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Abstract

Several types of differential equations, such as delay differential equations,
age-structure models in population dynamics, evolution equations with boundary
conditions, can be written as semilinear Cauchy problems with an operator which
is not densely defined in its domain. The goal of this paper is to develop a center
manifold theory for semilinear Cauchy problems with non-dense domain. Using
Liapunov-Perron method and following the techniques of Vanderbauwhede et al.
in treating infinite dimensional systems, we study the existence and smoothness
of center manifolds for semilinear Cauchy problems with non-dense domain. As
an application, we use the center manifold theorem to establish a Hopf bifurcation
theorem for age structured models.
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CHAPTER 1

Introduction

The classical center manifold theory was first established by Pliss [88] and
Kelley [65] and was developed and completed in Carr [12], Sijbrand [95], Van-
derbauwhede [104], etc. For the case of a single equilibrium, the center manifold
theorem states that if a finite dimensional system has a nonhyperbolic equilib-
rium, then there exists a center manifold in a neighborhood of the nonhyperbolic
equilibrium which is tangent to the generalized eigenspace associated to the corre-
sponding eigenvalues with zero real parts, and the study of the general system near
the nonhyperbolic equilibrium reduces to that of an ordinary differential equation
restricted on the lower dimensional invariant center manifold. This usually means
a considerable reduction of the dimension which leads to simple calculations and a
better geometric insight. The center manifold theory has significant applications in
studying other problems in dynamical systems, such as bifurcation, stability, per-
turbation, etc. It has also been used to study various applied problems in biology,
engineering, physics, etc. We refer to, for example, Carr [12] and Hassard et al.
[52].

There are two classical methods to prove the existence of center manifolds. The
Hadamard (Hadamard [47]) method (the graph transformation method) is a geo-
metric approach which bases on the construction of graphs over linearized spaces,
see Hirsch et al. [565] and Chow et al. [19] [20]. The Liapunov-Perron (Liapunov
[71], Perron [87]) method (the variation of constants method) is more analytic in
nature, which obtains the manifold as a fixed point of a certain integral equation.
The technique originated in Krylov and Bogoliubov [69] and was furthered devel-
oped by Hale [48], [49], see also Ball [7], Chow and Lu [21], Yi [112], etc. The
smoothness of center manifolds can be proved by using the contraction mapping
in a scale of Banach spaces (Vanderbauwhede and van Gils [105]), the Fiber con-
traction mapping technique (Hirsch et al. [55]), the Henry lemma (Henry [54],
Chow and Lu [22]), among other methods (Chow et al. [18]). For further results
and references on center manifolds, we refer to the monographs of Carr [12], Chow
and Hale [16], Chow et al. [I7], Sell and You [94], Wiggins [110], and the survey
papers of Bates and Jones [8], Vanderbauwhede [104] and Vanderbauwhede and
Tooss [106].

There have been several important extensions of the classical center manifold
theory for invariant sets. For higher dimensional invariant sets, it is known that
center manifolds exist for an invariant torus with special structure (Chow and Lu
[23]), for an invariant set consisting of equilibria (Fenichel [44]), for some homoclinic
orbits (Homburg [56], Lin [72] and Sandstede [90]), for skew-product flows (Chow
and Yi [24]), for any piece of trajectory of maps (Hirsch et al. [65]), and for smooth
invariant manifolds and compact invariant sets (Chow et al. [19}, [20]).
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Recently, great attention has been paid to the study of center manifolds in
infinite dimensional systems and researchers have developed the center manifold
theory for various infinite dimensional systems such as partial differential equations
(Bates and Jones [8], Da Prato and Lunardi [30], Henry [54], Scheel [93]), semiflows
in Banach spaces (Bates et al. [9], Chow and Lu [21], Gallay [45], Scarpellini [91],
Vanderbauwhede [103], Vanderbauwhede and van Gils [105]), delay differential
equations (Hale [50], Hale and Verduyn Lunel [51], Diekmann and van Gils [34),
35|, Diekmann et al. [36], Hupkes and Verduyn Lunel [58]), infinite dimensional
nonautonomous differential equations (Mielke [81], [82], Chicone and Latushkin
[15]), and partial functional differential equations (Lin et al. [73], Faria et al.
[43], Krisztin [68], Nguyen and Wu [83], Wu [111]). Infinite dimensional systems
usually do not have some of the nice properties the finite dimensional systems
have. For example, the initial value problem may not be well posed, the solutions
may not be extended backward, the solutions may not be regular, the domain of
operators may not be dense in the state space, etc. Therefore, the center manifold
reduction of the infinite dimensional systems plays a very important role in the
theory of infinite dimensional systems since it allows us to study ordinary differential
equations reduced on the finite dimensional center manifolds. Vanderbauwhede
and Iooss [106] described some minimal conditions which allow to generalize the
approach of Vanderbauwhede [104] to infinite dimensional systems.

Let X be a Banach space. Consider the non-homogeneous Cauchy problem
(1.1) ccll_? = Au(t) + f(t), t € [0,7], u(0) =2 € D(A),
where A : D(A) € X — X is a linear operator, f € L ((0,7),X). If D(A) = X,
that is, if D(A) is dense in X, the Cauchy problem has been extensively studied
(Kato [63], Pazy [85]). However, there are many examples (see Da Prato and
Sinestrari [31]) in which the density condition is not satisfied. Indeed, several types
of differential equations, such as delay differential equations, age-structure models in
population dynamics, some partial differential equations, evolution equations with
nonlinear boundary conditions, can be written as semilinear Cauchy problems with
an operator which is not densely defined in its domain (see Thieme [98), [99], Ezzinbi
and Adimy [42], Magal and Ruan [76]). Da Prato and Sinestrari [31] investigated
the existence and uniqueness of solutions to the non-homogeneous Cauchy problem
(TI) when the operator has non-dense domain.

In this paper we present a center manifold theory for semilinear Cauchy prob-
lems with non-dense domain. Consider the semiflow generated by the semi-linear
Cauchy problem

du —

i Au(t) + F(u(t)), t € [0,7], u(0)=2x € D(A),
where F : D(A) — X is a continuous map. A very important and useful approach
to investigate such non-densely defined problems is to use the integrated semigroup
theory, which was first introduced by Arendt [3], 4] and further developed by Keller-
mann and Hieber [64], Neubrander [84], Thieme [98], [99], see also Arendt et al. [5]
and Magal and Ruan [76]. The goal is to show that, combined with the integrated
semigroup theory, we can adapt the techniques of Vanderbauwhede [103], 104],
Vanderbauwhede and Van Gills [105] and Vanderbauwhede and Iooss [106] to the
context of semilinear Cauchy problems with non-dense domain.
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As an application, we will apply the center manifold theory for semilinear
Cauchy problems with non-dense domain to study Hopf bifurcation in age structure
models. Let u(t, a) denote the density of a population at time ¢ with age a. Consider
the following age structured model

ou(t,a) . ou(t,a)
ot Oa
(1.2) u(t,0) = ah ( 0+°O ~y(a)u(t, a)da) ,

u(0,.)=p € L}r ((0,+0);R),

= —pu(t,a), a € (0,+00),

where p > 0 is the mortality rate of the population, the function h(-) describes
the fertility of the population, @ > 0 is considered as a bifurcation parameter.
Such age structured models are hyperbolic partial differential equations (Hadeler
and Dietz [63], Keyfitz and Keyfitz [66]) and have been studied extensively by
many researchers since the pioneer work of W. O. Kermack and A. G. McKendrick
(Anderson [I], Diekmann et al. [32], Inaba [61]). We refer to some early papers
of Gurtin and MacCamy [46] and Webb [107], the monographs by Hoppensteadt
[57], Webb [108], Iannelli [59], and Cushing [27], a recent paper of Magal and
Ruan [76] and the references therein.

The existence of non-trivial periodic solutions in age structured models has
been a very interesting and difficult problem, however, there are very few results
(Cushing [25], [26], Priiss [89], Swart [96], Kostava and Li [67], Bertoni [10]).
It is believed that such periodic solutions in age structured models are induced
by Hopf bifurcation (Castillo-Chavez et al. [13], Inaba [60} [62], Zhang et al.
[114]), but there is no general Hopf bifurcation theorem available for age structured
models. In this paper we shall use the center manifold theorem for semilinear
Cauchy problems with non-dense domain to establish a Hopf bifurcation theorem
for the age structured model (2.

The paper is organized as follows. In Chapter 2, some results on integrated
semigroups are recalled. One of the main tools to develop the center manifold theory
is the spectral decomposition of the state space X. The difficulty here is that from
the classical theory of C%-semigroup we only have spectral decomposition of the
space Xo := D(A). But in order to deal with non-densely defined problems we need
spectral decomposition of the whole state space X. In Chapter 3, we address this
issue. In Chapter 4 we present the main results of the paper, namely the existence
and smoothness of the center manifold for semilinear Cauchy problems with non-
dense domain, by using the Liapunov-Perron method and following the techniques
and results of Vanderbauwede and Iooss [106)].

In Chapter 5, we apply the center manifold theory to study Hopf bifurcation in
the age structured model (.2)). This kind of problems has been considered by Diek-
mann and van Gils [34], 35] and Diekmann et al. [33] by studying the equivalent
integral/delay equations. Nevertheless, here we regard this problem as an example
simple enough to illustrate our results. One may observe that the approach used
for this kind of problems can be used to study some other types of equations, such
as functional differential equations. Once again one of the main difficulties is to
obtain the spectral state decomposition for functional differential equations. No-
tice that this question has been recently addressed for delay differential equations
in the space of continuous functions by Liu, Magal and Ruan [74] and for neutral
delay differential equations in LP space by Ducrot, Liu and Magal [39]. Thus, using
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these recent developments it is also possible to apply our results presented here to
functional differential equations. Of course in the context of functional differential
equations this problem was considered in the past (see Hale [50]). However, the
approach presented here allows us to consider both functional differential equations
and age-structured problems as special cases of the non-densely defined problem
(Magal and Ruan [76]).



CHAPTER 2

Integrated Semigroups

In this chapter we recall some results about integrated semigroups. We refer
to Arendt [3], 4], Neubrander [84], Kellermann and Hieber [64], Thieme [99], and
Arendt et al. [5] for more detailed results on the subject. The results that we present
here are taken from Magal and Ruan [76), [78].

Let X and Z be two Banach spaces. Denote by £ (X, Z) the space of bounded
linear operators from X into Z and by £ (X) the space £ (X, X). Let A: D(A) C
X — X be a linear operator. We denote by R(A) the range of A and N(A) the null
space of A. If A is the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators on X, we denote by {T'a(t)},~ this semigroup. Recall
that A is invertible if A is a bijection from D(A) into X and A~! is bounded.
If X is a C-Banach space, we recall that the resolvent set of A is defined by
p(A) = {A e C: I — Ais invertible} . Moreover, we denote by o(4) := C\p(4)
the spectrum of A.

Note that if X is a real Banach space, then as in Schaefer [92] p.134], we can
consider the complexification X© of X, which is the additive group X x X with
scalar multiplication defined by

(@, B) (z,y) := (ax = By, fx + ay)

for (o, B) € C and (z,y) € X x X. Then X is a complex Banach space endowed
with the norm

(@, y)llxe = sup |cos(0)z +sin (0) y||.
0<o<2r

Define A® : D(A®) ¢ X© — XC by

A® (u,v) = (Au, Av), Y (u,v) € D(A%) = D(A) x D(A).
Then AC is a C-linear operator on X©. Set

p(A):=p (A(C) and o(A) :=C\p (AC) .
Note that if X is a real Banach space, then it is easy to see that
A€ p(A)NR <A — A is invertible.
Let Y be a subspace of X. Y is said to be invariant by A if
A(DA)NY)CY.

Denote by A |y: D(A |y) CY — X the restriction of A to Y, which is defined
v Aly x=Az, Yxe D(Aly) =D(A)NY.
Denote by Ay : D(Ay) CY — Y the part of A in Y, which is defined by

Ayx = Az, Ve € D(Ay)={z € D(A)NY : Az €Y}.

5
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For convenience, from now on we define

Xo = D(A) and AO = AX0~

LeMMA 2.1. Let (X,|.]|) be a K-Banach space (with K=R or C) and let
A:D(A) C X — X be a linear operator. Assume that p (A) # 0, then

p(A0) = p(A).
Moreover, we have the following:
(i) For each A € p(Ag) NK and each p € (w,+00),
(AT = A)™ = (= A) (M = Ag) ™" (ul — A) ™" 4 (ul — 4)".
(ii) For each X € p(A)NK,
D(Ag) = (M —A)"" Xg and (M — Ag) " =M —A) " |x, .

PrOOF. Without loss of generality we can assume that X is a complex Banach
space. Assume that A € p(Ap), p € p(A), and set

L= (=AM = Ao)™" (ul — )"+ (ul — A)~".
Then one can easily check that
Lz e D(A), (M —A)Lx =z, Vx € X,
and
LM —A)z =2,Yx € D(A).

Thus, (A — A) is invertible and (A\I — A)™' = L is bounded, so A € p(A). This
implies that p (Ag) C p (A). To prove the converse inclusion, we fix A € p (A). Then
one can easily prove (ii). So p (A) C p(Ap), and the result follows. O

The following Lemma was proved in Magal and Ruan [76, Lemma 2.1].

LEMMA 2.2. Let (X,].||) be a Banach space and A : D(A) C X — X be a
linear operator. Assume that there exists w € R such that (w,+00) C p(A) and

limsup/\H()\I—A)le < +o00.
A—+4o0 L(Xo)
Then the following assertions are equivalent:
(i) limy_y oo A(A — A) "'z = 2,V € X,.
(i) limy oo (M — A) "'z =0,Vz € X.
(iii) D (Aog) = Xo.

Recall that A is a Hille-Yosida operator if there exist two constants, w € R
and M > 1, such that (w,+00) C p(A) and
_ M
jar=a™| < masw, vk L
LX) (A —w)
In the following, we assume that A satisfies some weaker conditions

ASSUMPTION 2.3. Let (X, ||.||) be a Banach space and A: D(A) C X — X be
a linear operator. Assume that
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(a) There exist two constants, w € R and M > 1, such that (w, +00) C p(A)
and
M

)*’“H < WAw, VE>
L(Xo) (A —w)

H()\I—A

(b) limx—qoe (A — A) "2 =0,Vz € X.

By using Lemma 222 and Hille-Yosida theorem (see Pazy [85], Theorem 5.3 on
p.20), one obtains the following lemma.

LEMMA 2.4. Assumption 23] is satisfied if and only if there exist two constants,
M >1 and w € R, such that (w, +00) C p(A) and Ay is the infinitesimal generator
of a Co-semigroup {Ta, (t) },5 on Xo which satisfies | Ta, (t)|lz(x,) < Me¥t vt > 0.

We now define the integrated semigroup generated by A. The notion of the
generator for an integrated semigroup is taken from Thieme [99].

DEFINITION 2.5. Let (X, ||.||) be a Banach space. A family of bounded linear
operators {S(t)},5, on X is called an integrated semigroup if
(i) S(0) =o0.
(ii) The map t — S(t)z is continuous on [0, 4+o00) for each z € X.
(iii) Vt,r >0,

S(r)S(t) = /0 (S(r+1) — S(r)) dr = SOS(r).

We say that a linear operator A : D(A) C X — X is the generator of an integrated
semigroup {S(?)},5, if and only if

t
x € D(A), yzAx@S(t)x—tx:/ S(s)yds, ¥Vt > 0.
0

If A is the generator of an integrated semigroup, we use {Sa(t)},~, to denote
this integrated semigroup. The following proposition summarizes some properties
of integrated semigroups. Assertion (iv) of the following proposition is well known
in the context of integrated semigroup generated by a Hille-Yosida operator. We
refer to Magal and Ruan [76], Proposition 2.6] for a proof of this result.

PROPOSITION 2.6. Let Assumption 23] be satisfied. Then A generates a unique
integrated semigroup {SA(t)}tzo and for each x € X, each t > 0, and each p > w,
Sa(t)z is given by

t
(2.1) Sa(t)z = u/ Ta,(s) (ul — A) ' ads+ (ul — A) 'z =T, (t) (u — A) ' 2.
0

Moreover, we have the following properties:

(i) For allt >0 and all z € X,
t

/t Sa(s)xds € D(A), Sa(t)x = A/ Sa(s)xds + tx.
0 0

(ii) The map t — Sa(t)x is continuously differentiable if and only if x € Xq

and s
,zit)x =T, (t)z, Vt>0, Vo e X,.

(iii) Ty (r)Sa(t) = Sa(t + 1) — Salr), ¥¢,r > 0.




8 2. INTEGRATED SEMIGROUPS

(iv) If we assume in addition that A is a Hille-Yosida operator, then we have
t
19a(6) = Sa () ) < M/ 7 do, Vit s € [0,+00) witht > s.

From Proposition L8, we also deduce that S4(t) commutes with (Al — A)~"
and

t
Sa(t)z = / T, (Dadl, ¥t > 0, ¥ € Xo.
0

Hence, Vx € X, Vt > 0, Vu € (w, +00),

(ul — A) " Sa(t)z = Sa(t) (ul — A) "o = /O Tay(s) (ul — A) " ads.

