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Abstract. We study the existence and some asymptotic properties of a conservative

branching particle system for which birth and death are triggered by contact with a set.

Sufficient conditions for the process to be non-explosive are given, solving a long standing

open problem. With probability one, it is shown that only one ancestry survives. In special

cases, the evolution of the surviving particle is studied and for a two particle system on

a half line we derive explicitly the transition function of a chain representing the position

at successive branching times.

1. Introduction

This paper is the second part of an effort to characterize the non-explosiveness and

ergodic properties of a class of stochastic processes built by piecing together countably

many consecutive episodes of a driving process killed upon contact with a set (catalyst),

which is restarted at a random point of the state space to be prescribed according to the

particular evolution model by a redistribution probability measure. The first part [11] looks

at a number of models that need a finite number of jumps before entering a certain center

of the state space (a small set in the sense of Doeblin theory). This paper is dedicated

to the harder example of the N particle system with Fleming-Viot dynamics introduced

in [3] for Brownian motions. Similarly to the Wright-Fisher model, a killed particle is

replaced by having one of the surviving particles branch; this can be interpreted as a jump

to the location of one of the survivors, chosen uniformly. We admit general diffusions with
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smooth coefficients as a driving process, and in Theorem 1 the domain of evolution may

be unbounded. Lemma 1 is the main tool of the proof. In the context of the Fleming-Viot

it shows that the process enters almost surely a configuration with at least one particle in

the center of the set. The proof does not require the uniform distribution at jump time, a

lower bound on the redistribution probabilities being sufficient (Definition 1). Perturbations

of the redistribution probabilities appear naturally in large deviations estimates from the

hydrodynamical limit [9].

Our three main results are Theorem 1, which proves that for sufficiently large N , the

system is non-explosive on domains with regularity prescribed in Definition 2; Theorem 2

which proves the geometric ergodicity using a comparison with a process without jumps

obtained by coupling; and Theorem 3, establishing the existence of a unique infinite contin-

uous path, or ancestry line - the immortal particle in the sense of [5, 6]. For a discussion and

recent developments the reader is referred to [2] and the references therein. Our interest in

the model was based on the scaling properties of the branching model [10]. The hydrody-

namic limit (law of large numbers for the empirical measures as objects on the Skorohod

space) has been explored in [7, 1] as a tool to study the quasi-invariant measures of a killed

process, providing an important application of the Fleming-Viot mean-field redistribution

dynamics.

Let D be an open connected set in Rd with regular boundary ∂D and ((x̃(t))t≥0 a

diffusion on D absorbed at the boundary, generated by the second order strictly elliptic

operator L. We shall assume that the diffusion coefficients are smooth up to the boundary,

i.e. belong to the C∞(D̄). Naturally, lower regularity may be considered but the problems

considered are difficult enough for the Laplacian. This setup can accommodate with minor

changes the case of a diffusion with some boundary conditions (i.e. reflecting) on a subset

of its topological boundary. In that case ∂D will denote without loss of generality, the

absorbing boundary, where the process is killed upon arrival. Under these assumptions

Px(τD > 0) = 1 for all x ∈ D, where τD = inf{t > 0 |x(t) ∈ Dc} is the hitting time of Dc,

the complement of D, and the transition probabilities PD(t, x, dy) will have a density

(1.1) Px(x̃(t) ∈ dy , τD > t) = PD(t, x, dy) = pD(t, x, y)dy .

We note that the harmonic measures Px(x(τD−) ∈ dξ) are absolutely continuous with

respect to the Lebesgue measure on the boundary λ0(dξ), ξ ∈ ∂D.
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In addition, for any ξ ∈ ∂D we have a probability measure ν(ξ, dx) on D such that

ξ → ν(ξ, dx) is measurable with respect to the Borel σ-algebras of ∂D and of M1(D), where

M1(D) denotes the space of probability measures on D with the topology of convergence

in distribution.

Constructively, we define a Markov process x(t), t ≥ 0, starting at x ∈ D, as follows.

We set x0 := x and τ0 := 0. The process follows the diffusion PD starting at x0 up to

τ1 := τD
1 , which means x(t) := x̃(t) for 0 ≤ t < τ1. As soon as it reaches ∂D at ξ0 = x(τ1−)

it instantaneously jumps to a random point x1 ∈ D, independent of the process x(t), with

distribution ν(ξ0, dx). We continue the motion according to the diffusion pD starting at x1

until τ2 = inf{t > τ1 |x(t) ∈ Dc}. We set x(t) = x̃(t− τ1) on τ1 ≤ t < τ2, where evidently

τ2 − τ1 = τD
2 and so on. Since Px(τD > 0) = 1 for all x ∈ D we have that τl is strictly

increasing in l ≥ 0. It is possible that τl′ = ∞ for a given l′, in which case τl ≡ ∞ for all

l ≥ l′. Without loss of generality, let l′ = inf{l ≥ 1|τl = ∞} and we denote l∗ the total

number of jumps; obviously l∗ = l′ − 1. We denote τ∗ = liml→∞ τl ≤ ∞.

In the following, for a sufficiently small δ > 0, we denote Dδ = {x ∈ D | d(x, ∂D) > δ}.
The underlying diffusion will be assumed to satisfy the uniform bound on the exit time

from a vicinity of the boundary Dc
δ, trivial for a bounded D,

(1.2) lim
t→∞ sup

x∈D̄c
δ

Px(τDc
δ > t) = 0 .

We are interested in conditions guaranteeing that x(t) is non-explosive or, equivalently,

does not finish in finite time with positive probability (1.3)

(1.3) ∀x ∈ D , Px( lim
l→∞

τD
l = ∞) = 1 .

