Math 310 Final Exam
Spring 2024 Wed May 8

No electronic devices are allowed. No collaboration is allowed. There are 10 pages and
each page is worth 6 points, for a total of 60 points.

1. Dot Product.

(a)

Find one non-zero vector in R3 that is perpendicular to the vector (1, —1,3). [There
are infinitely many correct answers.|

We need to find a non-zero vector (a, b, c) satisfying

(a,b,c)e(1,—1,3) =0
a—b+3c=0.

For example, take (a,b,c) = (1,1,0).

Let u and v be any vectors satisfying uev =3, ueu =2 and vev = 9. Compute
cos f, where 6 is the angle between u and v, measured tail-to-tail.

The dot product theorem gives

uev uev 3 1

v ~ Vaeu/vev  V2VA V2

[Remark: Hence 6 = 7/4. I could have asked for 6 but I know that some students
don’t remember that cos(m/4) = 1/4/2, and this isn’t a trigonometry class. Some

people would say that I should have asked for it, precisely because some of the
students don’t know it. But this is just Problem 1(b).]

cosf =

2. Cross Product.

(a)

Find one non-zero vector in R? that is perpendicular to both (2, —1,0) and (2, 1, —1).
[There are infinitely many correct answers.]

The cross product is designed to satisfy this property:

i k
(2,-1,0) x (2,1,—-1) =det |2 —1 O
2 1 -1
= {((=D(=1) = (1)(0), (2)(0) = (2)(=1), (2)(1) = (2)(=1))
= (1,2,4).

Check:



(b) Find the equation of the plane in R? that contains the three points (0,0, 0), (2, —1,0)
and (2,1, —1).

The plane contains the point (0,0,0) and has normal vector (1,2,4). Hence the
equation of the plane is
(1,2,4) ¢ (x — 0,y — 0,2 —0) =0
r+2y+4z=0.

3. Tangent Planes.

(a) Find the equation of the tangent plane to the surface zy + yz = 2 at the point
(z,y,2) = (1,1,1). [Hint: The normal vector is a gradient vector.]

This surface has the form f(x,y,z) =constant, where f(z,y,z) = zy + yz. Note
that Vf(x,y,2) = (y,z + z,y). So the equation of the tangent plane at (1,1,1) is

ViLl,l)e{z—1,y—1,2—1) =
(1,2, ez —1,y—1,2—1) =
-1)+2y-1+(z—-1) =

x+2y+z:4.

PictureEl

(b) Find the equation of the tangent plane to the surface r(u,v) = (u,v,uv) at the
point r(2,3) = (2,3,6). [Hint: The normal vector has the form r, x r,.]

To find a normal vector we compute the cross product of two tangent vectors:
ru = (1? 0’ U>7
r’U = (0? ]" u)’

ry, X r, = (—v,—u,1).

Hhttps ://www.desmos. com/3d/w817nozgr8|



https://www.desmos.com/3d/w8i7nozgr8
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The tangent vector at the point (2,3,6), i.e., when (u,v) = (2,3) is (—3,-2,1).
Hence the equation of the tangent plane at the point (2,3,6) is
(—3,-2,1)e{x —2,y—3,2—6) =0
3(r—2)+2(y—3)—(2—6)=0
3x+ 2y —z=06.
Picturef]

4. Linear Approximation. The base of a rectangular box is a square of side length r
and the height is h, so the volume of the box is V = 72h.

(a) Compute the differential dV in terms of 7, h, dr and dh.

We use the multivariable chain rule:

1% ov

= 2rhdr + rdh.

(b) Suppose we know that = h = 1 cm and that each of  and h has an uncertainty
of 0.1 cm. Estimate the uncertainty in the volume V.
Taking r = h =1 and dr = dh = 0.1 gives
dV = 2(1)(1)(0.1) + (1)%(0.1) = 0.3 cm®.

We can interpret this as the approximate uncertainty in our computation of V =
(1)2(1) = 1. We could say that

V=1+0.3cm®.

thtps ://www.desmos . com/3d/fbxhx6adr3


https://www.desmos.com/3d/fbxhx6adr3
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5. Two Variable Optimization. Find all local maxima, local minima and saddle points
for the following functions.

(a) f(z,y) ==y
Setting the gradient equal to (0,0) gives
Vf(z,y)=(0,0)
(y, ) = (0,0),

which implies that the only critical value is (x,y) = (0,0). To determine the nature
of this critical point, we compute the Hessian determinant:

f%x fﬁ o 01 o
det (fy:c fyz) = det (1 O) =—1.

Since the determinant is always negative we conclude that (0,0) is a saddle point.
Picturef]

(b) fla,y) =2 +y?
Setting the gradient equal to (0,0) gives
Vf(z,y)=0,0)
(2z,2y) = (0,0),

which implies that the only critical value is (z,y) = (0,0). To determine the nature
of this critical point, we compute the Hessian determinant:

det (fyz fyz)—det (O 2)—4.