Moreover, by using formula (ZI)) we know that {Sa(t)},~, is an exponentially
bounded integrated semigroup. More precisely, for each ~y >7max(07 w), there exists
M., > 0, such that ||Sa(t)|| < M,e?. So by using Proposition 3.10 in Thieme [99],
we have for each A > max(0,w) that

+oo
(2.2) M —A)"z= /\/ e MG (t)xdt.
0
We now consider the non-homogeneous Cauchy problem
d -
(2.3) d—lt‘ = Au(t) + f(t), t €[0,7], u(0) =z € D(A).

Assume that f belongs to some appropriated subspace of L ((0,7), X).
DEFINITION 2.7. A continuous map u € C ([0, 7], X) is called an integrated
solution of ([23) if and only if
t
(2.4) / u(s)ds € D(A), Vte[0,71],
0

and
u(t) =x + A/O u(s)ds +/O f(s)ds, YVt € [0,7].

From (2.4) we know that if u is an integrated solution of (23] then

u(t) € D(A), vt € [0,7].

LEMMA 2.8. Let Assumption 23] be satisfied. Then for each x € D(A) and
each f € L' ((0,7),X), (23]) has at most one integrated solution.

From now on, for each 7 > 0 and each f € L' ((0,7), X), we set

(Sax f) (1) = /0 St — ) f(s)ds, V¢ € [0,7].

Note that from Lemma 2.8 in [76], we know that if f € C'*([0, 7], X), then the map
t — (Sa * f) (t) is continuously differentiable on [0, 7]. So the following assumption
makes sense.
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ASSUMPTION 2.9. Assume that there exist a real number 7% > 0 and a non-
decreasing map 6* : [0, 7] — [0, +00) such that for each f € C'([0,7*], X),

H— Sax )t H <5°(t) sup ()], Ve € 0,7,
s€[0,t]

and
lim §*(¢) = 0.

t—0+

The following theorem was proved in Magal and Ruan [78].

THEOREM 2.10. Let Assumptions 23] and B9l be satisfied. Then for each 7 > 0
and each f € C([0,7],X) the map t — (Sa* f)(t) z's continuously differentiable,
(Sa = f)(t) € D(A),Vt € [0,7], and if we set u(t) = %L (Sa * f) (t), then

A/ ds+/f )ds, Vit € [0,7].

Moreover, there exists a non-decreasing map ¢ : [0,4+00) — [0,+00), such that
lim;_,o+ 6(t) = 0 and

[u(®)ll < 6(t) sup [|f(s)]l, Vvt € [0,7].

s€0,t]
Furthermore, for each A € (w,+00) we have for each t € [0, 7] that

1 d

(25) (L= AL (Sax ) (1) = / Tag(t— ) (AT — A)™ f(s)ds.

As an immediate consequence of Theorem 210 we have the following result.

COROLLARY 2.11. Let Assumptions B3] and be satisfied. Then for each
T >0, each f € C([0,7],X), and each © € Xy, the Cauchy problem (IZ3)) has a
unique integrated solution v € C ([0,7], Xo) given by

u(t) = Ta, (t)z + % (Sax*f)(t), Ve €[0,7],

and
Ju(®)|| < Me“* x| + 6(t) zl[lopﬂ £, vt eo,7].

We now consider a bounded perturbation of A. As an immediate consequence
of Proposition 2.16 in Magal and Ruan [76], we have the following proposition.

PROPOSITION 2.12. Let Assumptions 23] and [Z9] be satisfied. Let L € L (Xo, X)
be a bounded linear operator. Then A+ L : D(A) C X — X satisfies Assumptions
and 9. More precisely, if we fix T, > 0 such that

6 (o) 1Ll £ xo,x) < 1,

and if we denote by {SA+L(t)}t20 the integrated semigroup genmerated by A + L,
then Vf € C([0,7.],X),

o) sup [|f(s)], ¥t € [0,71].

-
H +L 1—-46 () ||L||L(X0,X) s€[0,1]
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From now on, for each 7 > 0 and each f € C (]0,7],X), we set

(Sao f) (1) 1= o (Sax ) (1)1 € 0,7].

By using the fact that (S4 o f)(t) € Xo,Vt € [0,7] and formula (ZI]), we have
Vt € [0, 7] that
t

(2.6) (Saof)(t)= lim i Ta,(t — Dy (ul — AL f(Ddl, Vf € Z.

p—400

This approximation formula was already observed by Thieme [98] in the classical
context of integrated semigroups generated by a Hille-Yosida operator. From this
approximation formulation, we deduce that for each t,s € [0,7] with s < ¢, and
fec(o,r],X),
(2.7) (Sao f)(t)=Ta, (t—s)(Saof)(s)+ (Saof(s+.)(t—s).

To conclude this chapter we state a result proved in Magal and Ruan [78]. This
result is one of the main tools to investigate semi-linear problems.

PROPOSITION 2.13. Let Assumptions and be satisfied. Then for each
v > w, there exists Cy, > 0, such that for each f € C (R4, X) and t > 0,

e (Sae f)WII<Cy sup. e N F ()
s€l0,

More precisely, for each € > 0, if 7. > 0 is such that M (1.) < e, then the above

inequality is true with

= 2emax (1,e 77)
(]_ —_ e(wfv)‘rs)

, VY > w.



CHAPTER 3

Spectral Decomposition of the State Space

The goal of this chapter is to investigate the spectral properties of the linear
operator A. Indeed, since Ay is the infinitesimal generator of a linear C°-semigroup
of Xy, we can apply the standard theory to the linear operator Ag. We will recall
some basic important results on the spectral theory for C°-semigroups. Neverthe-
less, the classical theory does not apply to A since it is non-densely defined. This
question will be mainly addressed in Proposition As consequences, we will also
derive some results for non-homogeneous non-densely defined problem.

We first investigate the properties of projectors which commute with the resol-
vents of Ag and the resolvent of A. Then we will turn to the spectral decomposition
of the state spaces Xy and X. Assume A: D(A) C X — X is a linear operator on
a complex Banach X. We start with some basic facts.

LEMMA 3.1. We have the following:
(i) If Y is invariant by A , then A |y= Ay (i.e. D(Ay) = D(A)NY ).
(ii) If A\ — A) 'Y C Y for some X € p(A), then

D(Ay)= (M —A)'Y, Nep(Ay) and My —Ay) "= (M —A) "' |y .
PROOF. (i) Assume that Y is invariant by A, we have
D(Ay)={zeDA)NY : Az €Y} =D(A)NY =D(A |y),

so A ly= Ay.
(i) Assume that (A\I — A)~'Y C Y for some A € p(A). Then we have
D(Ay) = {zeDA)NY : AzeY}={aeDANY:(AM-A)zeY}
= (M-Aly,
and the result follows. O

Let IT: X — X be a bounded linear projector on a Banach space X and let Y
be a subspace (closed or not) of X. Then we have the following equivalence

(3.1) NY)cYelI(Y)=YNII(X).
LeEMMA 3.2. Let (X,||.||) be a Banach space. Let A : D(A) C X — X be a
linear operator and let II : X — X be a bounded linear projector. Assume that
MM —-A) "= —4)7"'1
for some A € p(A). Then we have the following
(i) I (D(A)) = D(A) NI (X) and IT ( (A)) = D(A) NI (X).
(ii) Allz = IIAz,Vx € D(A).
(iil) Anx) = 4 |nex)-

11



12 3. SPECTRAL DECOMPOSITION OF THE STATE SPACE

(iv) A € p(Anx)), D(Anex)) = (M = A) ' I(X) and (M — Anx)) =

A= A) 7" [nx) -
(v) (A ‘H(X))D(A\H(X)) = (AD(A)) |H(D(A)) :
PrROOF. We have
IL(D(A) =TI(A — A (X) = (M — A) ' (X) C D(A).

Thus, I1 (D(A)) C D(A). Since II is bounded, we have IT (D(A) c D(A). So by

using (1), we obtain I (D(A)) = D(A) N 1II(X) and IT ( (A)) =D(A) NI (X).
This proves (i).
LIZ,t x € D(A) be fixed. Set y = (Al — A) z. Then

Az = TAM — A) "y = A(M — A) "'y = Allz,

which gives (ii). Hence, II(X) is invariant by A, and by using Lemma Bl we
obtain (iii). Moreover, we have

M —AT'II(X)=T M —A4)"" X CI(X).
So Lemma Bl implies (iv). Finally, we have

D ((A \H(X))m) = {x € D(A |nx)) : Az € D(A \H(X))}
z € I1(X) N D(A) : Az € D(A) NIL(X)
v e 1 (D(A)) N D(4) : Az e 11 (D(A)) }

b((so1m) o)

This shows that (v) holds. O

LEMMA 3.3. Let the assumptions of Lemma be satisfied. Assume in addition
that 11 has a finite rank. Then 11 (D(A)) is closed, 1 (m) =1I(D(A)) C D(A4),
and A |rx) is a bounded linear operator from I1(D (A)) into II (X).

PRrROOF. By using Lemma[B2 we have II (D(A)) = D(A)NII(X), so II (D(A))
is a finite dimensional subspace of X. It follows that II (D(A )) is closed and A |p(x)
is bounded. Now since II is bounded, we have II ( )) D(A)) =11(D(4)),
and the result follows. O

LEMMA 3.4. Let Assumption 23] be satisfied. Let Iy : Xg — X¢ be a bounded
linear projector. Then

(3.2) IIpT4, (t) =Ta, (t)Ho, Vit >0
if and only if
(3.3) o (M — Ag) ™" = (M — Ag) ™o, VA > w.

If we assume in addition that (132)) is satisfied, then we have the following:
(i) o (D(Ap)) = D(Ap) N1l (Xo) and Apllpx = yAgz, Vo € D(Ay).
(i) Ao |1‘I(X0): (AO)HO(XO) :
(iii) TAO‘HO(X())(t) =Ty, (t) ‘HO(XO),Vt > 0.
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(iv) If we assume in addition that 1o has a finite rank, then Iy (Xo) =
I (D(Ag)) € D(Ag), Ao |my(x,) 5 a bounded linear operator from Il (Xo)
into itself, and

TAO\HO(XD)(t) = erlng(XO)t,Vt > 0.

Proor. B2)=B3) follows from the following formula

—+o0
(M —Ag) 'z = / e "M Ty, (8)xds, YA > w,Vr € Y.
0

B3)=-(B32)) follows from the exponential formula (see Pazy [85] Theorem 8.3, p.33])

t —n
Ta,(t)z = lim (I — EAO) x, Vx € Xo.

n—-+oo
By applying Lemma and Lemma B3 to Ag, we obtain (i)-(iv). O

The idea of proving the following result comes from the proof of Theorem 2.6
in Thieme [102].

PROPOSITION 3.5. Let Assumption be satisfied. Let Iy : Xog — Xo be a
bounded linear projector satisfying the following properties

11, ()\I — Ao)_l = ()\I — Ao)_l Ho, VYA >w
and
o (Xo) C D(Ao) and Ao |y (x,) s bounded.
Then there exists a unique bounded linear projector Il on X satisfying the following
properties:
(i) II | x,= Ilo.
(ii) II(X) C Xo.
(i) IL(A — A)" = (M — A) 7 ILYA > w.
Moreover, for each x € X we have the following approximation formula
1
o= lim oA\ —A) 'z = lim IS4 (h)z.
v )\_131000( ) e hgél+h0,4()ﬂf
PROOF. Assume first that there exists a bounded linear projector II on X
satisfying (i)-(iil). Let € X be fixed. Then from (ii) we have Iz € X, so
Iz = lim AN —A) 'z

A— 400

Using (i) and (iii), we deduce that
Iz = lim HoA M — A) 'z

A——+o0
Thus, there exists at most one bounded linear projector II satisfying (i)-(iii).
It remains to prove the existence of such an operator II. To simplify the no-
tation, set B = Ag |r,(x,) - Then by assumption, B is a bounded linear operator
from IIy (Xo) into itself, and

TAO (t)HO.’ﬂ = eBtH()IC,vt Z O,V.’ﬂ S Xo.

Let € X be fixed. Since S4(t)x € Xy for each ¢t > 0, we have for each h > 0 and
each A > w that
h
(M — Ag) " Sa(h)z = Sa(h) (M — A) o = / Ta,(h—s) (M — A)" ads
0
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and

My (A — Ag) ™" Sa(h)z = (M — Ag)™ ' ToSa(h)x

h
= / T a, (h —s) (AL — A) "' zds
0

h
= / BTy (AT — A) ™! ads.
0

Since B is a bounded linear operator, t — eB? is operator norm continuous and

1" g 1" g
E e dS = IHo(Xo) =+ E [6 — IHD(XO)]dS-
0 0

Thus, there exists hg > 0, such that for each h € [0, hg],

1

h
E/ [GB(his) — IHO(XO)}dS < 1.
0

L(ITo(Xo))

It follows that for each h € [0, ho], the linear operator % foh eB(h=3)ds is invertible

from Iy (Xo) into itself and
1" s -
IHO(XO) — IHO(XO) — E/O e ( *S)dS

L " s
E/o e ds
Z IHO(XO)_E/ eB(hfs)dS .
0

k=0
We have for each A > w and each h € (0, ho] that

-1

-1
h
(% / eB(hS)ds> (A — Ag) ™! HO%SA(h)x =Ty (M — A) 'z
0

Since for each ¢t > 0, eBIly = T4, (t)Ily commutes with (AI — Ag) ™", it follows
-1

that for each h € [0,ho], (% heB(h*S)ds) I, commutes with (Al — Ag) ™",

Therefore, we obtain for each A > w and each h € (0, ho] that

a1 , 1 -
(34) A —Ay)~" (E/ eB(h—6>ds> Mo Sa(h)e = ToA (M — A) Y.
0
Now it is clear that the left hand side of ([84) converges as A — +o00. So we can
define IT : X — X for each x € X by
(3.5) Iz = lim oA (M —A) 'z

A——+o0

Moreover, for each h € (0, ho] and each z € X,

~1
I 1
(3.6) Iz = (ﬁ/ eB(hs)ds> HOESA(h)x.
0

It follows from (B0 that I : X — X is a bounded linear operator and IT (X)) C Xj.
Furthermore, by using [B.5]), we know that IT |x,= IIy and II commutes with the
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resolvent of A. Also notice that for each h € (0, ho],

lH Sa(h)r = l/h B )zds
7 Hooa A .
So

1
Iz = ’111{% EHOSA(h)x.

Finally, for each x € X,

Mllz = lim AWM —A) 'z= lim IBAW —A) 'z
A—+o0 A—+o0
= lim A — A) 'z =z
A——+oo
This implies that II is a projector. O

Note that if the linear operator Ily has a finite rank, then Ag |1, (x,) is bounded.
So we can apply the above proposition.
By Proposition 2.6} Lemmas and [3:4] we obtain the following results.

LEMMA 3.6. Let Assumption 23] be satisfied. Let 11 : X — X be a bounded
linear projector. Assume that

M —A) "=\ —A)"I, YA€ (w,+00).
Then A |n(x)= An(x) satisfies Assumption R3] on 11 (X)) . Moreover,

(i) (A ‘H(X))D(A‘H(X)) = (AD(A)) \n(D(A)): Ao [(x) -
(if) Sa(t)II =T1S4(t), Ve > 0.
(iii) SA\n(x)(t) = SA(t) |H(X),Vt > 0.

From the above results, we obtain the second main result of this chapter.

PROPOSITION 3.7. Let Assumptions 23] and be satisfied. Let I1 : X — X
be a bounded linear projector. Assume that

LA —A) = (A — A) ' ILVA € (w, +00).

Then the linear operator A |g(x)= An(x) satisfies Assumptions 23] and n
I1(X). Moreover, for each 7 > 0, each f € C([0,7],X), and each x € Xy, if we set
for each t € [0, 7] that

u(t) = Ty ()2 + 35 (545 1) (1),
then

d
Iu(t) = TAoln(xo)(t)Hx + at (SA|1'I(X) * Hf) (),

t t
Hu(t):Hx+A|H(X)/O Hu(s)ds-i—/o IIf(s)ds,

and
TTu(t)]| < Me" || Tz + 6(t) sup, [TLf ()l , vt € [0,7].
se|0,t
Furthermore, if II has a finite rank and I1(X) C Xg, then II(X) = II(Xy) C
IT(D (Ao)) C D (Ao), A lu(x) is a bounded linear operator from 11 (Xg) into itself.
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In particular, A |nx)= Ao |nx,) and the map t — Tu(t) is a solution of the
following ordinary differential equation in 11 (Xy) :
dITu(t)
dt
We now recall some well known results about spectral theory of closed linear
operators. We first recall that if A € p(4),

oo

(3.7) (M — A)' = (XI—A)AZ (X—A)" (XI—A)%,
n=0

A—X’ H(XI—A)I

holomorphic on p (4).
The following result is proved in Yosida [113] Theorems 1 and 2, p.228-299].

= Ao |n(xy) Mu(t) +11f(t), Vt e [0,7], with Tu(0) = Ilx.