Lemma 1 contains the key element in the proof of non-explosiveness exhibited by the

function lnΦ(x), where Φ(x) is intuitively emulating the distance to a subset A of ∂D, with

properties Φ(x) > 0 in D and Φ(x) = 0 on A. The reader may want to think of D′ as a

subset of D \ D̄δ representing the “worst case scenario” for survival because ∂D′ ⊇ A, in

other words a set where the process may have the highest chance of extinction.

Besides technical assumptions contained in (i), properties (ii) and (iii) guarantee that

lnΦ(x(t)) is a (local) sub-martingale. More importantly, ln Φ(x(t)) experiences a strictly

positive jump (iii) on the boundary, implying that the process pays a “price” for each jump.
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For a set D1 ⊆ D, we define α(D1) = inf{t > 0 |x(t) ∈ D̄1}, with α(D1) = +∞ if x(t)

never hits D̄1. Let l(D1) = max{l | τl ≤ α(D1)}, the number of jumps until the process hits

D̄1.

Lemma 1. Assume there exists a (possibly empty) closed subset A of the boundary ∂D

with λ0(A) = 0, an open subset D′ ⊆ D and a bounded real function Φ ∈ C2(D′) ∩ C(D̄)

with the properties (i) Φ(x) > 0 on D̄ \ A and Φ(x) = 0 on A; (ii) L lnΦ(x) ≥ 0 for all

x ∈ D′ and (iii) U = infξ∈(∂D∩∂D′)\A U(ξ) > 0, where

(1.4) U(ξ) =
∫

D
lnΦ(x)ν(ξ, dx)− lnΦ(ξ) .

Then Ex[l(D \D′)] ≤ U−1[supx′∈D̄{lnΦ(x′)}− lnΦ(x)] < ∞ for all x ∈ D′. If, in addition,

there exists δ > 0 such that D′ ⊆ D \Dδ, then Px(α(D \D′) < ∞) = 1 for all x ∈ D′.

Proof. Step 1. We show that ln Φ(x(t∧α(D\D′))), t ≥ 0, x(0) = x ∈ D′ is a local (Ft) sub-

martingale. Condition (ii) shows that ln Φ(x(t)) is a sub-martingale as long as x(t) ∈ G′ and

(iii) shows that it is a sub-martingale at the boundary of D′ shared with ∂D. This proves the

statement up to the first hitting time of D \D′. Since Φ(x) = 0 on A, we create a localizing

sequence on D̄ \A. Due to λ0(A) = 0, there exists a nested sequence of open sets Bk ⊆ Rd,

Bk ⊇ A, such that for all k ≥ 0, d(y, A) < 1/k when y ∈ Bk. We may assume without loss

of generality that x /∈ B0 and B0 ⊆ D \Dδ. We claim that if τ(Bc
k) = inf{t > 0 |x(t) ∈ B̄k}

and (with a slight abuse of notation) τ(Bc∞) = limk→∞ τ(Bc
k), then Px(τ(Bc∞) ≥ τ∗) = 1

for all x ∈ D \ B0. Assume τ(Bc∞) < τ∗. The sequence is τ(Bc
k) is non-decreasing, but

we want to show that it cannot be constant from a certain rank on. If this would be

the case, τ(Bc
k) = τ(Bc

k0
) for all k ≥ k0 and there exists l such that τ(Bc

k0
) ∈ [τl−1, τl).

Consequently x(τ(Bc
k0

)) ∈ D yet d(x(τ(Bc
k0

)), A) ≤ 1/k for all k ≥ k0, thus x(τ(Bc
k0

)) ∈ A,

a contradiction. Without loss of generality, we assume that the sequence τ(Bc
k) is strictly

increasing. There are two possibilities: Either (τ(Bc
k)), k ≥ 0 has only finitely many points

in each episode [τl−1, τl), l ≥ 1, or there exists lA < ∞ with infinitely many τ(Bc
k) in

[τlA−1, τlA). In the first case τ(Bc∞) ≥ τ∗, and we are done. In the second case, τ(Bc∞) 6=
τlA−1, so there are two scenarios: Either τ(Bc∞) ∈ (τlA−1, τlA), or τ(Bc∞) = τlA . In both, the

process x(t) has continuous paths on (τlA−1, τlA) and d(x(τ(Bc
k)), A) ≤ 1/k for an infinite

subsequence, which implies that the path of the diffusion killed at the boundary has a limit

point on A. This event has zero probability on any episode and there are countably many

episodes. By choosing the localizing sequence τ(Bc
k) ∧ α(D \D′), k ≥ 0 we proved Step 1.
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Step 2. Fix x(0) = x ∈ D′. Denote M(Φ) = supx′∈D̄{lnΦ(x′)}, let m be a positive

integer, T > 0 and put τ ′j = τj∧m ∧ (τ(Bc
k)∧α(D \D′))∧T for all j ≥ 0 and τ(Bc

k), k fixed

at the moment, as in Step 1. With this notation, the summations below are finite, and we

can write

(1.5) M(Φ)− lnΦ(x) ≥ Ex[lnΦ(x(τl(D′)∧m ∧ (τ(Bc
k) ∧ α(D \D′)) ∧ T ))− lnΦ(x(0))]

(1.6) = Ex[
l(D\D′)∑

j=1

lnΦ(x(τ ′j))− lnΦ(x(τ ′j−1))]

(1.7) =
l(D\D′)∑

j=1

Ex[lnΦ(x(τ ′j))− lnΦ(x(τ ′j−))] +
l(D\D′)∑

j=1

Ex[lnΦ(x(τ ′j−))− lnΦ(x(τ ′j−1))]

The second term of (1.7) representing the diffusive time interval [τ ′j−1, τ
′
j−) is nonnegative

by the sub-martingale property. The first term, representing the jump at τ ′j is bounded

below by

(1.8) Ex[
m∑

j=1

Ex[lnΦ(x(τ ′j))− lnΦ(x(τ ′j−))|Fτ ′j−]]

