No electronic devices are allowed. No collaboration is allowed. There are 10 pages and each page is worth 6 points, for a total of 60 points.

1. Dot Product.

(a) Find one non-zero vector in \mathbb{R}^{3} that is perpendicular to the vector $\langle 1,-1,3\rangle$. [There are infinitely many correct answers.]

We need to find a non-zero vector $\langle a, b, c\rangle$ satisfying

$$
\begin{aligned}
\langle a, b, c\rangle \bullet\langle 1,-1,3\rangle & =0 \\
a-b+3 c & =0 .
\end{aligned}
$$

For example, take $\langle a, b, c\rangle=\langle 1,1,0\rangle$.
(b) Let \mathbf{u} and \mathbf{v} be any vectors satisfying $\mathbf{u} \bullet \mathbf{v}=3, \mathbf{u} \bullet \mathbf{u}=2$ and $\mathbf{v} \bullet \mathbf{v}=9$. Compute $\cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{v}, measured tail-to-tail.

The dot product theorem gives

$$
\cos \theta=\frac{\mathbf{u} \bullet \mathbf{v}}{\|\mathbf{u}\| \mathbf{v} \|}=\frac{\mathbf{u} \bullet \mathbf{v}}{\sqrt{\mathbf{u} \bullet \mathbf{u}} \sqrt{\mathbf{v} \bullet \mathbf{v}}}=\frac{3}{\sqrt{2} \sqrt{9}}=\frac{1}{\sqrt{2}}
$$

[Remark: Hence $\theta=\pi / 4$. I could have asked for θ but I know that some students don't remember that $\cos (\pi / 4)=1 / \sqrt{2}$, and this isn't a trigonometry class. Some people would say that I should have asked for it, precisely because some of the students don't know it. But this is just Problem 1(b).]

2. Cross Product.

(a) Find one non-zero vector in \mathbb{R}^{3} that is perpendicular to both $\langle 2,-1,0\rangle$ and $\langle 2,1,-1\rangle$. [There are infinitely many correct answers.]

The cross product is designed to satisfy this property:

$$
\begin{aligned}
\langle 2,-1,0\rangle \times\langle 2,1,-1\rangle & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 0 \\
2 & 1 & -1
\end{array}\right) \\
& =\langle(-1)(-1)-(1)(0),(2)(0)-(2)(-1),(2)(1)-(2)(-1)\rangle \\
& =\langle 1,2,4\rangle .
\end{aligned}
$$

Check:

$$
\langle 1,2,4\rangle \bullet\langle 2,-1,0\rangle=0 \quad \text { and } \quad\langle 1,2,4\rangle \bullet\langle 2,1,-1\rangle=0 .
$$

(b) Find the equation of the plane in \mathbb{R}^{3} that contains the three points $(0,0,0),(2,-1,0)$ and $(2,1,-1)$.

The plane contains the point $(0,0,0)$ and has normal vector $\langle 1,2,4\rangle$. Hence the equation of the plane is

$$
\begin{aligned}
\langle 1,2,4\rangle \bullet\langle x-0, y-0, z-0\rangle & =0 \\
x+2 y+4 z & =0 .
\end{aligned}
$$

3. Tangent Planes.

(a) Find the equation of the tangent plane to the surface $x y+y z=2$ at the point $(x, y, z)=(1,1,1)$. [Hint: The normal vector is a gradient vector.]

This surface has the form $f(x, y, z)=$ constant, where $f(x, y, z)=x y+y z$. Note that $\nabla f(x, y, z)=\langle y, x+z, y\rangle$. So the equation of the tangent plane at $(1,1,1)$ is

$$
\begin{aligned}
\nabla f(1,1,1) \bullet\langle x-1, y-1, z-1\rangle & =0 \\
\langle 1,2,1\rangle \bullet x-1, y-1, z-1\rangle & =0 \\
(x-1)+2(y-1)+(z-1) & =0 \\
x+2 y+z & =4 .
\end{aligned}
$$

Picture

(b) Find the equation of the tangent plane to the surface $\mathbf{r}(u, v)=(u, v, u v)$ at the point $\mathbf{r}(2,3)=(2,3,6)$. [Hint: The normal vector has the form $\mathbf{r}_{u} \times \mathbf{r}_{v}$.]