< 1. So one obtains that (M — A)™" s
L(X)

whenever

THEOREM 3.8. Let A : D(A) C X — X be a closed linear operator in the
complex Banach space X and let Ao be an isolated point of o (A). Then,

(3.8) A== 3 (A=) B,
k=—o00
where for each integer k,
1 . _
(3.9) By = — A=Xo) TP = A) "t

2w S (ngse)t
where S¢ (Ao, e) " is the counter-clockwise oriented circumference |X — Xo| = € for
sufficiently small € > 0 such that |\ — A\g| < & does not contain other point of the

spectrum than \g. We have the following properties

ByB,, =0, k>0,m < -1,

B, = (-1)"By*™, n>1,
B_pgt1=B_pB_4(p,g=1),

Bn = (A - /\()I) Bn+1(n 2 0),

(A=XoI)B_p = B_(41) = (A= XoI)" B_y,
(A= Xol)By=B_1 —1I.

Note that from the third equation of [BI0), we have for each p > 1 that
B_pB_1 =B _p_141 = By,

(3.10)

so B_j is a projector on X. Since

(A—Xol)B_1 = B_o,
it follows that

AB_1 =X oB_1 + B_s.

So A restricted to R(B_1) is a bounded linear operator. We also have for each
p > 1 that

(3.11) AB_, = AB_1B_, = X\B_1B_,+B_3B_, = X\B_,+ B_,_1.
Moreover, from (33)) it is clear that B_; commutes with (Al — A)f1 for each A €
p(A). Thus,
~1 _
(Mol = Als_, ) =T = A7 500 -
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Furthermore, by using the last equation of BI0), we deduce that Ao & o (A |(1—5_,)(x))
and

-1
(Mol = Alr-p_yx)  =DBolu-B1)x) -
Recall that A\ is a pole of (AI — Af1 of order m > 1 if )y is an isolated point
of the spectrum and
B_,, #0, B_; =0, Yk >m.

The following result is proved in Yosida [113] Theorem 3, p.299].

THEOREM 3.9. Let A : D(A) C X — X be a closed linear operator in the
complex Banach space X and let Ao be a pole of (A — A)f1 of order m > 1. Then
Ao 1s an eigenvalue of A, and

R(B_1)=N(MI—-A)"), R(I-B_1)=R((MI—-A)"), Yn>m,
X=N(XI—-A"Y®R((NI—-A)"), Vn>m.

We already knew that A |p_,(x) is bounded. Moreover, if A\ is a pole of

(M — A)~! of order m > 1, we have from the above theorem that

(Aol = Alp_x)" =0.
From BII) for p = m, we obtain
AB_, = \B_,.

Since B_, # 0, we have {\o} C o (A |B,1(X)) . To prove the converse inclusion we
use the same argument as in the proof of Kato [63] Theorem 6.17, p.178]. Set that
for A € C and let € < |\ — Ao,

1 (NI —A)""

Ly=— e P\
A 211 SC()\(]’E)-*— A= N

Then we have

1 (NI — A"

I-A /
(A = A) 25— —dA

(M — A) L, —
211 SC(AO,€)+

]. / / -1 / 1 !
_ L (NI - A) d)\+/ dx
211 [ Se(Xoye)t Sc(Xo,e)™ A= N

1 _
- / (NI — A" axN
27T’L SC(A0,5)+

Lyx(M — A)z = B_1z,Vx € D(A).
It follows that for each A € C\ {\o}, (A — A [5_,(x)) is invertible and

(M = Alp_,x) =Lxlp_yx) -

=DB_;.

Similarly, we have

It follows that
o (Als_,x) = o}
Furthermore, since A\g ¢ o (A |(1_B_1)(X)) , we have that

o (Alu-_Hx)) =0 (A)\ {Ao}-
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Assume that A; and Ay are two distinct poles of (A — A)_1 . Set for each 7 = 1,2
that

1
P=_
27'('2 SC()\i75)+

where € > 0 is small enough. It is clear that P, commutes with P, and
PiP,=PFPP, =0.

Indeed, let © € R(P;) be fixed. Since P; commutes with (A — A)~" for each
X € p(A), we have

(A — A)~td),

1 - 1 -
Py = - (M — A) " zd) = —/ (A = Alpx) " wdh.
Sc(Az,e)t

271 Sc()\Q,E)+ 211
Furthermore, since o (A |p,(x)) = {\1}, it follows from ([B7) that
1 > n+1

. -1
P = SC(A2,5)+7;)()\_)\2) (el = Alpeo) |

1 > n 1 n+1
= % Z AC(A2’E)+ ()\ — )\2) d)\ |:(>\2[ — A |P1(X)) :| x

n=0

= 0.

Hence,
Py =0, Vz e R(Pl)

ASSUMPTION 3.10. Let (X, ||.||) be a complex Banach space and let A : D(A) C
X — X be a linear operator satisfying Assumption Assume that there exists
1 € R such that

Y, =0(4)N{AeC:Re(N) >n}
is non-empty, finite, and contains only poles of (A — AO)_1 .
By using Lemma [Z1] we know that
o(Ao) = o(A),

so
Y, =0(A)N{AeC: Re(N) >n},

and for each Ay € 3, we set

1 e _
ng:f/ (A= Xo) "N = Ag) M dA, VE € Z,
o 271'2 SC()\O,E)+
and
1 ke _
sz—./ (A=Xo) "L = A) 7l dN, Yk € Z.
’ 2mi Sc(Xo,e)T

We first have the following lemma.

LEMMA 3.11. Let Assumption B0 be satisfied. If Ao € £, is a pole of (M — A0)71
of order m, then Ao is a pole of order m of (A — A)fl and

_ . 0 —1
Bkmlx - #EI_POO B)\O,lnu (MI - A) a:,Vx €X.
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Proor. Let x € X and k € Z be fixed. We have By, 1z € Xy, so

. -1
By, px = Hll)ar_loo p(ul —A)"" By, k2.
Thus,
_ 1 _ ke _
Wl — A Bagr = ——p(ul— A) 1/ (A= o) L (AT = A) L zd
271 SC()\O75)+
1 e _ _
- — (A= 20) " THOT = Ag) (= A) " adA
271 SC(>\075)+
. 0 —1
= NETOO Byt (ul — A) " w,
and the result follows. O

From the above results we immediately have the following result.

THEOREM 3.12. Let Assumption [3.10] be satisfied. Set

Mo= > B 4, I= > By _ 1

Ao€EX, Ao€EX,
Then
Mz = lim Hou(ul —A) " z,Vr e X.

p—>+00
Moreover, we have the following properties:
(1) 1I ‘X(): 11y, H(X) (- D(A) C Xo, and

LA —A) "= —A) " ILVA e p(A).
(i) A |mx) is bounded,
o (Alne) = (Ao Ingxy) =,
and
7 (Ala-mx) =0 (Ao lu-no)x0)) = 0 (A) \ Ty,

Let A: D(A) € X — X be the generator of {T;(t)}, a strongly continuous
semigroup of bounded linear operator on a Banach space <)A( Ll )?) . We denote
by wq (A\) € [0, +00) the growth bound of A, which is defined by

(D) n (|30 o))

t—+oo t

)

and denote by wp ess (E) € [—o0, +00) the essential growth bound of E, which
is defined by

Wo,ess (2) ;= lim In (T (Tg(t)Bg (0, 1)))

t——+oo t

where B¢ (0,1) = {x €X: llz] ¢ < 1} , and for each bounded set B C X,

7 (B) =inf {¢ > 0 : B can be covered by a finite number of balls of radius < ¢}

is the Kuratovsky measure of non-compactness.
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REMARK 3.13. Note that the existence of the limit in the definition of the
growth bound wy(A) is proved in Dunford and Schwartz [40, Corollary 5, p.619].

The existence of the limit in the definition of the essential growth bound wp ess(A4)
follows from Dunford and Schwartz [40], Lemma 4, p.618] and the proof of Webb
[108] Proposition 4.12, p.170].

The following result is taken from Webb [108| Proposition 4.13, p.170-171].

PROPOSITION 3.14. Let A : D(A) ¢ X — X be the generator of {T;(t)},
a strongly continuous semigroup of bounded linear operators on a Banach space

()?, ||.|\)?) . Then

wo (2) > A::(pﬁ) Re(N), woess (E) > /\;1152) Re(A),

oo () = (s (). o o).

Aea(A)\og

and

where O'E(A\) is the essential spectrum of A.

By applying the above result and Proposition 4.11 on p. 166 in Webb [108] and
Corollary 2.11 on p. 258 in Engel and Nagel [41], we obtain the following theorem.

THEOREM 3.15. Let (X, |.||) be a complex Banach space and let A : D(A) C
X — X be a linear operator satisfying Assumption 23], and assume that wy (Ag) >
wo,ess (Ao) . Then for each 1 > wo ess (Ao) such that

Y, =0(4)N{A e C: Re(X\) >n}

is nonempty and finite, each Ao € X, is a pole of (A — AO)*1 and Bgo,—1 has a
finite rank. Moreover, if we set

HO = Z Bgo,—h

o€,
then
Mo (A — Ao) ™" = (A — Ao) " Tlo, VA € p(4),
wo (Ag) = wo (Ao |H0(X)) = sup Re (M),
e,
and

wo (Ao (-1 (x)) < 1-

REMARK 3.16. In order to apply the above theorem, we need to check that
wo (Ap) > wo,ess (Ag) . This property can be verified by using perturbation tech-
niques and by applying the results of Thieme [101] in the Hille-Yosida case, or the
results in Ducrot, Liu and Magal [38] in the present context.



CHAPTER 4

Center Manifold Theory

In this chapter, we investigate the existence and smoothness of the center man-
ifold for a nonlinear semiflow {U(t)},5, on Xo, generated by integrated solutions
of the Cauchy problem
du(t)

dt

where A : D(A) C X — X is a linear operator satisfying Assumptions 23] and 29
and F : Xy — X is Lipschitz continuous. So t — U(t)z is a solution of

(4.1)

= Au(t) + F(u(t)), for t >0, with u(0) = z € Xy,

(4.2) Utz =2+ A /0 U (s)rds + /O P (s)e)ds v > 0.

or equivalently
(4.3) U(t)x = Ta,(t)x + (Sao F(U(.)x)) (t),Vt > 0.
This type of problems has been investigated by Thieme [98] when A is a Hille-Yosida
operator and by Magal and Ruan [78] when A satisfies Assumptions 2.3 and 2.9 We
know that for each x € Xy, ([£2]) has a unique integrated solution t — U (¢)x from
[0, +00) into Xo. Moreover, the family {U(t)},, defines a continuous semiflow,
that is, B

(i) U0) =T and U(t)U(s) = U(t + s),Vt, s > 0,

(ii) The map (¢,x) — U(t)z is continuous from [0, +00) x X into Xp.

Furthermore (see Magal and Ruan [78]), there exists v > 0 such that
lU ()2 — Uyl < Me™ [lz =y, ¥t >0,Vz,y € Xo.

Assume that T € X is an equilibrium of {U(t)},-, (ie. U(t)Z = Z,Vt > 0,
or equivalently T € D(A) and AT + F(Z) = 0). Then by using (&2) and by
replacing U(t)z by V(t)x = U(t)z — T, and F'(z) by F(z +7) — F (T) , without loss
of generality we can assume that T = 0. Moreover, assume that F' is differentiable
at 0 and denote by DF(0) its differential at 0. Then by using Proposition and
by replacing A by A + DF(0), and F by F — DF(0), without loss of generality
we can also assume that DF(0) = 0. So in the sequel, we will assume that we can
decompose the space Xg into Xgs, Xoc, and X, the stable, center, and unstable
linear manifold, respectively, corresponding to the spectral decomposition of Ay.

ASSUMPTION 4.1. Assume that Assumption and are satisfied and there
exist two bounded linear projectors with finite rank, ITy. € £ (Xy) \ {0} and Iy, €
L (Xo), such that

o oy = Mgy Mg = 0
and
MorTa, (t) = Ta, ()Mo, V>0, Yk = {c,u}.

21
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Assume in addition that
(a) If o, # 0, then wo (—Ao |y, (xo)) < O-
(b) & (Ao [me.(xy)) C iR
(C) If g :=1 — (HOC + H()u) 75 0, then wy (A() ‘HOS(XO)) < 0.

REMARK 4.2. By Theorem [B.15], Assumption [£1lis satisfied if and only if

(a) Wo,ess (Ao) < 0.
(b) o (Ag) NiR # 0.

For each k = {c,u}, we denote by I : X — X the unique extension of Ilg
satisfying (i)-(iil) in Proposition B3 Denote

Iy =1—(II. 4+ 11,) and II;, = I —1I...

Then we have for each k € {c, h, s,u} that

I, (A — A) ' = (A — A) I, VA > w,

Iy, (Xo) C Xo,
and for each k € {c,u} that

11, (X) C Xop.
For each k € {c, h,s,u}, set
Xor = g (Xo), X =111 (X), Ar = A l|x,, and Aor = Ao |x,,, -

Then for each k € {c,u},
Thus, by using Lemma B.6{(i) and (B we have for each k € {c, h, s, u} that

(Ak)m = A |X0k and Xgr = X N Xo.

In other words, Agy is the part of Ay in X, = D (Ag). Moreover, we have
X=X,0X.® X, and X}, = X, © X,.
LEMMA 4.3. Fiz 8 € (0, min(—wq (Aos) , —wo (—Aoy))). Then we have

(4.4) 1Za0. (Ol (x,.) < Moe™, 5 > 0,
(4.5) le™ 0 £y < Mue™P V20
with
My = sp [T (1)x,, < +oo.
t>
M, = sup He_ADutHL(XOU) et < too.

>0
Moreover, for each n € (0,08), we have

(4.6) | etoet £x <eMn,,, vteR,

0c)
with

e M < oo,

M., = sup ||eA°°t
teR

L(X()c)
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Let (Y,].|ly-) be a Banach space. Let 7 € R be a constant and I C R be an
interval. Define

BC(1,Y) = {f e C(I,Y) :supe If()]y < —|—oo} )
tel

It is well known that BC"(I,Y) is a Banach space when it is endowed with the
norm

1l gen(r,yy = sup e F)]ly -
tel

Moreover, the family {(BC”(I, Y), -l penr Y))} . forms a scale of Banach
: .

spaces, that is, if 0 < ¢ < 7 then BC(I,Y) C BC"(1,Y) and the embedding is
continuous; more precisely, we have

£l encryy S Mflsecayy s ¥f € BOYLY).
Let (Z,|.]|,,) be a Banach spaces. From now on, we denote by Lip(Y,Z) (resp.
Lipg(Y, Z)) the space of Lipschitz (resp. Lipschitz and bounded) maps from Y into

Z. Set
[1F(z) — F(y)llg
1E 4 = sup ————=.
Lip(¥,2) z,y€Y :x#y ||'r - y”Y
We shall study the existence and smoothness of center manifolds in the following
two sections.

4.1. Existence of center manifolds

In this section, we investigate the existence of center manifolds. From now
on we fix f € (0, min(—wp (Ags) , —wo (—Aou))). Recall that u € C(R,Xp) is a
complete orbit of {U(t)}, if

(4.7 u(t) =U(t — s)u(s), Vt,s € R witht> s,

where {U(t)},~ is a continuous semiflow generated by (&.2).
Note that equation (1) is also equivalent to

t—s t—s
u(t) = u(s) —|—A/ u(s—i—r)dr—i—/ F(u(s+7r))dr
0 0
for all £,s € R with t > s, or to
(4.8) w(t) =Ta,(t — s)u(s) + (Sao F (u(s+.))) (t —s)
for each t,s € R with ¢t > s.

DEFINITION 4.4. Let n € (0,8). The - center manifold of (£1]), denoted
by V,,, is the set of all points z € Xy, such that there exists v € BC" (R, Xy), a
complete orbit of {U(t)},, such that u(0) = z.

Let w € BC™ (R, Xp) . For all 7 € R, we have
e~ 7! lull ponr, xo) < a4+ Tl ponr,xy) < el lull pon(r, xo) -
So for each > 0, V;, is invariant under the semiflow {U(t)},5 , that is,
uv)v,="V,, vt>0.
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Moreover, we say that {U(t)},-, is reduced on V; if there exists a map W" :
Xoe — Xop, such that B

V, = Graph (V) = {z. + U (z.) : z. € Xoc}.
Before proving the main results of this chapter, we need some preliminary lemmas.

LEMMA 4.5. Let Assumption 1] be satisfied. Let 7 > 0 be fized. Then for
each f € C([0,7],X) and each t € [0,7], we have

(4.9) Hos (Sa o f) (1) = (Sa o1l f) (t) = (Sa, o L f) (1),
and for each k € {c,u},
(4.10)  Iok (Sao f) (t) = (Sa oIl f) (t) = /0 AR f(r)dr, Wt € [0,7].