(1.9) =
m∑

j=1

Ex[Ex(τ ′j−)[lnΦ(x(τ ′j))− lnΦ(x(τ ′j−))]] ,

where we used the strong Markov property. Due to the choice of the times τ ′j , the sequence

τ ′j becomes constant for j ≥ m (or possibly earlier on). Let η(s), s > 0 be equal to one if

s is an actual jump time of the process x(s) − x(s−) 6= 0 and to zero if it is a continuity

point. With J(t) denoting the number of jumps up to time t,

(1.10) Ex(τ ′j−)[ln Φ(x(τ ′j))− lnΦ(x(τ ′j−))] ≥ Uη(τ ′j)

leading to the lower bound UEx[J((τ(Bc
k) ∧ α(D \D′)) ∧ T ) ∧m] for line (1.9). We have

shown

(1.11) Ex[J((τ(Bc
k) ∧ α(D \D′)) ∧ T ) ∧m] ≤ U−1(M(Φ)− lnΦ(x)) ,

with right hand side not depending on T , k, and m. We let m →∞, then T →∞ and finally

k →∞ to obtain E[J(τ∗∧α(D \D′))] ≤ U−1(M(Φ)− lnΦ(x)). Set H = {α(D \D′) ≥ τ∗}.
Of course, this can happen only if α(D \D′) = ∞, by construction. Nonetheless, this still
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allows the possibility that τ∗ < ∞. But we have H ⊆ {J(τ∗) < ∞}, a set of measure zero,

which shows that α(D \D′) < τ∗ and thus

(1.12) Ex[J(α(D \D′))] = Ex[l(D \D′)] ≤ U−1[M(Φ)− lnΦ(x)] < ∞ .

Step 3. If x ∈ D′,

(1.13) Px(α(D \D′) > T ) ≤ Px(α(D \D′) > T , l(D \D′) ≤ l) + Px(l(D \D′) > l)

(1.14) ≤ l sup
x′∈Dc

δ

Px′(τDc
δ >

T

l
) +

1
Ul

(M(Φ)− lnΦ(x)) ,

where we used (1.2). For l fixed, we let T → ∞ and obtain lim supT→∞ Px(α(D \ D′) >

T ) ≤ 1
Ul (M(Φ)− lnΦ(x)). Let l →∞ to prove the second claim.

¤

2. The Fleming-Viot redistribution case

In this setup, N ≥ 2 is a positive integer, the domain D = GN , with G a region in

Rq, d = Nq with regular boundary ∂G. The process {x(t)}t≥0 has components x(t) =

(x1(t), . . . , xN (t)) (called particles), each {xi(t)}t≥0, 1 ≤ i ≤ N evolving in G as a q -

dimensional diffusion with jumps at the boundary ∂G to be described in the following. As

before, the process {x(t)}t≥0 is adapted to a right-continuous filtration {Ft}t≥0. For ξ ∈ ∂D

we write I(ξ) = {i | ξi ∈ ∂G} and ξij ∈ GN denotes the vector with the same components

as ξ with the exception of ξi which is replaced by ξj .

When a particle xi reaches ∂G at τ , it jumps instantaneously to the location of one of the

remaining particles xj , 1 ≤ j ≤ N , j 6= i (there are no simultaneous boundary visits a.s.)

with probabilities p(x(τ−), j), 1 ≤ j ≤ N , having only the restriction p(x(τ−), i) = 0. It is

obviously possible to allow positive probabilities for stopping at the boundary, a standard

construction being to allow an exponential time before attempting a new jump. However

we do not pursue this approach here since it rather obscures the natural question of non-

explosiveness. There is no real ambiguity concerning points on the “edges” of the boundary

(i.e. when at least two components are on ∂G, or |I(ξ)| ≥ 2) since the underlying diffusion

does not visit a.s. sets of co-dimension greater than two as soon as it starts at points

x ∈ D. We shall not start the process on the boundary. However we shall define νξ(dx) for

all ξ ∈ ∂D in (2.1), even though the definition on edges may be arbitrary. More precisely,
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there exist measurable functions ∂GN 3 ξ → pij(ξ) ∈ [0, 1], indexed by 1 ≤ i, j ≤ N such

that pij(ξ) = 0 whenever i = j and
∑

j pij(ξ) = 1 such that

(2.1) ∀ξ ∈ ∂GN , ν(ξ, dx) =
1

|I(ξ)|
∑

i∈I(ξ)

N∑

j=1

pij(ξ)δξij (dx) .

Definition 1. We shall say that the redistribution probabilities pij(ξ) are non-degenerate

if they are bounded away from zero uniformly; i.e. there exists p0 > 0 independent of

ξ ∈ ∂GN , such that pij(ξ) ≥ p0, 1 ≤ i, j ≤ N , i 6= j.

Remark. 1) Except on the edges of D = GN , formula (2.1) does not have a proper

average over i ∈ I(ξ). The definition is consistent over all ξ ∈ ∂D.

2) The most natural choice of pij(ξ) is uniform pij(ξ) = (N − 1)−1, j 6= i, ξ ∈ ∂G. In

that case p0 = (N − 1)−1.

3) The definition (2.1) is not necessarily continuous as a function in ξ into M1(D̄) with

the topology of weak convergence of measures; the reader may check the case N = 3, d = 1

with the redistribution measures from 2).

4) Assume D is bounded. Then D̄ is compact, and the family of measures (νξ(dx))ξ∈∂D

is tight. Nonetheless, limit points might be concentrated on ∂D, which raise the danger

that the process is explosive.

5) Definition 1 can be relaxed, with proper care for the regularity of the domain, as

follows. It is only the pij(ξ) corresponding to the j with maximum distance from the

boundary that needs a lower bound.

