On a generalization of Lie(k): A CataLAnKe theorem

Tamar Friedmann, Philip Hanlon, Richard P. Stanley, Michelle L. Wachs

Abstract: We initiate a study of the representation of the symmetric group on the multilinear component of an $n$-ary generalization of the free Lie algebra, which we call a free LAnKe. Our central result is that the representation of the symmetric group $S_{2n-1}$ on the multilinear component of the free LAnKe with $2n-1$ generators is given by an irreducible representation whose dimension is the $n$th Catalan number. This leads to a more general result on eigenspaces of a certain linear operator, which has additional consequences. We also obtain a new presentation of Specht modules of staircase shape as a consequence of our central result.


This paper is available as:


Return to preprints page