Furthermore, for each v > —f, there exists ésﬁ > 0, such that for each f €
C([0,7],X) and each t € [0,7], we have

(4.11) e s (Sa o f) (1) < Coy sup e 7| f(s)]| ds.

s€[0,t]

PROOF. The first part (i.e. equations ([@9) and ([@I0)) of the lemma is a conse-
quence of Proposition 371 Moreover, applying Proposition 213 to (Sa, ¢ IIsf) (¢)

and using (@), we obtain ([@IT]). O

LEMMA 4.6. Let Assumption Bl be satisfied. Then we have the following:
(i) For eachn €[0,), each f € BC" (R, X), and each t € R,

K (H)@) := Tgr_noo Ios (Sa o f(r+.) (t —r) exists.

(ii) For eachn € [0,8), K, is a bounded linear operator from BC" (R, X) into
BC" (R, Xos). More precisely, for each v € (—3,0), we have

”KS”L(BC?I(JR,X),BC"(]R,XOS)) < s,V €0, —v],

where 687,, > 0 is the constant introduced in (EIT]).
(iii) For each n € [0,08), each f € BC" (R, X), and each t,s € R with t > s,

Ko(F)(t) = Tag, (t = $)Ks(f)(s) = Ios (Sa o fs +.)) (£ = 5).

PRrROOF. (i) and (iii) Let n € (0, 8) be fixed. By using ([21), we have for each
t,s,r € R with r < s <t, and each f € BC" (R, X) that

(Saof(r+.))t—r)=Ta,(t—s)(Sacf(r+.))(s=r)+(Saof(s+.)(t—s).
By projecting this equation on X, we obtain for all ¢, s, € R with » < s < ¢ that

Hos (Sao f(r+.))(t—1)
(4.12) =Ta,. (t —8)ps (Sao fr+.))(s—r)
+ps (Sa o f(s+.)) (t—9).



4.1. EXISTENCE OF CENTER MANIFOLDS 25

Let v € (=8, —n) be fixed. Then by using ([@4]) and (II), we have for all ¢,s,7 € R
with » < s <t that

[Mos (Sao f(r+.)) (t—7) —os (Sao f(s+.)) (t—s)|
= [|Tao. (t = $)Tos (Sa o f(r+.)) (s =)l

< Msefﬁ(tfs)as,ye”(sfr) sup e L f(r+1)
1€[0,s—7]

_ Msé‘s’ye—ﬁ(t—s)ey(s—r) sup e—u(o—r) Hf(o_)”

o€[r,s]

= M,Cy e P79 sup e"7e?lem1l | £(o))
L€[r,s]

< Hf”BC"(R,X) Msas)yefﬁ(tfs)eus sup e~ voenlal
o€(r,s]

Hence, for all s,7 € R_ with s > r, we obtain

[Mos (Sa o f(r+.))(t—r)—Hos (Sac f(s+.)) (t—s)|
< Hf”BCn(R,X) M5537V6_B(t_s)e”s sup e~ Mo,

o€lr,s]
Because — (v +n) > 0, we have
ITos (S () (¢ = 7) = Thos (Sa 0 fls +) (¢ = 5)]
<N Fl on s, x) MsCope 8t erse=4ms
= 1l s r,x) MaCo e PtelP=me,
Since 8 —n > 0, by using Cauchy sequences, we deduce that

Ks(f)(t) = SEEHOO s (Sao f(s+.)) (t — s) exists.

Taking the limit as 7 goes to —oo in ([@I2)), we obtain (iii).
(i) Let v € (—8,0) and i € [0, —v] be fixed. For each f € BC" (R, X) and each
t € R, we have

K (NI = Tim |[[Tos (Sa o f(r+.)) (¢ =7

< Cyplimsupe’®") sup e || f(r+1)|
T——00 le[0,t—r]

= 6’S,ylimsupe”(t*” sup e V(@) Ilf ()]l

r—>—00 o€[r,t]

= as)l,limsupe”t sup e v7enole=el || (o)

r——00 o€lr,t]
= C'\S,,,e”tHan sup e Vel
o€(—00,t]

Since (v + 1) < 0, we deduce that if t <0,

MK < Cowe™ |, sup T = G ettt g et

o€(—o00,t]

= és,v Hf”n
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and since (n — v) > 0, it follows that if ¢ > 0,

T MNE(HOI < Cowe®™ ™ |fIl, sup e 7€
o€

(_Ooat]

< Conlflly e M max( sup e #F7 sup 7))
o€(—00,0] c€[0,t]
= Cou I fll, e e = Co | 1], -
This completes the proof. O

LEMMA 4.7. Let Assumption 4.1 be satisfied. Let n € [0, () be fized. Then we
have the following:

(i) For each f € BC" (R, X) and each t € R,

+oo r
Ko (f)(t) := —/ e~ Ao, f(1)dl := — lim [ e AoU=OTL, F(1)dl
t r—+00 t
exists.
(ii) K, is a bounded linear operator from BC" (R, X) into BC" (R, Xo,,) and
M, ||Hu||L(X)

K, <
H H[J(BCW(]R,X)) (ﬁ _ ,,7)
(iii) For each f € BC" (R, X) and each t,s € R with t > s,

Ko (f)() = e IR, (f)(s) = Hou (Sa o f(s +.)) (t = 9).

PRrROOF. By using (@A) and the same argument as in the proof of Lemma [£.0]
we obtain (i) and (ii). Moreover, for each s,t,7 € R with s < ¢ < r, we have

T t "
/eAO“(s_l)Huf(l)dl _ /eAOU(s—l)Huf(l)dl+/ eAOu(S—l)Huf(l)dl

s s t

t T
= / eAou =0T, f(1)dl + eAou(s—0 / eAoe (=11, f(1)dl.

s t
It follows that

(Ao (t-9) / " AL, F(1)dl = / " A =DTL, (1)l + / " A DTL F(1)dl.
s s ¢
When r — 400, we obtain for all s,¢ € R with s < ¢ that
—eAo L (f)(s) = / Ao (s 4 r)dr — Ko (f)(2)
= I, (Sao f(s+.)(t—5)— Kuny(f)(t).
This gives (iii). =

LEMMA 4.8. Let Assumption 1] be satisfied. Let n € (0,3) be fixed. For each
z. € Xoe, each f € BC" (R, X), and each t € R, denote

Ki(2)(t) = efocta,,  K.(f)(t) := /0 t eAoc(=3)T f(s)ds.
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Then K, (respectively K.) is a bounded linear operator from Xo. into BC" (R, Xo.)
(respectively from BC™ (R, X)) into BC" (R, Xo.), and

1K £, pengz.x)) < max (sup et sup HechﬂH) ,

t>0 t>0
+oo +oo
||KC||L(BCT/(]R X)) < ”HC”L(X) max (/ He(Ac*nI)lH dl,/ He*(AchnI)lH dl) .
’ 0 0
PROOF. The proof is straightforward. O

LEMMA 4.9. Let Assumption 1l be satisfied. Letn € (0, 5) andu € BC" (R, Xj)
be fized. Then u is a complete orbit of {U(t)}tzo if and only if for each t € R,

u(t) = K1 (Iocu(0)) (1) + Kc(F (u(.)))(t)
+ KW (F(u(.))(t) + Ko (F(u(.))) (@)

PrOOF. Let u € BC" (R, Xy). Assume first that u is a complete orbit of
{U(t)};>0- Then for k € {c,u} we have for all [,r € R with r <[ that

(4.13)

l
Moru(l) = eAor = Igu(r) + / eAor =TT, F(u(s))ds.

.
Thus,
dlloru(t)
dt
From this ordinary differential equation, we first deduce that

= Agpopu(t) + 11 F (u(t)), VteR.

t
(4.14) Moeu(t) = et Tlp.u(0) + / eAoc=T F(u(s))ds,Vt € R.
0

Hence, for each t,l € R,

t
Mogu(t) = eoe =Dy, u(l) + / eAou(t=9TL, F(u(s))ds, Vt,1 € R.
l

It follows that for each [ > 0,
et Mouu(®)| < M MLl 2y €40 [0l e, x,

So when [ goes to +00, we obtain
+o00o
(4.15) Mo, u(t) = — / et =L, F(u(s))ds, Vt € R.
t

Furthermore, we have for all £,] € R with ¢t > [ that
Tostu(t) = T, ( — DlTogu(d) + Moy (Sa o Fu(l +.))) (¢ — 1)
and for each [ < 0 that
1Ty, (¢ = Dlogu(@)]| < e~ M, [ul, =",
Taking | — —o0, we obtain
(4.16) Mosu(t) = Kspn (F(u(.))) (t), VteR.
Finally, summing up (@I4)), (II5), and (@I0), we obtain [I3]).

Conversely, assume that u is a solution of [@I3]). Then

t
Mocu(t) = et Tl.u(0) + / eA0c (=TI, F(u(s))ds, VteR.
0
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It follows that
dHOCU(t)
dt
Thus, for [,r € R_ with r <1,

Mocu(l) = Ta, (t — $)oeu(r) + Hoe (Sa o F(u(s+.))) (t—s).

Moreover, using Lemma 6] (iii) and Lemma [£7] (iii), we deduce that for all ¢, s € R
with ¢t > s

= AOCHOC’LL(t) + HCF(U(t))’ vt € R.

Mosu(t) — Ta, (t — s)psu(s) = s (Sao F(u(s+.))) (t—s),
Moy u(t) — Ta, (t — s)ouu(s) = oy (Sao F(u(s+.)))(t—s).
Therefore, u satisfies ({L.8) and is a complete orbit of {U(t)},5- O

Let n € (0, 8) be fixed. We rewrite equation ([AI3]) as the following fixed point
problem: To find v € BC" (R, X) such that

(4.17) u = K1(Ioeu(0)) + Ko®p(u),
where the nonlinear operator ® € Lip (BC" (R, X), BC" (R, X)) is defined by
Sp(u)(t) = F(u(t)), VteR
and Ky € L(BC" (R, X),BC" (R, Xy)) is the linear operator defined by
Ko =K.+ K, + K.
Moreover, we have the following estimates

”KIHL‘(X BCn(R,X)) < max(sup He(AﬁnM)tH , SuUp Hef(A“JrnId)tH),
< ’ t>0 t>0
||(I)F||Lip < HFHLipv
and for each v € (—3,0), we have

K2l 2 ponw, x)) <7 (v,n),¥n € (0, -],
where

o~ M, ”HuHL(X)
v,) = Cap+ ——
(4.18) v () (B =)

Tl ) max (f0+°° [elAe=nId]| g, f0+°° || e=(Actmi dl) .
Moreover, by Lemma [£.9] the 7-center manifold is given by
(4.19) V,={z € Xo:3ue BC"(R, Xy) a solution of [@I7) and u(0) = z}.

We are now in the position to prove the existence of center manifolds for semilin-
ear equations with non-dense domain, which is a generalization of Vanderbauwhede
and Iooss [106], Theorem 1, p.129].

THEOREM 4.10. Let Assumption 1] be satisfied. Let nj € (0, 3) be fized and let
0o = 0o (n) > 0 be such that
do 1Kzl 2 pon(r,x)) < 1-
Then for each F' € Lip(Xo, X) with |[Fll1;,x, x) < 6o, there exists a Lipschitz
continuous map ¥ : Xo. — Xopn such that
Vo ={zc + V() : z. € Xoc}-

Moreover, we have the following properties:
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() sup,,ex, ¥ < 1Ko + Kullepene,xy sup [0LF ()]
rEXo
(i)

(4 20) ||\I/|| 1K s+Kull 2 son@,x)) 1FllLipixe, ) 1K1l 2 (x., Ben @, x0))
: Lip(Xoc,Xon) = 1=Kzl 2 (Ben @ x)) 1 Lip(xg, x) '

(iii) For each u € C (R, Xy), the following statement are equivalent:
(1) uw € BC" (R, Xo) is a complete orbit of {U(t)};> -
(2) Mopu(t) = U(Ipeu(t)),Vt € R, and Ipcu(.) : R = Xo. is a solution
of the ordinary differential equation
dz.(t)
dt
ProOF. (i) Since |[F|y;, |1 K2l 2(ponr,x)) < 1, the map (Id— K2®p) is invert-
ible, (Id — Ky®r)~! is Lipschitz continuous, and

(4.22) |(Id — K2®p

(4.21)

= Aocxe(t) + I F [xe(t) + P (2:(1))] .

—1 < 1
) ||LiP(BC"(R,X0)) = 1=Kzl 2 en @ x) F lLipxg, x)

Let z € X be fixed. By Lemma [£39] we know that « € V;, if and only if there exists
U, € BC" (R, X), such that ur,, . (0) =« and

Ullgex = Kl (HOCx) + KQ(I)F (UHOCI) .
So
V,={(Id— Kx®p) "Ki(2.) (0) : 7 € Xoc} .
We define ¥ : Xo. — Xop by
(4.23) U(x,) = Iop(Id — Ko®p) 1Ky (2:)(0), V2o € Xoe-

Then

Vn - {xc + \II(xc) 1T € XOc}-
For each z. € X, set

Uy, = (Id - Kz@F)ilKl(xC).

‘We have
Uy, = Kl(xc) + Ky®p (uzc) .

By projecting on Xg, we obtain

Hontie, = [Ks + K] @r (Ug, ),
S0
(4.24) U(ze) = (K, + K. @ (u,,) (0)

and (i) follows.

(ii) It follows from ([@22) and ([E.24).
(ili) Assume first that u € BC" (R, Xo) is a complete orbit of {U(#)},,- Then

by the definition of V;,, we have u(t) € V;),Vt € R. Hence,
Mopu(t) = ¥ (Moeu(t)), VteR.
Moreover, by projecting ([4.8) on Xy, we have for each ¢,s € R with ¢t > s that

t—s
Towar (1) = e = Tou(s) + / eA0c(t=s=DTL P (4 (s + 1)) d.
0

Thus, ¢ — Ig.u (¢) is a solution of (Z21)).
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Conversely assume that u € C' (R, Xo) satisfies (iii)(2). Then
HOh’U,(t) = \P(Hocu(t)), vVt € R,

and Igcu(.) : R = Xo. is a solution of {@2I]). Set x = u(0). We know that = € V},,
and by the definition of V,,, there exists v € BC" (R, X;), a complete orbit of
{U(t)};>¢ > such that v(0) = x. But since V}, is invariant under the semiflow, we
deduce that

H()h’l}(t) = \I/(Hoc’l)(t)), Vt € R,
and ITp.v(.) : R = X, is a solution of (@2I]). Finally, since IIp.v(0) = Ip.u(0),
and since F' and ¥ are Lipschitz continuous, we deduce that (£ZI]) has at most one
solution. It follows that

HOcv(t) = HOcu(t)a vVt R,
and by construction
HOh’U(t) = \P(Hocv(t» = ‘I’(Hoc’u(t)) = Hohu(t>, VvVt e R.
Thus,
u(t) =wv(t), vVt € R.
Therefore, u € BC" (R, Xo) is a complete orbit of {U(#)},5,- O

PROPOSITION 4.11. Let Assumption [A1] be satisfied. Assume in addition that

F € Lipg (Xo,X) (i.e. F' is Lipschitz and bounded). Then
Vn = VP{) Vnaf € (O,ﬂ)

PrOOF. Let n,¢ € (0, 8) be such that £ < n. Let € V. By the definition of V¢
there exists u € BC¢ (R, X;), a complete orbit of {U(t)}i>0 - such that u(0) = z.
But BC¢ (R, Xo) C BC" (R, Xy), so u € BC" (R, Xy), and we deduce that € V,.

Conversely, let x € V; be fixed. By the definition of V;, there exists v €
BC" (R, Xo), a complete orbit of {U(t)},~,, such that u(0) = z. By Lemma
we deduce that u is a solution of -

U= Kl(Hocu(O)) + Kgq)p(u).
But K (Ip.u(0)) € BC* (R, X) and F is bounded, so we have & (u) € BC? (R, Xo) C
BC¢ (R, X;) and
Ky®p(u) € BC* (R, Xp).
Hence, u € BC* (R, X) and
u = Kl(HOCU(O)) + Kg@F(u).

Using again Lemma .9 once more, we obtain that z € V. O

4.2. Smoothness of center manifolds

In the sequel, we will use the following notation. Let £ > 1 be an integer, let
Y1,Y5, ., Y, Y and Z be Banach spaces, let V be an open subset of Y. Denote
LE) (Y1, Ys, .., Yy, Z) (resp. LF) (Y, Z)) the space of bounded k-linear maps from
Y] X ... x Y, into Z (resp. from Y* into Z). Let W € C* (V, Z) be fixed. We choose
the convention that if { =1,...,k — 1 and u,u € V with u # «, the quantity

sup H [D'W (u) — D'W (@)] (w1, ..., w;) — D"F'W (@) (v — G, uq, 7“1)H

UL yeney u; €By (0,1) ||’LL7a||
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goes to 0 as ||u — ul| — 0. Set
CF(V,Z) = {W eC*(V,2): W, = sup | DIW(z)| < 400, 0<j < k} .
’ zeV

For each n € [0, 3) , consider K}, : BC" (R, X) — BC" (R, Xoy) , the bounded linear
operator defined by

Kp = Ks + Ky,

where K and K, are the bounded linear operators defined, respectively, in Lemma
and Lemma L7 For each o > 0 and each 1 > 0, set

Vo i={z € Xo: || <0}, V,p:={ze€ Xo: || <o},
and
V= {ue BO" (R, Xo) : u(t) € V,,¥t € R}.

