, one can check that any
upper-triangular matrix T satisfying T ∗T = TT ∗ must be diagonal. This would make a good
homework exercise. The proofs for self-adjoint and unitary matrices are easier. If A∗ = A
then T = U∗AU implies that T ∗ = T . This says that the above diagonal-entries of T are
the conjugates of the below-diagonal entries of T , which are zero, and hence T is diagonal. If
A∗A = I then T = U∗AU implies that T ∗T = I, which says that the rows of T are orthogonal.
By working from the bottom row to the top, this implies that the above-diagonal entries of T
must be zero, hence T is diagonal. �

However, I think it is useful to give a proof from scratch. I will give the full proof for matrices,
and I will sketch out the proof for operators on Hilbert spaces. For full details see John B.
Conway, A Course in Functional Analysis, Chapter 2.

Proof of the Spectral Theorem, not using Schur Triangularization.

Step 1 for Matrices. If A∗A = AA∗ then A has an eigenvalue. Indeed, any square matrix
has an eigenvalue by the Fundamental Theorem of Algebra.

Step 1 for Operators. If A∗A = AA∗ and if the set {Au : ‖u‖ = 1} is compact (in which
case we say that A is a compact normal operator) then A has an eigenvalue. I’ll just sketch
the proof. Since the set {Au : ‖u‖ = 1} is compact,151 the operator norm is finite:

‖A‖ = sup{‖Au‖ : ‖u‖ = 1} <∞.

Since ‖A‖ exists we can find a sequence of unit vectors v1,v2, . . . such that 〈Avn,vn〉 → λ as
n → ∞ for some λ ∈ C satisfying |λ| = ‖A‖. Then since the set {Au : ‖u‖ = 1} is compact
we can find a subsequence vn1 ,vn2 , . . . so that Avnk → v as k →∞ for some nonzero vector
v satisfying Av = λv, and hence λ is an eigenvalue.

Step 2 for Matrices. Let A∗A = AA∗, with shape n × n. By Step 1 we can find an
eigenvalue λ1. Choose any unit length eigenvector u1 so that Au1 = λ1u1, and complete this
to an orthonormal basis u1,u2, . . . ,un. In particular, we have 〈u1,uj〉 for all j > 1. Since A
is normal, I claim that we also have 〈u1, Auj〉 = 0 for all j > 1. Indeed, if A is normal then

151This set is the image of the unit ball under A. In finite dimensions this set is an ellipsoid.
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we showed in the previous chapter that Au1 = λ1u1 implies A∗u1 = λ̄1u1. But then we must
have

〈u1, Auj〉 = 〈A∗u1,uj〉 = 〈λ̄1u1,uj〉 = λ1〈u1,uj〉 = 0.

If U is the (unitary) matrix with columns u1, . . . ,un then we have

A = U


λ1 0 · · · 0

0
...
0

A′

U∗,

for some matrix A′ of size (n− 1)× (n− 1). The displayed matrix containing λ and A′ equals
U∗AU . This implies that it is normal, and, in particular, the matrix A′ is normal. Now we
apply induction exactly as in the proof of Schur Triangularization.

Step 2 for Operators. (This is just a sketch; the details fill pages.) Let A : V → V be a
compact normal operator and set A1 := A. By Step 1 there exists an eigenvalue λ1 ∈ C such
that |λ1| = ‖A1‖. If A1 is not the zero operator then we have ‖A1‖ 6= 0 and hence λ1 6= 0.
Consider the eigenspace V1 = ker(λ1I − A1) ⊆ V and its orthogonal complement V ⊥1 ⊆ V .
Since A1 is a compact operator, one can show that the eigenspace V1 is finite dimensional,
say dimV1 = n1. Pick an orthonormal basis u11, . . . ,u1n1 ∈ V1. Then since A1 is normal, the
same proof as for matrices shows that A1 sends V ⊥1 to itself.152 Let A2 : V ⊥1 → V ⊥1 denote the
restriction of A1 to V ⊥1 . One can show that A2 is compact and normal, with ‖A2‖ < ‖A1‖. If
A2 6= 0 then by Step 1 there exists a nonzero eigenvalue λ2 ∈ C with |λ2| = ‖A2‖ and with a
finite dimensional eigenspace V2 = ker(λ2I −A2). Say dimA2 = n2 and pick an orthonormal
basis u21, . . . ,u2n2 ∈ V2. Continuing in this way we obtain a sequence of finite dimensional
eigenspaces V1, V2, . . . corresponding to eigenvalues with |λ1| > |λ2| > · · · . Finally, one can
show that the concatenation of the bases uk1,uk2, . . . ,uknk ∈ Vk is an orthonormal basis for
V . The remaining issue is to show that every vector v ∈ V can be expressed as a convergent
series of eigenvectors v = v1 + v2 + · · · , with vk ∈ Vk. �

In applications it is usually safe to ignore convergence issues and just the problem at an
algebraic level. For example,

12.4 The Singular Value Decomposition

A form of “generalized diagonalization” that applies to rectangular matrices and non-diagonalizable
square matrices.

For any m× n matrix A and n×m matrix B, the square matrices AB (m×m) and BA
(n × n) have the same nonzero eigenvalues. If m < n then the matrix BA has n −m extra
zero eigenvalues compared to AB.

For any m × n matrix A, the eigenvalues of ATA are real and non-negative: λ1 ≥ · · · ≥
λn ≥ 0. The singular values of A are the non-negative real square roots of the eigenvalues:
σi =

√
λi. Equivalently, σ2

1, . . . , σ
2
n are the eigenvalues of ATA.

152This is the key point in the proof.
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Properties: The largest singular value σ1 is the operator norm ‖A‖. The product of the
singular values is

√
det(ATA).

Let Σ be the n × n diagonal matrix of singular values, so Λ = Σ2 = ΣTΣ = ΣΣT is the
diagonal matrix of eigenvalues. From the spectral theorem there exists a unitary (orthogonal)
matrix V such that ATA = V ΛV T = V ΣΣTV T = (V Σ)(V Σ)T . The columns vi of V are the
eigenvectors of ATA.

Suppose that ATA has rank r, which is also the rank of A and AAT , so that there are r
nonzero singular values σ1 ≥ · · · ≥ σr. From our first remark, ATA and AAT have the same
non-zero eigenvalues. Define ui = (Avi)/σi for 1 ≤ i ≤ r. Then ui are the eigenvectors of AAT

corresponding to the eigenvalues σ2
1 ≥ · · · ≥ σ2

r . Complete the ui to a basis of Rm arbitrarily
and let U the m×m unitary (orthogonal) matrix with columns ui. Then we have A = UΣV ∗.
(I guess we have to pad Σ with some zeros.) This is the singular value decomposition (SVD).

Geometry: A sends the unit ball in Rn to an ellipsoid in Rm. The singular values of A are
the radii of the ellipsoid.

Eckart-Young Theorem. Write A =
∑r

i=1 σiuiv
T
i . Then Ak =

∑k
i=1 σiuiv

T
i is the best

rank k approximation to A. That is, for any rank k matrix B we have ‖A−Ak‖ ≤ ‖A−B‖.
Application: Principal Component Analysis. (Total Least Squares.)

Maybe put all of this in a separate chapter.

12.5 Jordan Canonical Form

If χA(x) =
∏

(x − λi)ni and Eλi = N ((λiI − A)ni) = ni is the generalized eigenspace then
dimEλi = ni.

The companion matrix.

13 Applications of Spectral Theory

13.1 The Principal Axes Theorem

The earliest example of the Spectral Theorem goes all the way back to the birth of analytic
geometry. It was known to Descartes and Fermat in the early 1600s and was applied by Euler
in the 1700s to the mechanics of rotating bodies.153

You may have seen this theorem in school: Any polynomial equation of the form

f(x, y) = a+ bx+ cy + dx2 + exy + fy2 = 0

can be brought into standard form by a translation and a rotation. The standard forms are

parabola : y = ax2 or x = ay2,

ellipse : x2/a2 + y2/b2 = 1,

hyperbola : ±(x2/a2 − y2/b2) = 1.