Since the determinant is always positive we conclude that (0,0) is a local max or
min. Since fz,(0,0) =2 > 0, it is a local minimum. Pictureﬁ

https://www.desmos.com/3d/lybvrdcujc
https://www.desmos.com/3d/dj9rkmliif



https://www.desmos.com/3d/ly5vrdcujc
https://www.desmos.com/3d/dj9rkmliif

6. Integration Using Cartesian Coordinates.

(a) Integrate f(x,y) = x? 4+ y? over the rectangle with 0 < 2 <2 and 0 <y < 3.

3 2 3 1 2
/ (/ (:Jc2+y2)d:c) dyz/ [—x?’—i—y?m] dy
0 0 0 3 0
3
8 2

= 2422 d

QA(3+y) Y

_[8,.2 5]°

— 3V 3Y

—=8+42-9

= 26.

(b) Integrate f(z,y) = xy over the region defined by 0 < 2 <1 and 22 <y < z.

1 T 1 1 x
/ (/ acydy) dmz/ [—xyz] dx
0 \Ja2 0o L2 7 Jpe
1 1
= —/ (2% — 2°) dx
2.Jo

1L, 1!
_5[71$ Ex}o

_1/r 1
2\4 6

=1/24.
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7. Integration Using Polar and Cylindrical Coordinates.

(a) Use polar coordinates to compute the area of the unit disk x? + y? < 1.

We can parametrize the disk by = rcosf and y = rsinf with 0 < r < 1 and
0 < 6 < 2x. Then since dxdy = r drdf we have

Area://ldz:dy
://rdrd9
2 1
:/ d9/ rdr
0 0
AL

=27 [7‘2]
2 1o

= .

(b) Use cylindrical coordinates to compute the volume of the cone defined by z2+y? < 1

and 0 < z <1 — /22 + 92

We can parametrize the cone using x = rcosf, y = rsinfand z = z with0 <r <1,
0<60<2rand 0 <z <1-—r. Then since dxdydz = r drdfdz we have

Volume = / / / 1dxdydz
= ///rdrd&dz
27 1 1—r
:/ d@/r(/ dz)dr
0 0 0
1
:27T/ r(1—r)dr
0
1
:27r/ (r —r2)dr
0

1

8. Conservative Vector Fields. Consider the scalar function f(z,y) = —~.

T+y
(a) Compute the gradient vector field V f(z,y).

Since f, = —1/(z +y)? and f, = —1/(x + y)? we have

-1 -1 -1
Vi) = b = (o g ) = e
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(b) Integrate the vector field V f(x, y) along the path r(¢) = (0,1)+%(2,3) for 0 < ¢t < 1.
[Hint: There is a shortcut.]

The Fundamental Theorem of Line Integrals says that the integral of V f along any
path equals f(end point) — f(start point). In our case,

1
/0 V() ex'(t)dt = f(x(1)) — f(x(0)) = £(2,4) — f(0,1)

1 1
== —1=-5/6.
To compute this the hard way, note that r(¢) = (2¢,1+ 3t) and r'(¢t) = (2, 3), hence
1 1
-1
Vfr(t ’tdt:/— 1,1) @ (2,3) dt
| e e [ s e
' -5
= ———dt
/0 (5t + 1)2
61
:/ —du uw=>5t+1,du = 5dt
1 u?
116
a [UL
1 1
=g 1~ /¢

9. Green’s Theorem. Consider the vector field F(x,y) = (P, Q) = (22 + 32, zy).
(a) Compute the curl Q, — P,.
The curl is Q, — Py = (2y)z — (22 +y?)y =y — 2y = —v.

(b) Integrate @, — P, over the half disk defined by 2?4+ y? < 1 and 0 < y. [Hint: Use
polar coordinates.]

We can parametrize the half disk by x = rcosf and y = rsinf with 0 <r <1 and
0 <60 < 7. Since dxdy = r drdf we have

//(Qx — P)) dydx = // —y dydx
://—rsinerdrdﬁ
1 ™
——/ rzdr/ sin 6 df
0 0
141" i
=— [37"3} [—cos ]

= ——[—cos(m) + cos(0)]



(c) Compute the integral of F(z,y) = (x2+y?, zy) along the path r(t) = (—1,0)+%(2,0)
for0 <t <1.

Since r(t) = (2t — 1,0) and r'(t) = (2,0) we have
[ R exwa= [ o120 s .0
|
= 2/01(2t+ 1)2dt
= 2/0 (4t — 4t + 1) dt

4 1
=2 [3t3 — 212 —i—t]

—2§2+1
- T\3

=2/3.

0

(d) Compute the integral of F(z,y) = (2% + y?, zy) along the path r(t) = (cost,sint)
for 0 <t <. [Hint: There might be a shortcut.]

If D is the half disk from (b) and if C1,Cy are the oriented paths from (c),(d),
respectively, then we have 0D = Cy + C5. Picture:

Ca

C-1,0 & (1)0)
7
Cq

Hence Green’s Theorem gives

/aDFoT://D(Qx—Py)d:L‘dy
/ClF.T+/C2F.T://D(Qm—Py)dazdy

2/3+/ FOT:—2/3
Ca

/C F =—4/3.

Remark: The integral can also be computed directly, but you need to know the
antiderivative of sin®¢, or something similar.