Note that since VQ is a closed and convex subset of X, so is VZ for each n > 0.
We make the following assumption.

ASSUMPTION 4.12. Let k > 1 be an integer and let 1,7 € (0, %) such that
kn <n < . Assume
a) F € Lip (X, X)NCF (V,, X);
b) 00 := | Knllz(peom x)) M Fllo,x, < o
¢) suPpepn.a 152l £(soo @, x)) 1F lipcxo,x) < 1-

Note that by using ([£I]]) we deduce that

sup || Kallz(peo(r,x)) < 00
0€[n,7]
Thus, Assumption makes sense.
Following the approach of Vanderbauwhede [104] Corollary 3.6] and Vander-
bauwhede and Iooss [106], Theorem 2], we obtain the following result on the smooth-
ness of center manifolds.

THEOREM 4.13. Let Assumptions [A1] and be satisfied. Then the map ¥
given by Theorem EI0 belongs to the space CF (X, X3) .

The above result was stated without proof in [106] Theorem 2]. For the sake of
completeness we now prove Theorem EI3] We first need some preliminary results.

DEFINITION 4.14. Let X be a metric space and H : X — X be a map. A fixed
point T € X of H is said to be attracting if

lim H"(z) =% foreachx e X.

n—-+oo

The following lemma is an extension of the Fibre contraction theorem (which
corresponds to the case k = 1). This result is taken from [104], Corollary 3.6].

LEMMA 4.15. Let k > 1 be an integer and let (Mo, do), (Mi,dy) ..., (Mg, di)
be complete metric spaces. Let H : My x My X ... X My, — My x My X ... X My, be a
mapping of the form

H (Zo, Z1, ...,.’ﬂk) = (H() (.%0) s H1 (.’ﬂo,xl) Y Hk (950,1'1, ceey :Ck)) s
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where for each 1 =0, ...k, Hy : My x My x ... x M; — M is a uniform contraction;
that is, Ho is a contraction, and for each | = 1,.. k, there exists 7, € [0,1) such
that for each (xg,x1,...,x1—1) € My X My X ... x M;_1 and each x;,Z; € M,

dy (Hy (20,21, oy Ti—1,21) s Hy (0, X1, ooy 211, 21)) < 1id (21, 7).
Then F has a unique fixed point (To,T1, ..., Tk)- If, moreover, for eachl =1, ..., k,
H(,T): Mg x My X ... x Mj_1 — M,
is continuous, then (To, Ty, ..., Tx) is an attracting fixed point of H.
We recall that the map ¥ : Xo. — Xop, is defined by
U (z,) =10, (I — K2®p) ' (Ki2.) (0), V. € Xoe.
We define the map T’y : BC" (R, Xo.) — BC" (R, Xy) by
Lo (u) = (I — Ky®p) " (u), Yue BC" (R, Xq.).
For each § > 0, the bounded linear operator L : BC? (R, Xo) = Xop is defined by
L(u) = ,u(0), Yu € BC? (R, Xo,) -
Then we have
U (x.) = LTo(K12.), Va. € Xoc
and
To(u) =u+ Ko®p (To(u)), Yu e BC" (R, Xq,) .
So we obtain
(4.25) Iy=J+ Ky0®Ppo(Ty),

where J is the continuous imbedding from BC" (R, Xj.) into BC" (R, Xj) .
From (23], we deduce that for each u € BC" (R, Xo.),

ITo(u) = ull ponr,xo) < 12l 2(Ben® x), B ®,x0)) o, x4 »
ITaTo(w) ()l peo,x) < 1Kl 2(poo@,x)) MR Fllo x, = 00, VEE€R.
For each subset E C BC" (R, X¢.), denote
=0
Mo g = {@ eC (E,VQO> : sug 1©(w) = vl ponr xq) < —l—oo}
ue
and set
Moy = Mo, Bcn(®,Xo.)-
From the above remarks, it follows that I’y (respectively Iy | g) must be an element

of My (respectively My g). Since 720 is a closed subset of BC" (R, Xy), we know
that for each subset E C BC" (R, Xo.), My g is a complete metric space endowed
with the metric

o5 (6.6) = swp O ) ~B ) .
Set,

do = do,Bcn (R, Xo.)-
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LEMMA 4.16. Let E be a Banach space and W € C} (V,, E). Let £ > 6 > 0
be fized. Define @y : V) — BCC(R,E), ®pw : V) — BC* (R, L (Xo, E)), and

o\ - V1 - £(BCY (R, Xo),BCE (R, E)) for each t € R, each u € V1, and cach
v e BC? (R, Xy) by

Dy (u) (£) i= W (u(t)),
Spw (u) (t) := DW (u(t)),
(@) () (@) (1) = DW (u(t)) (v(1)),

respectively. Then we have the following:

(a) If € > 0, then @y and Ppw are continuous.
(b) For each u,v € V1, ®%) (u) € L (BC? (R, Xo), BC¢ (R, E))

|2 () -3 )]

< [[®pw (v) — Ppw (U)||BC£—5(R,L(XO,E))

L(BCS (R, X0),BCE (R, E))

and

|

< [®ow (W)l pee-sr,c(x0,5)) < Wiy, -

) ¢
(BOS (B, X,), BCE (%, B))

(c) If € >0, then @%) is continuous.
(d) If £ > 6 > n, we have for each u,u € V! that

~ (1) /-~ ~ ~ ~
[ #w @) —@w @ o @ -, S = s 2o (0,)

where

s (u, ) = E%Pl] [®pw (su+ (1 —s)u) — Lpw (G)HBCE*NR,E(XO,E)) ’
s I

and if € > § > n, we have (by continuity of ®pw )
se—s (w,u) >0 as [lu—ulgon, x,) — 0

PrOOF. We first prove that ®y € CP (VQ",BC’§ (R,E)) . For each u,u € V!
and each R > 0, we have

[Pw (u) = ®w (W)l peer,m) = sup e S [W (u(t)) = W (u(t))l|

(4.26)
= max (tsg;e‘g't W (u(t)) = W @)l , 2 W], 6‘5R> :

Fix some arbitrary € > 0. Let R > 0 be such that 2||W||,e *® < ¢ and denote
Q= {u(t): |t| < R}. Since W is continuous and 2 is compact, we can find 6; > 0
such that

W (x) =W @)|| <ecifz e, and ||z — 2| < 4.
Let 6 = e "5, If lu =l peng xy < 0 then [u(t) —a@)|| < 61,Vt € [-R, R,
and @28) implies @y (u) — Dy (@)l pee .y < -
We now prove that ®{i) € C (VoL (BC® (R, Xp),BC¢ (R, E))) . From the
first part of the proof, since E is an arbitrary Banach space, we deduce that ® py,
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is continuous. Moreover, for each u,u € V! and each v € BC? (R, Xy),

H (‘I)Ezlv) (u) (U)) = supe I |DW (u(t)) (v(@)]|

HBCE(R,E) teR

IN

2w (U)HBC£*5(R,£(X0,E)) HU||BC5(R,X0)

and
|([o4) @) - o) @] )

<|[®pw (v) — Lpw (@||BC£—6(R,L(XO,E)) HU||BC5(]R,XO) :

Thus, if § > 4, we have for each u € V! that

H BC¢(R,E)

o'} (u) € £ (BC (R, Xo), BCE (R, E)), Yue V)
and if £ > 9,
o\) € C (V), £ (BC® (R, Xo), BCS (R, E))), V> 0.

Since V,, is an open and convex subset of X, we have the following classical formula

1
W(z)—-Wi(y) = / DW (sz+ (1 = s)y) (z —y)ds, Vz,y € V,.
0
Therefore, for each u,u € V),

B =~ e oy ’
H‘I)W (u) — Pw (u) — @y (U) (u u)’BC£(]R,E)

= sup e W (u(t)) — W (a(t)) — DW (@(t)) (u (t) —a(t))l|

teR

<sup sup e [DW (su(t) + (1 = s)a(t)) — DW (a(t)] (u (t) — @ (1))
teR s€[0,1]

<lu-— aHBcé(R,XO) SE)PH [®pw (su+ (1 —s)u) — Lpw (a)”Bcﬁf's(R,L(Xo,E)) :
s€l0,
The proof is complete. O

The following lemma is taken from Vanderbauwhede and Iooss [106, Lemma
3.

LEMMA 4.17. Let E be a Banach space and W € C} (V,, E). Let Py and @%)
be defined as in Lemma EI0L Let © € C (BC (R, Xoc), V) be such that
(a) © is of class C' from BC" (R, Xo.) into BC"H (R, Xq) for each u > 0;
(b) its derivative takes the form
DO(u)(v) = 0V (u) (v), Yu,v € BC" (R, Xo.),
for some globally bounded ©) : BC"(R, X,.) — L(BC™(R, Xo.),
BC"(R, Xy)).
Then @w o © €  CYBCU(R,Xo), BCT(R,E) N CYBC(R, Xoe),
BC" (R, E)) for each 1> 0 and

D (D 00) (u)(v) = B (6 (1) @M (u) (v) ,Yu,v € BC" (R, Xoo) -
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PROOF. By using Lemma [.T6] it follows that
Py 00 € CF (BC" (R, Xo.) , BC" (R, E))
and
ol (0(.) W () € € (BC" (R, Xo.) , £ (BC" (R, Xo.) , BC"# (R, E))) .
Let u,u € BC" (R, Xo.) . By Lemma TG, we also have

|ow (6 () — 2w (0 @) - @) (0 (@) 6V (@) (u — )|

BCn+4(R,E)
<[ew©@) —ow©@) -2 @@ ©W-0@)|, . .
+ e @@ e -0 @-ev@w-al,
<O () - (A)”BCW+#/2(R Xo) 72 (© (u ) O (u))
+ 20w (© @) o2z, 50,2 1€ (W) = © (@) = OV @) (1= )y rogs
and the result follows. (]

One may extend the previous lemma to any order k£ > 1.

LEMMA 4.18. Let E be a Banach space and let W € CF (V,, E) (for some
integer k > 1). Letl € {1,...,k} be an integer. Suppose & > 0, > 0 are two real
numbers and 41,62, ...,0; > 0 such that &€ = u+ d1 + 92 + ... + ;. Define

D pww (u) (t) == DOW (u(t),Vt € R,Yu € V7,
PhilY) (u) (uy, g, ooy wy) () := DOW (u (£)) (uy (), ug (£) 5 ooy (1)),
forallt € R,Yu € V), Yu; € BC* (R, Xo), fori=1,..,L.
Then we have the following:
(a) If € >0, then ®pwy : VI — BCS (R, LY (X, E)) is continuous.
(b) For each u,v € V), Qw(u) e LY(BC(R,Xy),...,BC(R, Xy);
BC¢(R, E)),

(1) () H
Dy — oy
H (u) () LO(BC%1 (R, Xo),...,BC% (R,X0); BCE(R,E))

< [®pow (u) = Ppow (U)”BCM(R,LU)(XO,E))
and

l
o o]

<|[[®pmyw (U)HBCu(R,[)(U(XO’E)) =

LW (BC% (R, Xo),...,BC% (R,X0); BCE (R,E))

(¢) If p >0, then @E/i,) is continuous.
(d) If 61 > m, we have for each u,u € V,! that

20V () — oD () — 3D (D) (u — & H

[ 0~ 2l @ = 0@ D e e moren)
~ l ~

< = @l o a0y 24 (s 7)

where

(l) (u,u) = Zl[tp] [®pww (su+ (1= s)u) = Lpuw (u )”Bcu(R,LU)(XO,E)) )
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and if > 0, we have by continuity of ® puyy that
%ff) (u, ) = 0 as [Ju—ullgonm,xy) — 0
PRroOOF. This proof is similar to that of Lemma [4. 16 O
In the following lemma we use a formula for the k*"-derivative of the composed

map. This formula is taken from Avez [6, p. 38] which also corrects the one used
in Vanderbauwhede [104] Proof of Lemma 3.11].

LEMMA 4.19. Let E be a Banach space and let W € CF (V,, E). Let ®w and
W) be defined as above. Let © € C (BC (R, Xo.) , VQ") be such that
(a) © is of class C* from BO" (R, X.) into BO*"+H (R, Xy) for each u > 0;
(b) for each l=1,...,k, its derivative takes the form
D'O(u) (v1,va, ..., v) = OW () (v1,vg, ..., 01) , Yu, v1, va, ..., vy € BC" (R, Xo)

for some globally bounded ®W : BC"(R,X,.) — LO(BC"(R, Xo.);
BC"(R, Xj)).

Then ®y 00 € CP (BC™ (R, Xo.) , BC™ (R, E))NC* (BC" (R, Xo.) , BC*1H (R, E))
for each p > 0. Moreover, for eachl=1, ...,k and each u,vy,vs, ...,v; € BC" (R, Xo.),
D' @y 0 0) (u)(v) = (B 0 )Y () (v1, va, ..., 0))
for some globally bounded (®w o ©)V : BC"(R,X,.) — LO(BC"(R, Xo.);

BC"(R, E)). More precisely, we have for j =1,..., k that
(i) (Bw 0 €)Y (u) = B (O(w) DVO (u) + By (w);
(11) &)WJ(U) = O; _ »
(iii) for j > 1, the map ®w,;(u) is a finite sum Y, Pw ;(u), where for
AER,

each X\ € A; the map Py ;(u) : BC'(R,Xo.) — LE(BCM(R, X,
BC"(R, E)) has the following form
~ 0 DO (u) (ui;17uig1 ey “d}) ey
Bwng (8} (s s y) = By (B() DO (u) (g, gy )
with2<I[I<j1<r,<j—1forl<i<lri+ro+..+r=7
{itm, i {1, .5, Vm =1, ..,
{arm, i b n{dn, i b =0, ifm#n,
i <dy™ <L <gm Vm=1, .1,
and each A € A; corresponds to each such a particular choice.

PRrOOF. This proof is similar to that of Lemma [£I7 O

Proor oF THEOREM (413l Step 1. Existence of a fixed point. Let k, 7,
and 7 be the numbers introduced in Assumption Let ¢ > 0 be such that
kn + (2k — 1) p = 7. We first apply Lemma For each j = 1,...,k and each
subset £ C BC" (R, Xo.), define M; g as the Banach space of all continuous maps
©; : E— LU (BC" (R, Xo.) , BCT(i=Dr (R, Xg)) such that

|@j‘j = sup [|©; (u)”[:(j)(BCH(]R7XOC)7BCJ'TI+(2J'*1)M(R7XD)) < +o0.
uelE
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FOI‘j = 0, ceny ]{1, define the map Hj,E : M(),E X Ml,E X .o X Mj,E — Mj,E as follows:
If 5 =0, set for each u € E that
H07E (@0) (U) =u-+ Kg @) (I)F @) @O(U)
If j =1, set for each u € F that
(4.27) Hy.g (©0,01) (u)(.) = J' + Ky 0 ®%) (04 (1)) 0 O (u),

where J! is the continuous imbedding from BC" (R, X,.) into BC"# (R, X;) .
If k£ > 2, set for each j = 2,...,k and each v € F that

HjaE (607 @la tey ej) (U)

4.28 ~
(4.28) = 1500 (8 (u)) 0 0; () + Hj.5 (€0, 01, ..., 0,_1) (1),
where
H; 5 (00,01, ...,0; 1) (u) = Z Hy ;5 (00,01,...,0,_1) (u)
)\EA]'
and

ﬁ)\%E (@0, @1, ceey @j—l) (u) (UQ, ui, ...,u]')
= K2 o (I)%) (@O(u)) (67”1 (U) (ui;1,ui;1 y ,Ul:}) ""’67’1 (U) (ui?,...,ui:;))

with the same constraints as in Lemma [4.19 for A, r;, [, and zzj
Define

H; = H; pon(r,x,.) foreachj=0,.. k.
In the above definition one has to consider K5 as a linear operator from
BCint+(2i-1u (R, X)
into BCIM+2i=Di (R, X)), and &) (©y(u)) as an element of
£ (BEmrtEnTE R, Xy) .y BOTIT IR (R, Xg) 3 BCITHE T (R, X))

Notice that
l

m+2j—1)pu> Zrkn+(2rk —Du
k=1
since 2 <[ < jandr;+7ry+...+r; =7 Finally, define H : My x My X ... x My —
My x My X ... x My by

H (09,01,...,0k) = (Hy (©9) , H1 (00,01) , ..., H; (09,01, ..., 01)) .