153Highlights in the History of Spectral Theory, Steen.

186



The Principal Axes Theorem generalizes this to higher dimensions.

Theorem (Principal Axes Theorem). Consider a general polynomial f(x1, . . . , xn) of
degree 2 in n variables. This can be expressed as

f(x) = b+ bTx + xTBx,

for some scalar b, vector b and symmetric matrix B. If B−1 exists, then we can find a change
of variables u = Qx + t, where QTQ = I is an orthogonal matrix154 and t is a (translation)
vector, such that

f(u1, . . . , un) = a+ λ1u
2
1 + λ2u

2 + · · ·+ λnu
2
n.

What if B−1 doesn’t exist?

Proof. Let u = Qx + t for some invertible matrix Q and vector t. Then we have

f(u) = f(Qx + t)

= b+ bT (Qx + t) + (Qx + t)TB(Qx + t)

= b+ bTQx + bT t + (xTQT + tT )B(Qx + t)

= b+ bTQx + bT t + xTQTBQx + xTQTBt + tTBQx + tTBt

= b+ bTQx + bT t + xTQTBQx + 2tTBQx + tTBt (∗)
= (b+ bT t + tTBt) + (bTQ+ 2tBQ)x + xTQTBQx.

Step (∗) uses the facts that BT = B and that tTBQx is a scalar, hence

tTBQx = (tTBQx)T = xTQTBT t = xTQTBx.

If B−1 exists, then we can eliminate the linear terms by taking

bTQ+ 2tBQ = 0T

2tBQ = −bTQ

tBQ = −1

2
bTQ

t = −1

2
bTQQ−1B−1

t = −1

2
bTB−1.

Finally, since B is symmetric, the Spectral Theorem says that we can choose orthogonal
QTQ = I so that QTBQ is diagonal:

Choose t so that bT + 2tTB = 0T . Assume B invertible.

154If the coefficients of f are complex then Q∗Q = I is unitary, but we are usually interested in the real case.
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13.2 Positive Definite Matrices

If 〈x, Bx〉 ≥ 0 (enough to assume ∈ R) for all x ∈ Cn then B∗ = B.
Proof: We need to show that 〈Bx,y〉 = 〈x, By〉 for all x,y. First note that 〈Bx,x〉 =

〈x, Bx〉∗ = 〈x, Bx〉, so 〈x, (B − B∗)x〉 for all x. We need to show that 〈x, Tx〉 = 0 for all x
implies T = O. Indeed, we have

0 = 〈x + y, T (x + y)〉 = 〈x, Ty〉+ 〈y, Tx〉+ 0 + 0

and
0 = 〈x + iy, T (x + iy)〉 = i〈x, Ty〉 − i〈y, Tx〉+ 0 + 0.

Divide the second equation by i and add them to obtain 2〈x, Ty〉 = 0 and hence 〈x, Ty〉 = 0
for all x,y.

In principle, our proof of the Spectral Theorem gives an algorithm to factor a semi-definite
matrix B = ATA, but is probably not the most efficient method since it assumes that we
already know the eigenvalues. The Cholesky factorization is a method to factor B = ATA
that avoids having to compute eigenvalues.

13.3 Differential Equations

The matrix exponential encodes the solution to linear systems of differential equations. To
begin, recall the power series definition of the exponential function:

exp(x) := 1 + x+
1

2
x2 + · · ·+ 1

k!
xk + · · · .

It is a basic theorem of analysis that this series converges uniformly for any complex number
x ∈ C. It was invented by Euler because of the following special properties. For any complex
numbers x, y ∈ C we have

exp(x) exp(y) =

∑
i≥0

1

i!
· xi
∑

j≥0

1

j!
· xj


=
∑
k≥0

 ∑
i+j=k

1

i!
· xi · 1

j!
· xj


=
∑
k≥0

1

k!
·

 ∑
i+j=k

k!

i!j!
xixj


=
∑
k≥0

1

k!
· (x+ y)k

= exp(x+ y).