To find a normal vector we compute the cross product of two tangent vectors:

$$
\begin{aligned}
\mathbf{r}_{u} & =\langle 1,0, v\rangle, \\
\mathbf{r}_{v} & =\langle 0,1, u\rangle, \\
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\langle-v,-u, 1\rangle .
\end{aligned}
$$

[^0]The tangent vector at the point $(2,3,6)$, i.e., when $(u, v)=(2,3)$ is $\langle-3,-2,1\rangle$. Hence the equation of the tangent plane at the point $(2,3,6)$ is

$$
\begin{aligned}
\langle-3,-2,1\rangle \bullet\langle x-2, y-3, z-6\rangle & =0 \\
3(x-2)+2(y-3)-(z-6) & =0 \\
3 x+2 y-z & =6 .
\end{aligned}
$$

Picture ${ }^{2}$

4. Linear Approximation. The base of a rectangular box is a square of side length r and the height is h, so the volume of the box is $V=r^{2} h$.
(a) Compute the differential $d V$ in terms of $r, h, d r$ and $d h$.

We use the multivariable chain rule:

$$
\begin{aligned}
d V & =\frac{\partial V}{\partial r} d r+\frac{\partial V}{\partial h} d h \\
& =2 r h d r+r^{2} d h
\end{aligned}
$$

(b) Suppose we know that $r=h=1 \mathrm{~cm}$ and that each of r and h has an uncertainty of 0.1 cm . Estimate the uncertainty in the volume V.

Taking $r=h=1$ and $d r=d h=0.1$ gives

$$
d V=2(1)(1)(0.1)+(1)^{2}(0.1)=0.3 \mathrm{~cm}^{3}
$$

We can interpret this as the approximate uncertainty in our computation of $V=$ $(1)^{2}(1)=1$. We could say that

$$
V=1 \pm 0.3 \mathrm{~cm}^{3} .
$$

[^1]5. Two Variable Optimization. Find all local maxima, local minima and saddle points for the following functions.
(a) $f(x, y)=x y$

Setting the gradient equal to $\langle 0,0\rangle$ gives

$$
\begin{aligned}
\nabla f(x, y) & =\langle 0,0\rangle \\
\langle y, x\rangle & =\langle 0,0\rangle,
\end{aligned}
$$

which implies that the only critical value is $(x, y)=(0,0)$. To determine the nature of this critical point, we compute the Hessian determinant:

$$
\operatorname{det}\left(\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=-1
$$

Since the determinant is always negative we conclude that $(0,0)$ is a saddle point. Picture ${ }^{3}$

(b) $f(x, y)=x^{2}+y^{2}$

Setting the gradient equal to $\langle 0,0\rangle$ gives

$$
\begin{aligned}
\nabla f(x, y) & =\langle 0,0\rangle \\
\langle 2 x, 2 y\rangle & =\langle 0,0\rangle,
\end{aligned}
$$

which implies that the only critical value is $(x, y)=(0,0)$. To determine the nature of this critical point, we compute the Hessian determinant:

$$
\operatorname{det}\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=4
$$

Since the determinant is always positive we conclude that $(0,0)$ is a local max or min. Since $f_{x x}(0,0)=2>0$, it is a local minimum. Picture

[^2]
6. Integration Using Cartesian Coordinates.
(a) Integrate $f(x, y)=x^{2}+y^{2}$ over the rectangle with $0 \leq x \leq 2$ and $0 \leq y \leq 3$.
\[

$$
\begin{aligned}
\int_{0}^{3}\left(\int_{0}^{2}\left(x^{2}+y^{2}\right) d x\right) d y & =\int_{0}^{3}\left[\frac{1}{3} x^{3}+y^{2} x\right]_{0}^{2} d y \\
& =\int_{0}^{3}\left(\frac{8}{3}+2 y^{2}\right) d y \\
& =\left[\frac{8}{3} y+\frac{2}{3} y^{3}\right]_{0}^{3} \\
& =8+2 \cdot 9 \\
& =26
\end{aligned}
$$
\]

(b) Integrate $f(x, y)=x y$ over the region defined by $0 \leq x \leq 1$ and $x^{2} \leq y \leq x$.