We now check that the conditions of Lemma are satisfied. We have already
shown that Hj is a contraction on Xy. It follows from {27) and [@28) that H;
(1 < j < k) is a contraction on X;. More precisely, from Assumption [£12 c¢), we
have for each j =1, ..., k that

Kyo0 @'V

sup
ueVy

1
< HK2||[,(Bcjn+(2j—l)u(]R7X)> SU‘B] HQ)%) (u)
ueVy

(u) HL(Bcjw(z]‘71>u(]R,XO),BCMH%—1)u(R,XO))

‘5(ch+<2j—1m(R,XO)7Bcjn+(2j—1)M(R,X))

< sup (K|l g oo x) |F
0€n,n)

< sup Kl zgeom x)) 1 lipixo,x) < 1-

0€(n,n]

1,V,
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Thus, each Hj is a contraction. The fixed point of Hy is I'g, and we denote by
I' = (To,T1,...,T'x) the fixed point of H. Moreover, for p = 0, each H; is still a
contraction so we have for each j =1, ..., k that

Sup ||Fj(u)Hgm(Bcn(RXD),BcM(R,Xo)) < too.
w€BCT (R, Xo0)

Step 2. Attractivity of the fixed point. In this part we apply Lemma
to prove that for each compact subset C of BC" (R, X(.) and each © € My x
My X ... x My,
(4.29) Lim  He' (©]c) =Te .
Let C be a compact subset of BC" (R, X.) . From the definition of He, it is clear
that

['|e=Hc (T |c)

and from the step 1, it is not difficult to see that for each j = 0,...,k, H; ¢ is
a contraction. In order to apply Lemma I8l it remains to prove that for each
j=1,...,k Hjc(©oc,01,¢c,..,9j_1,c,Tj |c) € M; dependents continuously on
(@070,9170, ...,@j_Lc) S MO,C X Ml,C X .o X Mj—l,C-

We have

Hj (60,07 61,07 ceey ®j71,Ca ]-—‘(j) |C) (U/)\
= K500 (00.¢(u) o TW (u) + H; (Op.c, 01,05 -, O5-1.0) (w).

Since l"(j)(u) e £ (BC" (R, Xo), BCI" (R,Xo)) and ®(u) € V,l, we can con-
sider @) as a map from V7 into £ (BCY" (R, X,) , BC/T(I=D1 (R, X)) , and by
Lemma [£.T6] this map is continuous.

Indeed, let ©¢, Oy € My be two maps. Then we have

sup HK2 o [fbg) (Oo(u)) — @g) ((:)o(u))} o' (u)H

weC g(j)(Bcn(R,XOC),Bcjn+<2j—1>u(R7XD))

< HKQ||L(Bcjn+(2j—1)u(R,X))

. sup H [@%1) (6o (u)) — q)%l) (@)O(u))} oW (U)H

g L) (BC (R, Xo,),BCIN+(2i=Di(R,X))

< HKZ||L(Bcjn+(2j71)u(R,X0)) Slelg HF(j) (U)H

sup [ @3 (@o(w)) — & (So(w))

ueC

L&) (BC(R,Xo.),BCI"(R,X0))
H[;(j)(Bcjn(R,XO),Bcjw(zi—l)u(R,X))
and by Lemma .16 we have

(1) _ oM (3
supHCPF (Oo(u)) — Pp (60(u))HUJ')(BCJ'TI(R,XO),BCJ'"*(”*U“(R,X))

ueC
< P - 6
< Ztelg H pr (Oo(u)) DF (@O(U)> Hch*l)u(R,c(Xo,X))
(2=l - o
< S HDF (Bo(w)(t)) - DF (@O(“)(t)) HuXo,X) ’
max - fay
= —-@i-Vultl | pF (6 t))— DF (6 t
sup e U u
|t|§€% ( O( >( )) ( 0( >( ))HC(XO»X)
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Since Qg is continuous, C is compact, it follows that (:)0(0) is compact, and by

Ascoli’s theorem (see for example Lang [70]), the set C = | {@o(u)(t)} is
[t|<R,ueC

compact. But since DF (.) is continuous, we have that for each ¢ > 0, there exists

n > 0, such that for each z,y € Xy,

d(2,0) <n, d(.C) <n. and |l —y| <n= |DF (2) - DF(y)| < <.

Hence, the map ©¢,c — Kz 0 <I>(;) (©0.c(.)) 0T (.) is continuous.
It remains to consider 1 < r; <j—1,7r1 +re+ ... + 7, = 5. We have

| Kz o [2f ©o(w) - 2 (So(w)]
(61 (@), 60 (W)

LG (BCT(R,Xoc),BCIn+2i=Du(R,Xo))

< ||K2‘|[,(BCJ'?IJr(ZJ'*1)H(R7X))Bcj7l+(2j*I)M(R,XO))

- sup H [@%) (©o(u)) — (I)g) (éO(u)ﬂ

ueC

<@r1 (U) yaeny @rl (u)) Hﬁ(j)(BC"(R,Xoc)7Bcj7’+(2j_1)“(R>X))

< |IK: ‘|5(Bcjn+<2j—1>M(R,X)7Bcjn+(2j—1)u(R,XO))

|28 (@0 () —2ff (Bo(w)

IT [ )
o lH o (1) LG (BOM(R,Xoc),BCTP 0= Di(R X))

and by Lemma ETg we have

@) &0 (3 H
EIGIEHCI)F (©o(u)) U8 (@O(U)> E(l)< I BCTPTHCre=Vi(R XY

p=1,...,1

BCITH (2= Di X)>

SsupH<I>D<z>F(@o(U)) Pporp (@0 )

wel HBC (R LM (Xo,X))

with 6 = (jn+ (25— 1) p) — 22:1 ren + (2rp — 1)p > 0. By using the same com-
pactness arguments as previously, we deduce that

supH(I)Du)F(@o( ) — @DW(@O ) =0

HBC R,LM)(Xo,X))
as do,c (O, @0) — 0. We conclude that the continuity condition of Lemma T3] is
satisfied for each H; ¢ and ([@29) follows.

Step 3. In order to prove Theorem [£.13] it now remains to prove that for each
u,v € BC"(R, Xo.),Vj =1,..., k,

(4.30) T y(u) = Ty (v) = /0 T, (s(u — v) + ) (u — v) ds,

where the last integral is a Riemann integral. As assumed that ([@30) is satisfied,
we deduce that T : BO" (R, Xq.) — BCF1+2k=Dr (R X;) is k-times continuously
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differentiable, and since
U(z,)=LoTgo Ky (x.)
and L is a bounded linear operator from BCkm+(2Zk—1u (R, Xo) into Xop, we know

that ¥ : Xy, — Xop is k-times continuously differentiable.
We now prove ([@30). Set

e’ = (eg,0y!,...,6))
with
0f (u) =u, 0 (u) = J, and © =0,Vj =2,.... k
and set
o™ = (0y,07,...05") = H™ (%) ,VYm > 1.
Then from LemmaBT9 we know that O} : BC" (R, Xo.) — BC*1+k=Dr (R X))
is a C*-map and

D’OF (u) = O (u), Vji=1,...k, VYue BC"(R,Xo).
For each u,v € BC" (R, X¢.) and each Vj = 1,....,k,Vm > 1,

1
7100 =67 4(0) = [ 07 (slu—v) +0) (u=v)ds.
Let u,v € BC" (R, Xo.) be fixed. Denote
C={s(u—v)+v:s€[0,1]}.
Then clearly C' is a compact set, and from step 2, we have for each j =0, ..., k that

— 0 asm — +oo.

Zlelg H@T(w) =1 (w)HBcjw(zy‘—l)u(R,Xo)

Thus, ([@30) follows. O

It follows from the foregoing treatment that we can obtain the derivatives of
To(u) at w = 0. Assume that F(0) =0 and DF(0) = 0, we have
DT'o(0) = J,
D®T(0)(ur, uz) = Kz 0 @5 (0) (DLo(0)(u), DL'o(0) (u2))
D®TG(0)(ur, ug, uz) = Kz 0 ® (0) (D@To(0)(us,usz), DTo(0)(us))
+K5 0 ® (0) (DTo(0)(ur1), D@ T(0)(uz, uz))

(4.31) + K5 0 ) (0) (DTo(0)(u1), DTo(0)(us), DTo(0)(us)),

DWTH(0) = ¥ Kz0d' (0) (DT (0), ..., DT (0)) .
)\EAJ'

We have the following Lemma.

LEMMA 4.20. Let Assumptions Bl and be satisfied. Assume also that
F(0) =0 and DF(0) = 0. Then

() =0 DV(0)=0,
and if k > 1,
DIW(0) (&1, ..., 2n) = I, DUT(0) (Ky 21, ..., K1) (0),
where DWT(0) is given by (E31). In particular, if k > 1 and
I, D' F(0) |xg.x...x Xo.= 0 for 2 < j <k,
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then
DIW(0)=0 for1<j<k

In the context of Hopf bifurcation, we need an explicit formula for D?¥(0). Since
DT'y(0) = J, we obtain from the above formula that V1, zs € X,

D*W(0) (21, 32) = 11, ), [D(Z)F(O) (Kya1, Klmz)} (0),

where

Kn=K,+ Ky, Ki(z.)(t):= ey,

“+o0
Ku(f)(t) = — / e~ A0 (=011, F(1)dl,
t
and
Ky (f)(t) := TEIPOOHOS (Saofr+.))(E—r).

Hence,

D2\I/(O) (:171, {EQ)
+oo
= 7/ efAOUlHuD@)F(O) (eAOclxl, eAOclxz) dl
0

+ hm HOS (SA <>D<2)F(O) (€A0c(7‘+~)x1’eAOc(T‘JF‘)xZ)) (77)

r——00

In order to explicit the term of the above formula, we remark that

= A" Tim Ty, (SA o DD F(0) (SAOC(H.)CBI’erC(r+.)$2)) (—r)

r——00

r——00

= lim HOS/ Ta,(—r —s) (M — A) " D@ F(0) (eAOC(”S)xl, 6A0C(T+S)$2) ds
0

-Tr

= lim Ty (1) AT — A) " DPVF(0) (e~ A0elay, e~ A0l ) dl

r——oo J,

“+oo
/ Ty ()os (AT — A) ' DO F(0) (=40 2y, e A0el ) dl.
0

Therefore, we obtain the following formula
D*¥(0) (z1,z2)

+oo
= —/ e_AO“lHuD(Z)F(O) (erclxl, erclxg) dl
0

—+o0

+  lim Ty (DTgsA (A — A) " D@ F(0) (e A0l e~ A0ely) dl.
—-+0o0o 0

Assume that X is a complex Banach space and F' is twice continuously differentiable
in X considered as a C-Banach space. We assume in addition that A is diago-
nalizable, and denote by {v1,...,v,} a basis of X, such that for each i = 1,...,n,
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Agevi = \v;. Then by Assumption Il we must have \; € iR,Vi = 1,...,n. More-
over, for each 7,7 = 1,...,n, we have

D2¥(0) (v, v;)

+oo
= —/ eQitrile= Aol DA F(0) (v;,v;) dl
0

+oo
+ lim Ty (DA (A — A) " DA F(0) (e Moy, e Nily) dl
A—~+o00 0
= — (=N + X)) I = (=Ao) " TLDPF(0) (v, v;)
+oo
+ lim e~ QAN (DNTgeA (AT — A) " D@ F(0) (s, v5) dl
A—+oo Jo ’
=— (=i +X) I = (—Aow))  TLDPF(0) (v, v5)
+Q@JMM—m4«&+&H—AJJmD@ﬂmmmﬂ
—4o0

Thus,

D*W(0) (vi,v;) = (i + M) I = Agu)” L DB F(0) (v, v;)
+ (i + X)) T =AY TLDPF(0) (vi,v;) -

Note that by Assumption 1] iR C p (As), so the above formula is well defined.
As in Vanderbauwhede and Iooss [106, Theorem 3], we have the following
theorem about the existence of the local center manifold.

THEOREM 4.21. Let Assumption Bl be satisfied. Let F : Bx,(0,e) — X be
a map. Assume there exists an integer k > 1 such that F is k-time continuously
differentiable in some neighborhood of 0 with F(0) = 0 and DF(0) = 0. Then there
exist a neighborhood 0 of the origin in Xo and a map ¥ € Cf (Xoe, Xon), with
U (0) =0 and DV (0) = 0, such that the following properties hold:

(i) If I is an interval of R and x. : I — Xo. is a solution of

dz.(t)

(4.32) o

= Aocte(t) + I F [2c(t) + W (2c(t))]
such that

u(t) =z (t) + U (z.(t)) € Q,Vt € I,
then for each t,s € I witht > s,

u(t) =u(s) + A/tu(l)dl + /tF(u(l)) dl.
(ii) Ifu:R —=Xq is a map such that for each t,s € R with t > s,
Mo:u@+A/zmﬂ+/3wwmm
and u(t) € Q, Vt € R, then

Myu(t) = ¥ (ILu(t)) ,Vt € R,
and IT.u : R = Xo,. is a solution of (4.32).
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(iii) If k > 2, then for each x1,x2 € Xoe,
D*U(0) (1, z2)

—+oo
— —/ e‘AO“lHuD(Q)F(O) (erclxl, ercl:cQ) dl
0

+ lim HOS (SA OD(Q)F(O) (€A0c(’r‘+-)l‘1’eAOc(T+~)x2)) (_T)

r——o0

Moreover, X is a C-Banach space, and if {vi,...,vn} is a basis of X,

such that for each i = 1,....n, Apcv; = \jv;, with \; € iR, then for each

ij=1,..,n,

D2W(0) (vi,v;) = (N + M) T — Agy) " TLDPF(0) (v, v5)

+ (i + X)) T — A) LD F(0) (vi,v;) -
PROOF. Set for each r > 0 that
Fy (2) = F(z)xe (r ' Hoc(2)) xa (1 o (2)]) , Vo € Xo,

where x. : Xo. — [0, +00) is a C° map with xo. () = 1 if ||z]] < 1, x0c(z) =0
if ||z]] > 2, and xp, : [0, +00) — [0,400) is a C™ map with xp (z) = 1 if |z] < 1,
Xn () = 0if |z| > 2. Then by using the same arguments as in the proof of Theorem

3 in [106], we deduce that there exists ro > 0, such that for each r € (0,7¢], F
satisfies Assumption [4.121 By applying Theorem [£.13] to

du(t —_—
% = Au(t) + F, (u(t)), t>0, and u(0) = = € D(A)
for 7 > 0 small enough, the result follows. O

In order to investigate the existence of Hopf bifurcation we also need the fol-
lowing result.

PROPOSITION 4.22. Let the assumptions of Theorem [L.21] be satisfied. Assume
that T € Xg is an equilibrium of {U(t)},~, (i.e. T € D(A) and AT+ F () = 0)
such that -

T .
Then
Igpz =" (HOCE)

and o T is an equilibrium of the reduced equation (1.32]). Moreover, if we consider
the linearized equation (E32l) at y.T

dye (1) _

—— =1L (t

=1~ L @) uelt)
with
L (%) = [Aoc + II.DF (z) [I + DY (I1y.7)]],
then we have the following spectral properties
o (L(z)) =0 ((A+ DF(T))y) N{A € C:Re(}) € [-n,7]}.
PROOF. Let T € Xg be an equilibrium of {U(#)},5, such that T € Q. We set
T, =1I.T and u(t) =7Vt € R.

Then the linearized equation at T is given by
dw(t)

(4.33) o

= (A+ DF (%)) w(t), for t > 0, and w(0) = wy € Xp.
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So
w(t) = T(A+DF(5))D (t)wo, Vi Z 0.
Moreover, we have
DV () ye = 1, [Tg(a) (K1ye)]
and
L@ (v) = v+ Ko®ppez) (D (u)(v)), Vv € BC™ (R, Xo) .
It follows that
Io(m) = (I - K2<1>DF(E))71 v.
Thus,
DV (%) y. = 1, [(I - K2q)DF(f))_1 (Klyc)} :

This is exactly the formula for the center manifold of equation (L32) (see [{23)
in the proof of Theorem FI0). By applying Theorem 10 to equation (@33, we
deduce that
Wn - {yc + DV (EC) Ye ' Ye € XOC}

is invariant by {T(AJFDF(E))O(t)}DO . Moreover, for each w € C (R, Xj) the following
statements are equivalent:

(1) w € BC" (R, Xo) is a complete orbit of {T( a4 pre)), (t)},s, -

(2) Topw(t) = DV (T..) (Mp.w(t)),Vt € R, and Tlpew(.) : R — X, is a solution
of the ordinary differential equation

dw.(t)
dt

The result follows from the above equivalence. (I

= Achc(t) +1.DF (E) [U}C(t) + DV (jc> (wc(t>)] :



CHAPTER 5

Hopf Bifurcation in Age Structured Models

In order to illustrate Theorem .21} we consider an age-structured model. Let
u(t, a) denote the density of a population at time ¢ with age a. Consider the following
age structured model

ou(t,a) n ou(t,a)
ot da
(5.1) u(t,0) = ah (f; y(@)u(t, a)da)

u(0,.) = ¢ € L} ((0,+00);R),

where p > 0 is the mortality rate of the population, the function h(-) describes the
fertility of the population, o > 0 is considered as a bifurcation parameter.

Age structured models have been studied extensively by many researchers (Hop-
pensteadt [67], Webb [108], Iannelli [59], and Cushing [27]). The existence of non-
trivial periodic solutions induced by Hopf bifurcation has been observed in various
specific age structured models (Cushing [25, [26], Priiss [89], Swart [96], Kostava
and Li [67], Bertoni [10]). However, there is no general Hopf bifurcation theorem
that can be applied to age structured models. In this chapter, we shall use the
center manifold theorem (Theorem H2T]) to establish a Hopf bifurcation theorem
for the age structured model (&.l); namely, we will prove that a Hopf bifurcation
occurs in the age structured model (B.1J), thus a non-trivial periodic solution bi-
furcates from the equilibrium of (&) when the bifurcation parameter takes some
critical values.