We shall further assume that the particles xi(t) evolve independently between jumps, each

following a diffusion with generator L on Rq killed at the boundary ∂G. More specifically

(2.2) Lu(x) =
∑

1≤α≤q

bα(x)
∂u

∂xα
(x)+

1
2

∑

1≤α,β≤q

aα,β(x)
∂2u

∂xα∂xβ
(x) , u ∈ C0(Rq)∩C2(Rq) ,

with coefficients {bα(x)}α, {aα,β(x)}α,β in C∞(Rq). With the notation σ(x)σ∗(x) = a(x)

(the star stands for the matrix transposition), the coefficients are uniformly bounded, with

L strictly elliptic

(2.3) |bα(x)| ≤ ||b|| , 0 < σ2
0||v||2 ≤ ||〈σ(x)σ∗(x)v, v〉|| ≤ ||σ||2||v||2 , v ∈ Rq ,

where ||b||, σ0, ||σ|| do not depend on x, α, β. Under these conditions, there exists a family

of Brownian motions {wβ
i (t)}1≤β≤q, mutually independent in i as well as β, adapted to
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(Ft), such that between successive jumps, the N components xi(t) = (x1
i (t), . . . , x

q
i (t)) ∈ G,

where (xα
i (t))1≤α≤q are solutions to the stochastic differential equations

(2.4)

dxα
i (t) = bα(xi(t))dt +

∑

1≤β≤q

σα,β(xi(t))dwβ
i (t) , 1 ≤ α, β ≤ q , xi(0) = xi0 ∈ G ,

for all 1 ≤ i ≤ N .

2.1. Domain regularity. Until this point we only required that ∂G be regular, guaran-

teed, for example, by the exterior cone condition. For any regular domain G and any

one-particle diffusion with smooth coefficients (2.2), if U , V are two open subsets of G with

U ⊆ V ⊆ G, T > 0, we denote by p±(T, U, V ) the supremum, respectively infimum over

x ∈ U of Px(τV > T ), where τV denotes the first hitting time of ∂V . We start with the

following remark. If U ⊂⊂ V such that 0 < d− ≤ d(∂U, ∂V ) ≤ d+ < ∞, then there exist

constants p±(T,U, V ) such that for all x ∈ Ū

(2.5) 0 < p−(T,U, V ) ≤ Px(τV > T ) ≤ p+(T,U, V ) < 1 .

To check (2.5), we set w(T, x) = Px(τV > T ) on x ∈ V and note that (∂T −L)w(T, x) = 0,

0 ≤ w(T, x) ≤ 1 and w(T, x) = 0 on ∂V . The lower bound is guaranteed by the maximum

principle applied to w(T, x) and the upper bound by applying it to 1− w(T, x).

Definition 2. We shall say that G has a uniform distance from the boundary if there exists

an open G′ ⊂ G such that d(∂G,G \ G′) > 0 and there exists a function φ such that (i)

φ ∈ C2(G′) ∩ C(Ḡ) and all derivatives up to order two are uniformly bounded on G′; (ii)

φ(x) > 0, x ∈ G′; (iii) φ(x) = 0, x ∈ ∂G; (iv) there exists a positive constant c− depending

on G′ and φ only, such that ||∇φ(x)|| ≥ c− uniformly over G′.

We shall denote the other uniform bounds: There exist positive real constants C+, c+

depending on G′ and φ only, and cL that may depend, in addition, on the generator L, such

that φ(x) ≤ C+, x ∈ Ḡ and when x ∈ G′, we have both ||∇φ(x)|| ≤ c+ and |Lφ(x)| ≤ cL.

Theorem 1. Assume that G satisfies the conditions of Definition 2 and the relocation

probabilities satisfy the condition in Definition 1. Then, for N sufficiently large, the process

is non-explosive in the sense of (1.3). More precisely N > 2( ||σ||c+σ0c− )2 and equality may be

achieved if φ is sub-harmonic.
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Proof. The plan is to prove the theorem in two steps. Step 1 will apply Lemma 1 to D = GN

with D′ = (G′)N , where G′ = G \ Ḡ2N δ for some suitably small but fixed δ > 0 and the set

A = {ξ ∈ ∂GN | I(ξ) = N} will be the vertices of the domain, i.e. the part of the boundary

∂GN with all components in ∂G. Step 1 will conclude that the process x(t) exits in finite

time D′, with probability one. In Step 2 we show that once in D \D′, the process will hit

the set (Ḡδ)N in a finite number of jumps with probability one. From that point on we

apply Lemma 3 from [11] and we are done.

Step 1. Let (y(t)) be the process with one-dimensional components yi(t) := φ(xi(t)),

t ≥ 0. We are interested in the logarithm of the radial process (r(t))

(2.6) r(t) = Φ(x(t)) , Φ(x) = (
N∑

i=1

φ2(xi))
1
2 .

Using Ito’s lemma, the N - dimensional process (y(t)) satisfies the stochastic differential

equations

(2.7) dyi(t) = b̃i(t)dt + σ̃i(t)dw̃i(t) , yi(0) = φ(xi0) ,

where {w̃i(t)}1≤i≤N are Brownian motions adapted to (Ft) obtained from (2.4) by the repre-

sentation theorem for continuous martingales. Concretely, b̃(t) = (b̃i(t))1≤i≤N , (σ̃i(t))1≤i≤N

have components

(2.8) b̃i(t) = Lφ(xi(t)) , σ̃i(t) = ||σ∗(xi(t))∇φ(xi(t))||

with the inequalities

(2.9) 0 < σ2
0||∇φ(xi(t))||2 ≤ σ̃2

i (t) ≤ ||σ||2||∇φ(xi(t))||2

due to (2.3). By construction, Φ(x) = 0 if and only if all φ(xi) = 0. In D′, this means only

on A. The only conditions on Φ from Lemma 1 that have to be verified are (ii) and (iii).