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{x^{2}}^{x} x y d y\right) d x & =\int_{0}^{1}\left[\frac{1}{2} x y^{2}\right]_{x^{2}}^{x} d x \\
& =\frac{1}{2} \int_{0}^{1}\left(x^{3}-x^{5}\right) d x \\
& =\frac{1}{2}\left[\frac{1}{4} x^{4}-\frac{1}{6} x^{6}\right]_{0}^{1} \\
& =\frac{1}{2}\left(\frac{1}{4}-\frac{1}{6}\right) \\
& =1 / 24
\end{aligned}
$$

7. Integration Using Polar and Cylindrical Coordinates.

(a) Use polar coordinates to compute the area of the unit disk $x^{2}+y^{2} \leq 1$.

We can parametrize the disk by $x=r \cos \theta$ and $y=r \sin \theta$ with $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$. Then since $d x d y=r d r d \theta$ we have

$$
\begin{aligned}
\text { Area } & =\iint 1 d x d y \\
& =\iint r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{1} r d r \\
& =2 \pi\left[\frac{1}{2} r^{2}\right]_{0}^{1} \\
& =\pi .
\end{aligned}
$$

(b) Use cylindrical coordinates to compute the volume of the cone defined by $x^{2}+y^{2} \leq 1$ and $0 \leq z \leq 1-\sqrt{x^{2}+y^{2}}$.

We can parametrize the cone using $x=r \cos \theta, y=r \sin \theta$ and $z=z$ with $0 \leq r \leq 1$, $0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 1-r$. Then since $d x d y d z=r d r d \theta d z$ we have

$$
\begin{aligned}
\text { Volume } & =\iiint 1 d x d y d z \\
& =\iiint r d r d \theta d z \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{1} r\left(\int_{0}^{1-r} d z\right) d r \\
& =2 \pi \int_{0}^{1} r(1-r) d r \\
& =2 \pi \int_{0}^{1}\left(r-r^{2}\right) d r \\
& =2 \pi\left[\frac{1}{2} r^{2}-\frac{1}{3} r^{3}\right]_{0}^{1} \\
& =2 \pi\left(\frac{1}{2}-\frac{1}{3}\right) \\
& =\pi / 3
\end{aligned}
$$

8. Conservative Vector Fields. Consider the scalar function $f(x, y)=\frac{1}{x+y}$.
(a) Compute the gradient vector field $\nabla f(x, y)$.

Since $f_{x}=-1 /(x+y)^{2}$ and $f_{y}=-1 /(x+y)^{2}$ we have

$$
\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle\frac{-1}{(x+y)^{2}}, \frac{-1}{(x+y)^{2}}\right\rangle=\frac{-1}{(x+y)^{2}}\langle 1,1\rangle .
$$

(b) Integrate the vector field $\nabla f(x, y)$ along the path $\mathbf{r}(t)=(0,1)+t(2,3)$ for $0 \leq t \leq 1$. [Hint: There is a shortcut.]

The Fundamental Theorem of Line Integrals says that the integral of ∇f along any path equals f (end point) $-f$ (start point). In our case,

$$
\begin{aligned}
\int_{0}^{1} \nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t & =f(\mathbf{r}(1))-f(\mathbf{r}(0))=f(2,4)-f(0,1) \\
& =\frac{1}{6}-\frac{1}{1}=-5 / 6
\end{aligned}
$$

To compute this the hard way, note that $\mathbf{r}(t)=(2 t, 1+3 t)$ and $\mathbf{r}^{\prime}(t)=(2,3)$, hence

$$
\begin{array}{rlr}
\int_{0}^{1} \nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t & =\int_{0}^{1}-\frac{-1}{((2 t)+(1+3 t))^{2}}\langle 1,1\rangle \bullet\langle 2,3\rangle d t \\
& =\int_{0}^{1} \frac{-5}{(5 t+1)^{2}} d t \\
& =\int_{1}^{6} \frac{-1}{u^{2}} d u & u=5 t+1, d u=5 d t \\
& =\left[\frac{1}{u}\right]_{1}^{6} \\
& =\frac{1}{6}-\frac{1}{1}=-5 / 6
\end{array}
$$

9. Green's Theorem. Consider the vector field $\mathbf{F}(x, y)=\langle P, Q\rangle=\left\langle x^{2}+y^{2}, x y\right\rangle$.
(a) Compute the curl $Q_{x}-P_{y}$.