This property suggests that exp(x) = ex for some number e, which Euler calculated to be
≈ 2.71828. Furthermore, the power series exp(x) is equal to its own derivative:

d

dx
exp(x) =

d

dx

(
1 + x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

)
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= 0 + 1 +
1

2!
· 2x+

1

3!
· 3x2 +

1

4!
· 4x3 + · · ·

= 0 + 1 + x+
1

2!
x2 +

1

3!
x3 + · · ·

= exp(x).

Conversely, let f : C→ C be any function satisfying d
dxf(x) = f(x). Suppose that f(x) has a

convergent power series expansion near x = 0:

f(x) = a0 + a1x+ a2x
2 + · · · .

The equation d
dxf(x) = f(x) tells us that

a0 + a1x+ a2x
2 + · · · = a1 + 2a1x+ 3a2x

2 + · · · .

Then comparing coefficients tells us that ak = (k+ 1)ak−1 for all k ≥ 0, which has the unique
solution ak = a0/k!. Hence we must have f(x) = a0 exp(x).

Now consider a vector of functions x(t) = (x1(t), x2(t), . . . , xn(t)). We can think of this as
a parametrized path in n-dimensional space: x : R → Rn.155 A linear system of ordinary
differential equations has the form

x′1(t) = a11x1(t) + · · · + a1nxn(t)
...

x′n(t) = an1x1(t) + · · · + annxn(t)

  x′(t) = Ax(t),

for some n×n matrix A of constants. We can think of x′(t) as the velocity vector of the path
x(t), and we can think of A as specifying a vector field on Rn, with value Ax at the point x.
A solution to the equation x′(t) = Ax(t) is any path x(t) in Rn that flows along the vector
field defined by A. For any initial point x(0) ∈ Rn

The companion matrix:
https://math.stackexchange.com/questions/348498/jordan-basis-of-a-when-a-is-the-companion-matrix

13.4 Graph Theory

Powers of the adjacency matrix. Acyclic directed graphs:
Paper: acyclic digraphs and eigenvalues of (0,1)-matrices

13.5 Markov Chains

Perron-Frobenius, Page Rank

155I guess we’ll work with real numbers to make visualization easier.
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13.6 Singular Value Decomposition

13.7 Total Least Squares

Given a matrix of n data points in any dimensional space:

X =
(

x1 · · · xn
)

For any vector a let Pa = aaT /‖a‖2 be projection onto the line a and Qa = I − Pa be
projection onto the hyperplane a⊥. For any i we have

xi = Paxi +Qaxi

‖xi‖2 = ‖Paxi‖2 + ‖Qaxi‖2∑
i

‖xi‖2 =
∑
‖Paxi‖2 +

∑
‖Qaxi‖2.

Goal: Choose a to minimize
∑
‖Qaxi‖2. Since

∑
i ‖xi‖2 is fixed by the data, this is the same

as maximizing
∑
‖Paxi‖2. But

‖Paxi‖2 =
1

‖a‖2
|aTxi|2 =

1

‖a‖2
aTxiaTxi =

1

‖a‖2
aTxix

T
i a,

hence ∑
‖Paxi‖2 =

1

‖a‖2
aTXXTa =

1

‖a‖2
(XTa)T (XTa) =

‖XTa‖2

‖a‖2
.

This is maximized by letting a be an eigenvector for the largest (real) eigenvalue of XXT .

Proof. By S.T., XXT can be unitarily diagonalized: XXTui = σ2
i ui. Let

a = c1u1 + · · ·+ cnun,

so that
1

‖a‖2
aTXXTa =

σ2
1c

2
1 + · · ·+ σ2

nc
2
n

c2
1 + · · ·+ c2

n

.

Maximum when c1 = 1 and c2 = · · · = cn = 0. Maximum under constraint c1 = 0 gives c2 = 1
and c3 = · · · = cn = 0, etc.
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