Between jumps r(t) satisfies

(2.10) dr(t) = B(t)dt + S(t)dW (t) , r(0) = ||φ(x(0))|| ,

where (W (t)) is a one - dimensional Brownian motion adapted to (Ft), while the drift B(t)

and variance matrix S(t) are given by (here Tr(A) is the trace of the N ×N matrix A)

(2.11) B(t) =
1

2r(t)

(
2〈y(t), b̃(t)〉+ Tr(σ̃(t)σ̃∗(t))− ||σ̃∗(t)y(t)||2

r2(t)

)
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(2.12) S(t) =
||σ̃∗(t)y(t)||

r(t)
.

In the formula above σ̃∗(t) is the N ×N diagonal matric with entries σ̃i(t) from (2.8).

Relations (2.11)-(2.12), the choice of ln r and Ito’s lemma imply that between jumps,

and away from the origin (the rigorous argument is given below) {ln(r(t))}t≥0 is a sub-

martingale with respect to (Ft) as soon as 2r(t)B(t)− S2(t) ≥ 0. This is equivalent to

(2.13) 2〈y(t), b̃(t)〉+ Tr(σ̃(t)σ̃∗(t))− 2
||σ̃∗(t)y(t)||2

r2(t)
≥ 0 .

We note an extra factor of two in front of the last term as opposed to (2.11). In detail,

(2.14) 2
N∑

i=1

φ(xi(t))Lφ(xi(t)) +
N∑

i=1

σ̃2
i (t)− 2

∑N
i=1 σ̃2

i (t)y
2
i (t)∑N

i=1 y2
i (t)

has lower bound

(2.15) N
(
− 2||φ||cL + σ2

0(inf ||∇φ(x)||)2
)
− 2||σ||2(sup ||∇φ(x)||)2 ,

due to (2.9). In view of Definition 2, this concludes the proof of (ii) for N larger than

c∗N = 2[ ||σ||c+σ0c− ]2. This is because the quantity ||φ||cL approaches zero as δ → 0, so N can

be improved arbitrarily close to c∗N . When Lφ ≥ 0 (sub-harmonic) then equality may be

achieved (up to an integer value).

We verify (iii) from Lemma 1. We shall prove (iii) for boundary points ξ with |I(ξ)| ≤
N − 1, which includes the set (∂D ∩ ∂D′) \ A. We note that, with probability one, only

boundary points ξ with I(ξ) = 1 are visited. Abusing notation, we write I(ξ) = i for the

component located on the boundary ∂G. The process y(t) jumps if and only if a component

reaches zero, which is equivalent to x(t) reaching ∂GN at some point ξ (here we make use

of the condition that φ(x) > 0 except on A). To simplify notation, let pIj = pij(ξ) denote

the corresponding relocation probabilities.

Due to the condition in Definition 1 we have the non-random lower bound away from

zero, uniformly in N :

(2.16)
∫

GN

ln Φ(x)ν(ξ, dx)− lnΦ(ξ) =
∑

j 6=I

pIj

2
ln

(
1+

φ2(xj)∑
k 6=I φ2(xk)

)
≥ p0

2
ln(

N

N − 1
) > 0 ,

which shows (1.4) with U = p0

2 ln( N
N−1). With the notation of Lemma 1, we have

(2.17) ∀x ∈ D Px(l(D \D′) < ∞) = 1 , Px(α(D \D′) < τ∗) = 1 .
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This concludes the proof of Step 1.

Step 2. For a δ > 0 fixed, let Fk be the set of configurations with exactly N − k particles

in Ḡ2kδ (or exactly k in the vicinity of the boundary G \ Ḡ2kδ). For a small a > 0,

(2.18) Fk(a) = {x ∈ ḠN |
N∑

i=1

1G\Ḡa
(xi) = k} , Ak(a) = ∪k

j=0Fj(a) .

Let Fk = Fk(2kδ) for a = 2kδ and Ak = ∪k
j=0Fj . We notice that F0 = (Gδ)N ⊆ D̄δ. Set

D′ = FN = (G \ Ḡ2N δ)N , with α(D \D′) the first hitting time of D \D′, as in Lemma 1.

We have shown in Step 1 that the lemma applies to the process (x(t))t≥0 and the open set

D′ and thus Px(α(D \D′) < ∞) = 1 for all x ∈ D′. In other words, if αk is the first hitting

time of Ak for all k = 0, . . . , N − 1, then αN−1 ≤ α(D \D′) is finite with probability one.

To verify this inequality, we show that x(α(D \D′)) ∈ AN−1. Since x(α(D \D′)) ∈ F c
N we

only have to check that F c
N ⊆ AN−1.

F c
N ⊆ AN−1(2Nδ) ⊆ AN−1(2N−1δ) = ∪N−1

j=0 Fj(2N−1δ) ⊆ ∪N−1
j=0 Aj(2jδ) = AN−1 .

For all k ≥ 1 and all x ∈ Fk, d(x, F0) ≤ N2Nδ, d(x, ∂D) ≤ 2Nδ, and thus d(x, ∂(D \
F0)) ≤ N2Nδ, which implies that for any x ∈ Fk, the time to reach either the interior set

F0 or the boundary ∂D is finite with probability one.

Let τ0(D′) = α(D \ D′) and τk(D′), k = 1, 2, . . . , N − 1 be the first N − 1 jump times

coming right after α(D \ D′). Starting with AN−1, we want to reach AN−2, ... A0 with

positive probability in each step. We proceed to show that for each 1 ≤ k ≤ N (in the

proof k runs in decreasing order from k = N to k = 1), the probability of the event

E = {αk−1 ≤ τN−k(D′)} of reaching Ak−1 at the time of the (N − k)-th jump or before has

a lower bound away from zero, independent of the starting point in Fk. The fact that we

reach the set at jump time is important, since we want to reach Ak−1 at a time αk−1 < τ∗.