The curl is $Q_{x}-P_{y}=(x y)_{x}-\left(x^{2}+y^{2}\right)_{y}=y-2 y=-y$.
(b) Integrate $Q_{x}-P_{y}$ over the half disk defined by $x^{2}+y^{2} \leq 1$ and $0 \leq y$. [Hint: Use polar coordinates.]

We can parametrize the half disk by $x=r \cos \theta$ and $y=r \sin \theta$ with $0 \leq r \leq 1$ and $0 \leq \theta \leq \pi$. Since $d x d y=r d r d \theta$ we have

$$
\begin{aligned}
\iint\left(Q_{x}-P_{y}\right) d y d x & =\iint-y d y d x \\
& =\iint-r \sin \theta r d r d \theta \\
& =-\int_{0}^{1} r^{2} d r \int_{0}^{\pi} \sin \theta d \theta \\
& =-\left[\frac{1}{3} r^{3}\right]_{0}^{1}[-\cos \theta]_{0}^{\pi} \\
& =-\frac{1}{3}[-\cos (\pi)+\cos (0)] \\
& =-\frac{1}{3}[-(-1)+(1)] \\
& =-2 / 3 .
\end{aligned}
$$

(c) Compute the integral of $\mathbf{F}(x, y)=\left\langle x^{2}+y^{2}, x y\right\rangle$ along the path $\mathbf{r}(t)=(-1,0)+t(2,0)$ for $0 \leq t \leq 1$.

Since $\mathbf{r}(t)=(2 t-1,0)$ and $\mathbf{r}^{\prime}(t)=(2,0)$ we have

$$
\begin{aligned}
\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t & =\int_{0}^{1}\left\langle(2 t-1)^{2}, 0\right\rangle \bullet\langle 2,0\rangle d t \\
& =2 \int_{0}^{1}(2 t+1)^{2} d t \\
& =2 \int_{0}^{1}\left(4 t^{2}-4 t+1\right) d t \\
& =2\left[\frac{4}{3} t^{3}-2 t^{2}+t\right]_{0}^{1} \\
& =2\left(\frac{4}{3}-2+1\right) \\
& =2 / 3 .
\end{aligned}
$$

(d) Compute the integral of $\mathbf{F}(x, y)=\left\langle x^{2}+y^{2}, x y\right\rangle$ along the path $\mathbf{r}(t)=(\cos t, \sin t)$ for $0 \leq t \leq \pi$. [Hint: There might be a shortcut.]

If D is the half disk from (b) and if C_{1}, C_{2} are the oriented paths from (c),(d), respectively, then we have $\partial D=C_{1}+C_{2}$. Picture:

Hence Green's Theorem gives

$$
\begin{aligned}
\int_{\partial D} \mathbf{F} \bullet \mathbf{T} & =\iint_{D}\left(Q_{x}-P_{y}\right) d x d y \\
\int_{C_{1}} \mathbf{F} \bullet \mathbf{T}+\int_{C_{2}} \mathbf{F} \bullet \mathbf{T} & =\iint_{D}\left(Q_{x}-P_{y}\right) d x d y \\
2 / 3+\int_{C_{2}} \mathbf{F} \bullet \mathbf{T} & =-2 / 3 \\
\int_{C_{2}} \mathbf{F} & =-4 / 3 .
\end{aligned}
$$

Remark: The integral can also be computed directly, but you need to know the antiderivative of $\sin ^{3} t$, or something similar.

[^0]: ${ }^{1}$ https://www.desmos.com/3d/w8i7nozgr8

[^1]: ${ }^{2}$ https://www.desmos.com/3d/fbxhx6adr3

[^2]: 3 https://www.desmos.com/3d/ly5vrdcujc
 ${ }^{4}$ https://www.desmos.com/3d/dj9rkmliif