We first make an assumption on the fertility function h(-).

= —pu(t,a), a € (0,+00),

ASSUMPTION 5.1. Assume that h: R — R is defined by
h(z) = zexp(—px), Vz € R,
where > 0 and vy € L ((0, +00) ,R) with

+oo
/ v(a)e H*da = 1.
0

Set
Y =RxL'((0,4+00);R), Yy = {0} x L' ((0,4+00);R),
Y+:R+XL1 ((07+OO)7R+), Y0+:}/OOY+

Assume that Y is endowed with the product norm

(6
]l =l + el (0, 4o0)m) » V2= ( ¥ ) =

We denote by
Y =Y +iY and Y& =Y, +iYp

45
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the complexified Banach space of Y and Yj, respectively. We can identify Y'© to
Y = CxL"((0,+00);C)
endowed with the product norm
Joll = 1ol + Wollso.corcy« Vo= ( & ) ¥
From now on, for each x € Y, we denote by

T = < g), Re(:c):ﬁ, and Im(x):xix.

We consider the linear operator A: D(A\) CY — Y defined by
i(0)- (%)
2 Y T

D(A) = {0} x W' ((0,+00) ; R).
Moreover, for each A € C with Re(A\) > —pu, we have A € p (21\) and

()\I— A\)_l ( z ) = ( g ) < pla) = e_(’\+“)aa+/0a e~ Atm@a=s)y(5)ds.

Note that

with

Ae;;(ﬁ)@Xep(E)
and
~ —1 1 ~

<)\I—A) x:(XI—]f)i z, Yrev, V)\ep(A)

It is well known that A is a Hille-Yosida operator. Moreover, ﬁo is the part of A
in Yy generated a Cj -semigroup of bounded linear operators {TAO (t)} , which
>0

is defined by
105 ) = (£yoe )

~ e Mpla —t), ifa >t,
7o @ ={ 5 e

where

{S4(t)},5, is the integrated semigroup generated by A and is defined by

Sz(t)( g ) = < L(t)a+f§0fgo(8)s0d8 )

0, ifa >t,
L(#) (a) (a) = { e e <t

Define H : Yy — Y and H; : Yy — R by

()= (o)) () <o),

where
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Then by identifying u(t) to v(t) = ( > the problem (B.)) can be considered

0
u(t)
as the following Cauchy problem
du(t)

dt

Since h is Lipschitz continuous on [0, +00), the following lemma is a consequence
of the results in Thieme [99].

(5.2) = Au(t) + aH(v(t)) for t >0, v(t) =y € You.

LEMMA 5.2. Let Assumption 5.1 be satisfied. Then for each oo > 0, there exists
a family of continuous maps {Uqs(t)},~ on Yoy such that for each y € Yoy, the
map t — Uy (t)y is the unique integrated solution of (B.2), that is,

¢ t
Us()y=y+ A/ Ua(s)yds +/ aH (U, (Dy)dl, vt >0,
0 0
or equivalently
d
Ua(t)y = Ty (t)y + pr (83 % aH(Ua(.)y)) (t), vt > 0.
Moreover, {Ua(t)};>, is a continuous semiflow, that is, U(0) = Id,
Ua(t)Uqn(s) = Ua(t + s),Vt, s > 0,
and the map (t,z) — Uy (t)x is continuous from [0,400) x Yoi into Yoi.
We recall that § € Yo is an equilibrium of {U, ()}, if and only if
7 € D(A) and Ay + oH () = 0.
Here if o > 1, equation (&) has two non-negative equilibria given by
T = ( % ) with T(a) = Ce ™,
where C is a solution of

+oo
C=ah (C/ v(a)e_“ada) with C' > 0.
0

But by Assumption B we have f0+°o v(a)e H*da = 1, so we obtain
C=00rC=C(a):=8"In(a).

From now on we set

(5.3) Vo = ( aoa ) with (a) = C (@) e, Ya > 1.
We have
at @)= (947 ).

SO
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where
+o0
n(a)=ah’ (/0 y(a)e H*daC (a)) =a(1-BC(a))exp (—BC (a))=1—In(a).

We also have for k > 1 that

o) (2 ) (o))

[ an® ( Jobee fy(a)zb(a)da) ﬁl

The characteristic equation of the problem is
+oo
(5.4) 1=n (a)/ v(a)e~ Mg with A € C and Re(\) > —p.
0

Set
Q={AeC: Re(N) > —u}
and consider the map A : 2 — C defined by

+oo
(5.5) AN =1-n (a)/o y(a)e=PFHady,

One can prove that A is holomorphic. Moreover, for each £ > 1 and each )\ € Q,
we have

dFA (A too o
T =0 @) [ ds@e e

To simplify the notation, we set
Box = Az + aDH (,) ¢ with D (Bs) = D (ﬁ)
and identify B,, to
B (+iy) = BSw +iBSy, V(z+iy) € D (BS) =D (4) +iD (4).

Note that the part of B, in D (B,) is the generator of the linearized equation at
V-

LEMMA 5.3. Let Assumption 1] be satisfied. Then the linear operator By :

-~

D(A) CY =Y is a Hille-Yosida operator and
Wess ((Ba)g) < — -

PROOF. Since aDH (7,) is a bounded linear operator, it follows that BS is
a Hille-Yosida operator. Moreover, by applying Theorem 3 in Thieme [10I] (or
Theorem 1.2 in [38]) to B, + ¢l for each € € (0, 1) , we deduce that wess ((Ba),) <

— L. (]

LEMMA 5.4. Let Assumption [5.1] be satisfied. Then the linear operator B, :

-~

D(A) CY =Y is a Hille-Yosida operator and we have the following:
(i) o (BS)NQ={AeQ:A()\)=0}.
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(ii) If A e QnNp (Bg) , we have the following explicit formula for the resolvent

(2)-es(£)

& go(a):/ e*()‘Jr“)(a*S)w(s)ds
0

—+00
(56) a0 5n(@) [ ] e O,
where

“+o0
X,\(s):/ (1)e= O g1 s > 0.

PROOF. Assume that A € Q and A (A) # 0. Then we have
o= ()= ()
@(AI—A)(S)) (i)JraDH(va)(g)
@(2) /\I A ( ) )\I A) aDH(@a)<g)

& ola) = A+u)a5+/0 —(A+p)(a— S)w(s)ds

+oo
e (ay () / Y(a)p(a)da.
0
Thus

+oo +oo +oo a
A = —(Atp)a —(Ap)(a—s)
) / +(a)p(a)da / Y(a)e= g / +(a) / c (s)dsda,

SO
“+o0
pla) = e Atwe [Hn(a)A(A)l/ V(Z)e_(““)ldl]é
0
+/ e~ ATIa=s)y(5)ds
0

“+o0 l
) () e OFme A (1)L / (1) / e~ O+ 1= (5 dsdl.
0 0

But we have
—+o00

14+ 7(a) AN / Y(a)e= e = A (x)!

and

+oo +oo +oo
/ ’Y(Z)/ — (A ) (1= s)w del / / —(Ap)(l— s)dl¢( )
0 0

Hence (ii) follows. We conclude that
AeQ: AN #0}Cp(M-BS)NQ,
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which implies that
c(M—-B5)nQc{reQ:A\)=0}.
Assume that A € Q is such that A (\) = 0. Then for ¢(.) = e~ A4 we have

(1) 4(2),
¥ 12
SO ()\I - BS) is not invertible. We deduce that
AeQ:AN) =0} Co (M -BS)NQ,
and (i) follows. O

The following lemma is well known (see, for example, Dolbeault [37, Theorem
2.1.2, p. 43].

LEMMA 5.5. Let f be an Holomorphic map from an open connected subset
Q C C and let zg € C. Then the following assertions are equivalent:
(i) f=0 on
(ii) f is null in a neighborhood of zy.
(iii) For each k € N, f*) (2) = 0.

LEMMA 5.6. Let Assumption [5.1] be satisfied. Then we have the following:
(i) If Ao € 0 (BS) NQ, then g is isolated in o (BS) .

d*A (\o)

. dNF 7

0, then Ao a pole of order k of ()\I — Bg) . Moreover, if k =1, then Aqg

is a simple isolated eigenvalue of BS and the projector on the eigenspace

associated to g is defined by

(i) If Ao € o (BS)NQ and if k > 1 is the smallest integer such that

II - = N |
Ao ( G ) ( % [5+f0+ XAO(S)w(S)dS} e—(Rotn). >

~

H)\O.’L‘ = HEE'

PRrROOF. Since (2 is open and connected, we can apply Lemma to A, and

since for each A > 0 large enough A (\) > 0, we deduce that for each A € €, there
dm AN

exists m > 0 such that =5

= 0. Moreover, for each A\g € €2, we have

= (A= 20) " dEA (N)
A= Z k! ANk
k>0
whenever |\ — \g| is small enough. It follows that each root of A is isolated. More-
over, assume that there exists Ag € Q such that A ()\g) = 0. Let mp > 1 be the

smallest integer such that % # 0. Then we have

AN =A=2)""g(N)
with

0 (A= 20) T dEA (Ng)
9N =2 ! dANF
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whenever |\ — Ag| is small enough. So the multiplicity of g is k. Now by using

Lemma [5.4] we deduce that if Ao € o (BS) N €, then ) is isolated in o (BS).
Moreover, by using (5.6) we deduce that for k > 1,

lim (A= Ao)" (AT — BS) ™ ( 3) )

)\H/\o
. & _1 Feo 0

= Jim (-2 AW o [T s (o, )

= im0 ik [ et 0

DS VA g(N) - 0 A e~ Fm. ]
SO

. k -1 0 .
(5.7) Alinio (A= X0)" (M - BY) ( " > =0 if k> my.
But since ) is isolated, we have
(M -BS) = Y (A=) Dy,
k=—o00

where
(5.8) Dy = — (A=) " H (AT = BE) HdA

o 27TZ Scc(/\o,é‘)+
for € > 0 small enough and each k € Z. By combining (5.7)) and (58], we obtain
when € — 0 that
D_; =0 for each & > mg + 2.
It follows that Ag is a pole of the resolvent and
M-BS)"= 3 (-2 D

k=—mop—1

Noticing that

. 1 -1
. (A=20)"" (M = Bg) = Dy

and using (5.17) once more, we deduce that D_,,,_1 = 0. Finally, we have

lim (A= Xo)™ (AT = BS) ' = D_,,

A— o
and
o ()= ot [ osowens] (ol )
¥ 9 (M) 0 ’ e (oth)
Therefore, \g is a pole of order mg > 1. (I

ASSUMPTION 5.7. Assume that a* > 1 and 8* > 0 such that i0* and —i0* are
simple eigenvalues of B,- and

sup{ Re(A\) : A € 0 (Bo-) \ {i60",—i0"}} < 0.
Under Assumption 5.7 we have
dA (—i0*)  dA (i6%)

dA ) 70
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Moreover, by using assertion (iii) in Lemma [05.6] we can define I, : Y — Y as

()=t (5 )i (5)- (1) ex

¥ ¥ 14 2

By using Theorem and Lemma 32 we deduce the following result.
LEMMA 5.8. Let Assumptions 5.1l and B be satisfied. Then

7 (Ba* ﬁcm) = {i0", 0"}, 0 (Ba* (I—ﬁc)(Y)) = 0 (Ba-) \ {i0*, —i0"},

and

wo (Be l(r-))) <0

We have

iy )

0
sy —1 o oYL e
[ dAC%\G ) e_(zg +u). + dA(d)\e ) e (—i0* ). ‘|

_[dage)| 0
o dA Re (A (i60%)) @1 + Im (A (i6%)) &
with
—(i0* ). _ o= (—i8*+p).
8 = {e—(i9*+#)-+e—(—i9*+u).}7 & = (em (07w e ( w-)
1
Set R )
i, = (I—HC)

Then we have
~ 1 ~ 1
() - ()

1
- < _dA(iG*)_le—(w*Jru). _ dA(—iO*)_le—(—w*Jru). )
ax a

1
= gy [—2 .
( — [ #8007 Re (A (16°)) 21 + i (A (16%)) @) )
In order to compute the second derivative of the center manifold at 0, we will
need the following lemma.

LEMMA 5.9. Let Assumptions 5.1 and B be satisfied. Then for each \ €
iR\ {—i0*,16%},
ﬁs(Y)) HS( 0 )

0
= dA(i07) T o= (10" +n).  dA(—ig*) L o= (=i0" +n). “1 (0w
( T o) T ory TAN) T e

(/\I ~ BS.

Moreover, if A = i0*, we have
ﬁsm) HS( 0 )
0

— (=0 ).
= | _daien)le (=007 aGio®) ~2 [angio”) L 1d2AG00)] (0" +p).
ax 20" X ax 2z

(i1 - BE.
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and if A = —i0*, we have
—1 1
no) ()

0
} ( A0 Ty A TR AAC) PO o (074w )

(—1'9*1 .y

1
dX —2i0* dA dA T2 dX2

PROOF. For each A € p (BS. ), we have

-1 0 caky—1 0
()\I—BS*) ( e*(ii0*+ﬂ)~ ) = (/\:|:29 ) ( ef(iie*‘i’l‘)' )

Hence,
-1~ (1 1= (1
C C
(M= BE I ) HS( . ) — (M- BS) T, ( . )
0
= dA(i0%) "L =0 4+n).  gA(—i0*) TL o= (=i0% ). -1 _ (). |-

— G E— Y OFie) +AN) e

Thus,
1 1
C

(01 - BS Ia,)) T ( . )

0
dA(i0*) "L (0% +n). gA(—ig*) TL = (=0 +n). -1 _
( ch) i (d)\ L e 0 +A(0) e ”‘)

0
- ( 4aG0") o [ Re (2522i0%) e + Im (22482i0") e5] + A (0) " e ) '

Moreover, we have

| 1. (1
- N C | _ : _ nC |
(071 = B3 I5.v,) HS(O = Jlim (M- BE ) HS(O)’
with A€p(BS)
SO
- C -1 1
("1 = BE I, 1'[5( 0)

0
= Qo dAG07) L= (107 4m).  da(—ig*) "L (i0"+n). 1 —(\n). )
wit};\?ezi(Bg) ( 2 (=i*) T dx oFo) - T A(A) e "

Notice that
dA (%) e (07 R,
d\ (A —d0*)

+ AN e OFm:

(O — i0°)? A e 4 () — i67) %e—(k—w)}
EECRNNRYNGY (A — i6%)?
and
e 2 s —2
(A = i0") = ! —>dA(29 ) as A — 160",

dx  (h—ib*) A
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We have
dA(i67) (A - i0%) d2A (i6*)
dX 2 dx2

with ¢ (0) = %dzﬁyf*). Therefore,

AN e W1 — (X — ih*) +(A—i6*) g(A—i6*)

[—A () et - (n — i) SAEE =t

(A —if*)?
— (A — if*) SR [o= (07 Hn) o= Otm).]
- (A —i67)?
2 32
[(A 02 AT 4 (A —i67)% g (A @9*)} —(i0" +1)-
+ D)
(A —1i0*)
dA(07) ( or ) _ LPAGET) g, 0"
Y ( e ) 52 e as A — 0.
Finally, it implies that
—1 1
- % C
(z&I—Ba* )) HS(O)
0
= N e~ (Z107+n). T dA(i6*) 2 [dA(ie") ld%(w*)} o— (10" +1).
ax 20+ dx dx 27 a2
The case when A = —i6* can be proved similarly. This completes the proof. (Il

In order to apply the Center Manifold Theorem .21] to the above system, we
will include the parameter « into the state variable. So we consider the system

dﬁTSft) = Av(t) + o (t) H(v(t)),
da(t) _
TR

v(0) =vp € Yy, a(0) =ap € R.
Making a change of variables
a=a+a* and v =7+ Tyx,

we obtain the system

dqj.z—gsﬂ = AB(t) + (@ (t) + ) [H@B(1) + T(a(t) +a) — HO@w 1))

69 ) _,

dt '
Set

X=Y xR, Xo=D(A) xR
and
H(@,7) = (@+a*) [H@ +U@arar) — HO@ran)] -

‘We have

0, H(@,9) (w) = (@ + a*) DH (T +T(ayar)) (w)
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and
05H(a,0) (@) = &{H@Jrﬁ(am*))H(ﬁ(am*))

dV(a o) >

dU(g4ax
—DH@mmaﬂ>(—£g;l)]}

So 9,H(0,0) = a*DH(,-) and d5H (0,0) = 0.
Consider the linear operator A : D(A) C X—X defined by

(-

with D(A) = D(A) x R and the map F : D(A) — X defined by
a

where F; : X — R is defined by
v ~ L _ « N
Fy ( & ) = (@+ ") [HO+Tatar) — HO@G1a))] — ¢ DH (Tyr) (0) .

Then we have

F(g)zo, Va >1-—a", and DF(0) =0.