Note first that k = N is satisfied by Step 1. For other k, denote τ ′ the first time when

one of the N − k particles situated at time t = 0 in G2kδ reaches G2k−1δ, E ′ the event that

the first jump is onto one of these N − k particles and τ ′′ the first time when one of the k

particles in G \ Ḡ2kδ at time t = 0 reaches ∂G. Then, for a fixed T0 > 0,

(2.19) E k {τ ′ > T0, τ ′′ ≤ T0} ∩ E ′ .

Under the event from the right-hand side of (2.19) we have τD = τ ′′ ≤ T0, which implies

that we may analyze all N particles independently up to τD−. At the same time, the
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jump is independent of past. The uniform lower bound for the probability of E is based

on the bounds on the exit probability, respectively the redistribution probability νξ when

k ≤ N − 1

(2.20) inf
x∈Fk

Px(E) ≥ inf
x∈Fk

Px

(
τ ′ > T0

)
inf

x∈Fk

Px

(
τ ′′ ≤ T0

)
inf

x∈∂D∩Fk

νξ(Fk−1)

(2.21) ≥ p−(T0, G2kδ, G2k−1δ)
N−k

[
1− (p+(T0, G, G))k

]
p0 = p0,k

where p0 is the lower bound from Definition 1 and p± are defined in (2.5). Summarizing

the information from (2.20)-(2.21), the probability to reach F0 after the N − 1 jumps

following α(D \D′) when starting at an arbitrary x ∈ D \D′ has a positive lower bound

p = ΠN−1
k=1 p0,N−k independent of x. With the notation l(Dδ) for the number of jumps until

reaching the set Dδ, we have shown

(2.22) inf
x∈D′

Px(l(Dδ) ≤ N − 1) ≥ p > 0 .

Let (Xn)n≥0 be the interior chain on D generated by (x(t)) - see [11] for more details -

displaying the consecutive positions of the process (x(t)) at jumps times. In other words,

Xn = x(τn), n ≥ 0. In discrete time n = 0, 1, . . . we denote αX(B) = inf{n ≥ 0|Xn ∈ B},
B a Borel subset of D. We now apply Lemma 2 to F = AN−1 ⊇ D \ FN , τX = αX(F0),

m = N − 1 to show that Px(αX(F0) < ∞) = 1 for all x ∈ D. This shows that the

number of jumps l(δ) until reaching D̄δ satisfies Px(l(Dδ) < ∞) = 1, which implies that

Px(α(Dδ) < τ∗) = 1. Based on Lemma 3 we have that τ∗ = ∞ almost surely. ¤

Lemma 2. Let (Xn)n≥0 be a Markov chain on D, F ⊆ D be a closed subset of D and τX

a stopping time. If Px(αX(F ) < ∞) = 1 for all x ∈ D and there exists an integer m > 0

and a number p > 0 independent of m such that Px(τX ≤ m) ≥ p uniformly in x ∈ F , then

Px(τX < ∞) = 1 for all x ∈ D.

Proof. Let ξ0 = 0, αX,1 = inf{n > ξ0 |Xn ∈ F}, ξ1 = αX,1 + m and inductively

(2.23) αX,l = inf{n > ξl−1 |Xn ∈ F} , ξl = αX,l + m , l ≥ 2 .

By construction, the stopping times ξl satisfy Px(ξl < ∞) for all x ∈ D and l = 1, 2, . . .,

and Px(liml→∞ ξl = ∞). Set k a positive integer. Successive applications of the strong

Markov property on the intervals [ξl−1, αl], [αl, ξl], l ≥ 1 give

(2.24) Px(τX > ξk) ≤ Ex[Πk
l=1PXαX,l

(τ > m)] ≤ (1− p)k ,
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where the first inequality is obtained by neglecting the intervals [ξl−1, αX,l]. Since k is

arbitrary, we proved that Px(τX < ∞) = 1. ¤

Lemma 3. (Lemma 2 from [11]) Let F ⊆ D̄δ for some δ > 0. If for any x ∈ D we have

Px(α(F ) < τ∗) = 1, then for any x ∈ D we have Px(τ∗ = ∞) = 1.

3. Geometric ergodicity

In this section G is assumed bounded. We start by defining a special case of boundary

regularity.

Definition 3. If there exists an open set G′ ⊆ G and a function φ that, in addition to

the properties from Definition 2, satisfy (i) 0 ≤ φ(x) ≤ 1 on Ḡ′, (ii) 0 < φ(x) < 1 on G′,

φ(x) = 0 on ∂G, (iii) φ(x) = 1 on ∂(G \G′), we say that G is φ - regular.

Remark. We note that the solution to the boundary problem Lφ = 0 on G′ with φ(x) = 0

when x ∈ ∂G and φ(x) = 1 when x ∈ ∂(G \ G′) satisfies (i)-(iii) Definition 3 due to the

maximum principle.

Proposition 1. Suppose there exists φ as in Definition 3 with G′ ⊇ G \ Ḡδ. Fix an index

i, 1 ≤ i ≤ N and recall that xi(t) denotes the i - th component of x(t). If we denote by

α1 the first hitting time of the set Ḡδ by the process (xi(t)), then there exist θ > 0, C0 > 0

independent of x ∈ G′ such that Ex[exp(θα1)] ≤ C0.

Proof. Denote yi = φ(xi), 1 ≤ i ≤ N and the process (y(t)) with components yi(t) =

φ(xi(t)), t ≥ 0. In the following the particle index i is not important and we denote yi

simply by y and similarly xi by x. Denote by β1 the first hitting time of the point y = 1

by the process (y(t)). We have the almost sure inequality α1 ≤ β1.

The process (y(t)) evolves in [0, 1] undergoing jumps at a subset of the jump times

(τl) for the process (x(t)). To simplify notation, we shall still denote these jumps by τl,

l ≥ 1, τ0 = 0. Due to the properties of φ, with probability one, at each time τl, the jump

pushes the one-dimensional process y(t) to the right, from y(τl−) = 0 to y(τl) > 0. We shall

construct by coupling a new process z(t) evolving on (−∞, 1] with a monotonicity property.

At start, the processes z(t) and y(t) coincide - until τ1. At τ1, z(t) suppresses the jump, but

continues to diffuse being driven by the same stochastic differential equation as y(t). Based

on (2.4), we construct inductively for l ≥ 0 a sequence z0,l, by setting z0,0 = y0 = φ(x0),
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and a process

(3.1) dz(t) = b̃i(t)dt + σ̃i(t)dW (t) , τl ≤ t < τl+1 , z(τl) = z0,l ,

where the coefficients are defined in (2.8). At each step, we update z0,l+1 := z(τl+1−). Due

to the pathwise coupling (3.1), z(t) ≤ y(t) almost surely when z(τl) ≤ y(τl), which is true

by construction. Denoting with γ1 the first hitting time of the point one by (z(t)), we see

that β1 ≤ γ1 with probability one. For z ∈ [0, 1] the starting point z = φ(x) and for θ > 0,

we have,

(3.2) Ex[exp(θα1) | (x(0))i = z] ≤ Ex[exp(θγ1) | (x(0))i = z] .

Since the drift b̃i(t) = Lφ(xi(t)) is uniformly bounded, the Cameron-Girsanov’s formula

reduces the question of the upper bound of the left hand side of (3.2) to the case of a

continuous martingale with uniformly bounded quadratic variation from the right hand

side. If ||∇φ(z)|| is bounded away from zero, a time change shows that the right hand side

of (3.2) is bounded above as soon as it is finite for a Brownian motion with finite negative

drift, which is immediate. ¤

Theorem 2. Assume G is bounded and there exists a function satisfying the conditions of

Definition 3. Then, provided N is sufficiently large such that the process be non-explosive,

then (x(t)) is geometrically ergodic. The invariant probability measure has a density with

respect to the Lebesgue measure equal, modulo a normalizing constant, to the integral of the

Green function of L with Dirichlet boundary conditions on G with respect to the invariant

probability measure of the interior chain (Xn).

Remark. We refer the reader to Theorem 3 in [11] for more details on the invariant

measure. In the context of the Fleming-Viot particle process, obtaining (3.4) needs the

intermediate step from Proposition 1.

Proof. The set Dδ is a small set for the process due to the fact that (x(t)) has a density

bounded below by the density function of the process killed at the boundary; in its turn,

this density function has a uniform lower bound on Dδ for any t > 0. Exponential ergodicity

is guaranteed [4] by the sufficient condition (3.4) that there exists an exponential moment

of the time to reach Dδ, uniformly over all x ∈ D = GN .

Most of the proof is contained in Theorem 3 in [11]. We prove the part that is new to the

context of the Fleming-Viot redistribution function. Recall that D = GN , D′ = (G\G2N δ)N
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and α(D \D′) is the first exit time from D′, i.e. the hitting time of the set of configurations

with at least one particle at distance larger than 2Nδ from the boundary. Proposition 1

shows that there exists θ > 0 such that

(3.3) sup
x∈D

Ex[eθα(D\D′)] < ∞

due to the uniform bound and a Markov property inductive argument similar to the one in

Lemma 2. We want a similar uniform bound on α(Dδ). This is guaranteed by the Step 2

of the proof of Theorem 1, where it is shown that once in D \D′, the probability to reach

Dδ in N − 1 consecutive jumps in time at most T (for a fixed but arbitrary T ) is bounded

away from zero uniformly on the configuration in D\D′. Another iteration of the argument

from Lemma 2 in continuous time setting (there is virtually no modification needed) gives

(3.4) sup
x∈D

Ex[eθα(Dδ)] < ∞

concluding the proof. ¤

4. Examples of sets satisfying the regularity conditions

The following examples assume G is a bounded, regular domain, G′ be a vicinity of the

boundary ∂G in the sense that there exists δ > 0 such that G \ Ḡ′ ⊆ Gδ and x′ ∈ G \ Ḡ′.

Proposition 2. Suppose G is bounded with the interior sphere condition. If

(i) the Green function K(·, x′) ∈ C1(Ḡ′), set φ(x) = K(x, x′) on G′ and extend it con-

tinuously over G; or, alternatively

(ii) the first eigenfunction φ0(x) of the operator L on G with Dirichlet boundary condi-

tions is continuous and has continuous derivatives up to the boundary, set φ(x) = φ0(x),

then Definition 2 holds for φ(x) in each case. Moreover, a sufficient conditions for both

(i) and (ii) is ∂G ∈ C2.

Proof. The Green function satisfies LK(x, x′) = 0 in G′, is positive in G′, vanishes on ∂G.

Due to the smoothness of the boundary ∂G ∈ C2 or directly from assumptions (i) and (ii),

φ ∈ C1(Ḡ). The Hopf maximum principle [8] shows that 〈∇φ(x), n〉 < 0 on ∂G, where

n is the outward normal to ∂G. From the boundedness of the domain, G and ∂G are

compact, and from the continuity up to the boundary we have that ||∇φ(x)|| is bounded

away from zero in a neighborhood of the boundary (otherwise it would reach zero on ∂G).

For sufficiently small δ we obtain all conditions required. ¤
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Proposition 3. Let G be a regular domain, G′ be a vicinity of the boundary ∂G satisfying

the interior sphere condition, and φ(x) be the solution of the Dirichlet boundary problem on

G′ for L with φ(x) = 0 on ∂G and φ(x) = 1 on ∂G′ \ ∂G. If φ has continuous derivatives

up to ∂G, then Definition 3 is satisfied. A sufficient conditions is ∂G ∈ C2.

Proof. Using the strong maximum principle we obtain that 0 < φ(x) < 1 on G′. ¤

5. The immortal particle

This section investigates the particle ancestry. The realization of the process is a tree with

continuous branches, representing diffusive episodes performed by the particles. Reaching

the boundary ends a certain branch, that will never be revived. Branching at a given loca-

tion allows the continuation of the tree, provided non-extinction (Theorem 3), ad infinitum.