Now we can apply Theorem [£.21] to the system
dw(t)

(5.10) = Aw(t) + F (w(t)), w(0) =wy € D(A).
We have for A € p(A)NQ=Q\ (0 (By~)U{0}) that
5 B9
S (R I e (v)

r —

A
By using a similar argument as in the proof of Lemma and employing Lemma
B8] we obtain the following lemma.

LEMMA 5.10. Let Assumptions B and 5.1 be satisfied. Then
o (A) =0 (By)U{0}.

Moreover, the eigenvalues 0 and +i0* of A are simple. The corresponding projectors
o, My« : X +iX — X 49X are defined by

() = (7))
ne (1) = (%)
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In this context, the projector II. : X — X is defined by
I, (z) = (g + g + I_zp-) (z), Vz € X.
Note that we have
g« (z) =49« (T), Vo € X +iX,
so the above projector II, maps X into X. Define the basis of X, = R (IL. (X)) by

OR » OR » OR
el = e—(u+i9*). + e—(u—w*). , eg = e~ (n+io )-;e‘(#—ﬂ )- , e3 = 071
Or Or 1

and
A@l = —(9*62, ABQ = 9*61, A€3 =0.
Then the matrix of A, in the basis {e1,es,e3} of X, is given by

0 —-6* 0
(5.11) M=1]6- 0 0
0 0 0
Moreover, we have
1 = 1 = 1
m | op | = [ M < 0z ) + Ise- < 0p: )
OR OR
Or
=1 ey —1 o
% e~ (0" +p). | % e—(=10" +n).
Or
Thus,
6 . —2
dA (i6*
M. | 01 | =9 ’% (Re(A(i0%))e; + Im (A (i6%)) es) + res.
T

Therefore, we can apply Theorem £211 Let I' : Xo. — X, be the map defined in
Theorem 2] Since X, C Y x {Og} and since {e1, ez, e3} is a basis of X, it follows
that
Uy (z1e1 + voe2 + T3€3)
K )

Since F € C* (Xp, X), we can assume that ¥ € C3 (X, Xos), and the reduced
system is given by

U (z1€1 + z2€0 + T3€3) = (

B = g, o) +ILF (eet) + ¥ 2 (0)
1
= Aolx, el®)+ Fi (elt) + 0 o) T | 0 |,
Or
Dr() = o

r ( OX ) = 0 for all @ € R with |&] small enough.
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The system expressed in the basis {e1, e, e3} of X, is given by

q [ =@ a1 (1)
(5.12) prll B Et; =M| =z Et; + G (z1(t), z2(t), 23(2)) V,
I3 t I3 t

where M is given by (G.10)),
-2 [ Re(A(i0%))
Im (AO(W*))

G (z1,29,23) = F1 o (I + V) (z1e1 + x0€3 + x3€3) .

Here z3 corresponds to the parameter of the system. Note that we can compute
explicitly the third order Taylor expansion of the reduced system around 0. We
have

DG (zc) = DFy (zc + ¥ (zc)) (I + DY (zc)) ,

D*G (z.) (mi, xz)

= D*F (zc + VU (z.)) (I + DY (z.)) (x2) , (I + DT (2.)) (22))
+DFy (2. + ¥ (z.)) D*V (z.) (2}, 22)
DG () (zl, 22, 23)

= D3Fy (z, + ¥ ()

dA (i6%)
dA

-

and

I+D\I/ () (z) , (I + DV (x.)) (22) , (I + DY (z.)) (z2))
+D?Fy (e + ¥ (2,)) (D*W (2)) (w8, 22) , ( 1+qu () (22))
+D2F) (20 + U (z.) ((1+qu () (), D*¥ () (27, 27))
+D?Fy (we + ¥ (z0)) (DW (2c) (w8,22) , ( I—|—D\IJ () (7))
+DF, (ze + ¥ (2.)) DV ( )(9&1 x? x?’).
)

) ((
)
)
)

Since DF;(0) =0, and ¥ (0) =0, DV (0) = 0, we obtain
DG (0) =0, D*G (0) (z!,22) = D*Fy (0) (2}, 22)

and
D?G (z.) (z},22,23) = D’F(0) (z},22,27)
+D*Fy (0) (D*¥ (0) ( ) @)
+D?Fy (0) (z}, D*¥ (0) (22,22))
+D?Fy (0) (D*¥ (0 )(wi,wi),xi’)-

Moreover, by computing the Taylor expansion to the order 3 of the problem, we
have

1 1
G(h) = EDQG (0) (h, h) + §D3G (0) (h, h, h)
1 1
+5 / (1 —t)* D*Fy (th) (h, h, b, h) dt.
- JO
Notice that we can compute explicitly that
1 1
EDQG (0) (h,h) + §D3G (0) (h, h,h).
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Because Fy is explicit, we only need to compute D?W¥(0). For each =,y € X,

+oo

D2W(0) (z,y) = Jim Ty (DA (A — A) " DA F(0) (e~ Avcly, e=Aocly) dl.
—+0o0 0

Using the fact that
efete; = cos(07t) e; — sin (67t) eq,
efetey = sin (07t) ep + cos (67t) eq,
€Act€3 = €3

and
N (eie*t_’_efie*t) o (eie*t _efw*t)
cos (0%t) = > sin (07t) = BT

and following Lemma 5.9 and the same method at the end of Chapter 4 (i.e. the
same method as in the proof of (iii) in Theorem [2]]), we can obtain an explicit
formula for D*¥(0) (e;,e;) : For 4,5 = 1,2,

-1 1
.. _ npC 2
DQ\I/(O) (eiaej) — Z C’L] ()\) ()\I Ba |H5(Y)) Hs ( 0L1 ) D F1 (ek7el) :
)\GAiyj, O
k,l=1,2

where A; ; is a finite subset included in iR. So we can compute D?¥(0) and thus
have proven that the system (5.I2) on the center manifold is C? in its variables.

Next, we need to study the eigenvalues of the characteristic equation (G)).
Assume the parameter a > e and consider

“+o0
Ala,N)=1-—n (a)/ y(a)e~ M Hadg
0
with

n(a)=1-1n(a).

OA(a,)\) L[ [T ~(a
T——E |:/O ’Y(a)@ dal .

‘We have

If A(a, A) =0 and a > e, then

0A(a,\) 1
da  an(a) <0

In addition to Assumption 5.7 we also make the following assumptions.

ASSUMPTION 5.11. Assume that there is a number o* > e such that
a) TEA € Qand A (a,\) = 0, then Re(%) > 0.
b) There exists a constant C' > 0 such that for each « € [e, a*],
Re(A) > —p and A (a, ) = 0= [N\ < C.

c¢) There exists 0* > 0 such that A (a*,i0*) = 0 and A (a*,i6) # 0,V0 €
[0, +00) \ {07} .
d) For each « € [e,a*), A («,i0) # 0,V0 € [0, +0).
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Note that if « = e, we have A (o, \) = 1, so there is no eigenvalue. By the
continuity of A (a, A) and using Assumption 5101 b), we deduce that there exists
oy € [e,a*] such that

Aa,\) #0,VA e QVa € le,a1).
Note that because of Assumption B.I1] a), we can apply locally the implicit

function theorem and deduce that if @ > e, A € ©Q, and A (@,X) = 0, then

there exist two constants € > 0, r > 0, and a continuously differentiable map
A:(@—e,a+e¢e)— C, such that

A, N) =0 and (a,A\) € (@—e,a+¢e) x B (0,r) < A=A (a).

Moreover, we have

and
OA (&,)\ (a)) 0A (a, A (0‘)) d\ () 0
O * O\ do
Thus,
d\(a) 1 —1
da — oA(aA(@) an(a)’
ox
However,
oA (@3 (o)) 1
Re B\ >0« Re A (&, () >0,
N
SO
dRe (X (a))
— 72 >0.
do

Summarizing the above analysis, we have the following Lemma.
LEMMA 5.12. Let Assumptions 5.1, B and B.I1] be satisfied. Then we have
the following:

(a) For each a € [e,a*), the characteristic equation A (o, \) = 0 has no roots
with positive real part.

(b) There exist constants € > 0, n > 0, and a continuously differentiable map
X (a* —e,a* +¢) = C, such that

A (a,i(a)) =0, Vae (a"—¢,a" +¢)
with
A (a*) =i0* and %Re (X(a*)) >0,
and for each a € (a* —e,a* +¢), if
A(a,N\) =0, )\7&3\\(04), and)\#m,

then
Re (M) < —n.
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In order to find the critical values of the parameter « and verify the transver-
sality condition, we need to be more specific about the function v(a). We make the
following assumption.

ASSUMPTION 5.13. Assume that
S(a—7)"eCle=1)  ifg>71
s ={ 57 5

(5.13) 0, if a € [0,7)

for some integer n > 1, 7 > 0, ( > 0, and
1

+0oo -
§= </ (a—1)" eC(aT)da> > 0.

Note that if n > 1, then « satisfies the conditions in Assumption 5.1l We have
for A € ) that

+o0 +oo
/ v(a)e~HHNagq = / v(a)e~ HHNadq
0 T

+oo
— Se— N7 / (a — 7)Pe N @=7) g

“+o0
= de (AT / Ime” (HCENL],
0
Set N
I,(\) = / ["e”WHCFNLGL for each n >0 and each A € €.

0

Then we have
—+o0
Aa,N) = 1—n (a)/ y(a)e~ M Hadg
0
= 1—n(a)de T ().

Then by integrating by part we have for n > 1 that

+oo
In (A) — / lTLG_(M+C+A)ldl
0
[ [re— (uHC+N)I ]Jroo /+o<> nlnflef(u+c+>\)ldl
I Y (TR VA I 0 (h+C+A)
n
Grcrn
and
i (n+C+M gy 1
L) = / & -
o) 0 (n+C+A)
Therefore,
n!
(4 ¢+
with 0! = 1.
The characteristic equation (54]) becomes
e~ T(uFC+A)
(5.14) l=n(a)onl——, Re(\) > —pu.

(+ ¢+ N
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Note that when n = 0, the above characteristic equation (&.I4) is well known in
the context of delay differential equation (see Hale and Verduyn Lunel [51], p.341).
Note also that when 7 = 0, (514) becomes trivial. Indeed, assume that 7 = 0 and
1 < 0, then we have

(L+C4+ X" = —|non! = n| onle’®+D7™ for k=0,1,2, ...

SO

A= —(u+¢)+ "/|n| onle’ SFT for k= 0,1,2,...
Note that
dA (A) oo —(Ap)a
™ = 77/0 avy(a)e da

—+oo

= e / a(a — 7)me— N @) g,
+

_ nge—(x+uﬁ-L/"(”(a__T)n+1e—(u+<+AXa—r)da

+oo
+7‘/ (a — T)”e(“JrCH‘)(“T)da]
= née*(/\Jr“)T (Int1 + 71]

1
= poe— Ot _nTrl I
e (udcen T

n+1 ]
= |———+7|[1=-A(}N)].

[z R LR
If A (M) =0, it follows that

dA () n+1 dA (N)
= 0 and Re| ——= | > 0.
ax {wcu) *T] 70 ( ax

Hence, all eigenvalues are simple and we can apply the implicit function theorem

around each solution of the characteristic equation.
Note that

[l ¢+ A = [ (@) S| 751 ¢~ o (e CrReQ),
So
(5.15) Im (A)? = | () 6nl| 757 e~ mrn G CH Re)) _ () 4 ¢+ Re (N))2.

Thus, there exists §; > 0 such that —pu < Re(A) < 4;. This implies that the
characteristic equation (B.I14) satisfies Assumption E.11] b). Using (EI5) we also
know that for each real number §, there is at most one pair of complex conjugate
eigenvalues such that Re (A) = 6.

LEMMA 5.14. Let Assumption [5.13] be satisfied. Then Assumptions 5.1, 5.1 and
[B.I7] are satisfied.

PROOF. In order to prove the above lemma it is sufficient to prove that for
a > e large enough there exists A € C such that

A (a,A) =0 and Re (A) > 0.
The characteristic equation can be rewritten as follows
(E+ 0" = —x(a)eTEN, Re(A) 20,
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where
X (@) = (In () — 1) on! :1n<%) on!'>0and E=pu+¢>0.

Replacing A by A = 7 (£ + A) and (a) by X (a) = "1y (a), we obtain
Al = —X () ¢ and Re (X) > T€.

e A= (@) e~ M EEHDTE 41 Re (/)\\) > 7€k €.

=)

So we must find X = a + ib with a > 7€ such that

1 _ b+(2k+1)7
a
()™ e~ % cos (7n+1 ,

a=X
S N —a b+(2k+1)
b=X(a)"t e *sin (*WW)

for some k € Z.
From the first equation of the above system we must have

b+ (2k+1

€1[0,1) and cos( i

1
Rla) e
Moreover, the above system can also be written as

tan(b—i—(%—i—l)w) b

)

n+1 a
and ( )
~ 1 b+ 2k +1)n
a _ 1 .
ae® = X () "+ cos <n+ ] )
We set
7= b+ 2k+ 1)
B n+1 ’
Then

b=(n+1)b— (2k+1)m.
The problem becomes to find fe R\ {% +mm:me Z} such that

. ~ 16— (2k + 1
(5.16) cos(#) > 0, tan(@):—(n+ )0 = @k + )ﬂ, keZ,
a
and
(5.17) ae = )?(04)“%1 cos (5) .

Fix a > 7¢& = 7(u+&), then it is clear that we can find 6 € [, 5] such that (5.186])
is satisfied. Moreover, X (e¢) = 0 and X (o) — +00 as & — +o00. Thus, we can find
@ > e, in turn we can « > e, such that (BI7) is satisfied. The result follows. O

Therefore, by the Hopf bifurcation theorem (see Hassard et al. [62]) and Propo-
sition we have the following result.

PROPOSITION 5.15. Let Assumptions Bl and 513 be satisfied. Then there ex-
ists o* > 0, where o satisfies Assumption 5.0, such that the age structured model
(B11) undergoes a Hopf bifurcation at the equilibrium v = T4+ given by (B3)). In
particular, a non-trivial periodic solution bifurcates from the equilibrium v = Uy«
when a = a*.
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Birth rate function 3=1 y=1 t=5

0.4

0.351 1

0.3 1

0.25 1

b(a)
o
R

0.1 1

0.05 1

V] 20 40 60 80 100

FIGURE 5.1. The birth rate function b(a) with 6 = 1,7 = 1, and
T=>5.

To carry out some numerical simulations, we consider the equation

ou Ou
s = _ > >
5 + 9a pu(t,a), t>0,a>0

u(t,0) =nh ( O+°O bla)u(t, a)da)

(0, a) = up(a)
with the initial value function

up(a) = aexp(—0.08a),
the fertility rate function
h(z) = ax exp(—pz)
and the birth rate function (see Figure (1))
ba) = dexp(—y(a—71))(a—71), ifa>r,
1 0, ifael0,7].
where
uw=01 =1 6=1, y=1, 7 =5.

The equilibrium is given by
+oo
u(a) =Ce™ " a>0, C=h (/ b(a)e““Cda) .
0

We choose a > 0 as the bifurcation parameter. When o = 10, the solution
converges to the equilibrium (see Figure upper figure). When « = 20, the
equilibrium loses its stability, a Hopf bifurcation occurs and there is a time periodic
solution (see Figure lower figure).

Age structured models have been used to study many biological and epidemio-
logical problems, such as the evolutionary epidemiology of type A influenza (Pease
[86], Castillo-Chavez et al. [13], Inaba [60] [62]), the epidemics of schistosomiasis
in human hosts (Zhang et al. [114]), population dynamics (Gurtin and MacCamy
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Evolution of the age distribution =10 =1

Evolution of the age distribution 0=20 =1

FIGURE 5.2. The age distribution of u(¢,a), which converges to
the equilibrium when « = 10 (upper) and is time periodic when
a = 20 (lower).

[46], Webb [107), [108], Tannelli [59], Cushing [27]), and the epidemics of antibiotic-
resistant bacteria in hospitals (D’Agata et al. [29] 28], Webb et al. [109]). Periodic
solutions have been observed in some of these age structured models (Castillo-
Chavez et al. [13], Inaba [60}, [62], Zhang et al. [114]) and it is believed that such
periodic solutions are induced by Hopf bifurcation (Cushing [25] [26], Priiss [89],
Swart [96], Kostava and Li [67], Bertoni [10]). In this chapter, we established a
Hopf bifurcation theorem for the age structured model (G.I). Recently, we (Ma-
gal and Ruan [79]) also studied Hopf bifurcation in an evolutionary epidemiological
model of type A influenza (Pease [86] and Inaba [60} [62]). We think that the center
manifold theorem (Theorem2T]) and the techniques used in analyzing (B.]) can be
developed to investigate Hopf bifurcations in some of the above mentioned biologi-
cal and epidemiological models with age structure (for example, the schistosomiasis
model in Zhang et al. [114] ) and some other structured models (Hoppensteadt
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[57], Webb [108], Tannelli [59], Cushing [27], Magal and Ruan [77]). It may also
be employed to study the stability change in age structured SIR epidemic models
(Thieme [100], Andreasen [2], Cha et al. [14]).
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