The goal is to prove that, almost surely, there exists a unique infinite continuous path on

the tree, in the sense of Theorem 3 (iv). This is, informally, the immortal particle. It is

not a proper tagged particle because it changes its label infinitely many times.

The reader is reminded that xi(t) represents the particle of index i ∈ {1, . . . , N} and

that the indices are fixed forever; also, (τl)l≥0, τ0 = 0 denote the increasing sequence of

times when particles hit the boundary. At time t = 0, each particle is given a label (or

color). The label is preserved as long as the particle is alive; when it is killed, the particle

that replaces it will acquire the label of the particle it jumps to. Or, in a different but

equivalent interpretation, the particle is killed and the newly born particle will have the

same label as its parent. We want to show that, with probability one, exactly one label

survives. Ultimately, all particles at time t can be traced to only one original ancestor, all

other lineages (to be defined precisely) dying in finite time.

5.1. The multi-color process. Formally we shall consider a Markov process with state

space (G × C)N , where C is a finite set of labels (colors). One example is C = {1, . . . , N}
and another important one is when C = {0, 1}. It will be shown that the two-color model

is sufficient to trace ancestry. An element in the state space is a vector with N components

(xi, C(xi)), 1 ≤ i ≤ N designating the position xi of particle i and its color. We used

C(xi) ∈ C for the color of particle to avoid more complicated notation.

The particles x(t) = (x1(t), . . . , xN (t)) ∈ GN follow exactly the branching mechanism

from Section 2 with redistribution measure (2.1). At the same time, the labels follow
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the rule that they remain constant until the particle hits the boundary, at which time it

instantaneously and always adopts the label of the particle it jumped to; equivalently, the

particle reaching the boundary is killed and a new particle is born from a surviving one,

with the same label as the parent. Naturally the latest interpretation is more relevant to

our investigation. It is easy to see that the joint process (particle-label) is Markovian.

Proposition 4. Assuming the unlabeled process is non-explosive, with probability one, all

but one label have finite lifetime.

Remark. 1) Once only one color has been achieved, it is evident that the process follows

the unlabeled branching mechanism and continues its evolution forever (as long as the

process is not explosive).

2) Considering a discrete space and time version of the process, the reader may see why

the proposition is true, since all multi-colored states are transient. It is sufficient to observe

that one color can be forced to hit the boundary while all other colors are not reaching the

boundary and upon killing only the other colors are allowed to branch (a small but positive

probability event).

Proof. The proof follows a different idea than described in Remark 2), better suited to the

context of diffusions. First, we notice that it is enough to prove the proposition for two

colors (zero and one) in the sense that the time for one color to disappear will be shown

to be finite almost surely. At time zero we re-label particles of a type with one and all the

others with zero. Inductively, it will follow that the number of colors is reduced to exactly

one in finite time. Denote τL the first time when the number of labels has been reduced to

one, with the usual convention that τL = ∞ if the event does not happen in finite time.

Let δ > 0 be such that Ḡ2δ ⊂ G (the reason why we use 2δ becomes apparent immedi-

ately). On the one hand, we know that from any initial position x, the particle system will

reach the complement F2δ of (G\G2δ)N a.s., that is, at least one particle will be within Ḡ2δ.

On the other hand, for T > 0 fixed and x ∈ F2δ, we shall obtain a lower bound p0 > 0 of

Px(τL ≤ T ), uniformly over x ∈ F2δ. Starting with an arbitrary x, the system will have an

infinite number of attempts to reach a one-label configuration. Since the failure probability

is 1− p0 < 1 in each episode, it follows that τL < ∞ with probability one.

Part 1. Let x ∈ F2δ. Without loss of generality we assume that x1 ∈ Ḡ2δ. Let K =

{τ Ḡδ,1 > T}, where τ Ḡδ,1 is the first time when the particle #1 hits G \Gδ, τG,j
1 , τG,j

2 the
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first, respectively second boundary hit of particle #j, 1 ≤ j ≤ N . Denote Aj , Bj , Cj the

events pertaining to particles #j, 2 ≤ j ≤ N

(5.1) Aj = {τG,j
1 ≤ T} , Bj = {xj(τ

G,j
1 ) = x1(τ

G,j
1 )} , Cj = {τG,j

2 > T}

with A = ∩N
j=2Aj , B = ∩N

j=2Bj and C = ∩N
j=2Cj . In other words, K means that x1 will

not exit Gδ before time T ; Aj that xj hits the boundary in [0, T ]; Bj that xj jumps to

the location of x1 at its first boundary hit, and Cj that xj will not jump again before

time T . With the observation that {τL ≤ T} ⊇ A ∩ B ∩ C ∩ K, it is sufficient to prove

Px(A∩B∩C∩K) ≥ p0 > 0 with p0 independent of x ∈ F2δ. Two particles are independent

until they meet, i.e. there is a jump/birth involving the two. Consequently, conditional on

K, the events (Aj ∩Bj ∩ Cj)2≤j≤N are mutually independent with

(5.2)

Px(A∩B ∩C ∩K) = Px(A∩B ∩C |K)Px(K) = ΠN
j=2Px(Aj ∩Bj ∩Cj |K)Px1(τ

Ḡδ,1 > T )

(5.3) ≥ ΠN
j=2Px(Aj ∩Bj ∩ Cj |K)p−(T, G2δ, Gδ) ,

where p± are defined in (2.5). We write

(5.4) Px(Aj ∩Bj ∩ Cj |K) = Px(Cj |Aj ∩Bj ∩K)Px(Aj ∩Bj |K)

and see that the first factor is bounded below (by introducing τG,j
2 > T + τG,j

1 instead of

τG,j
2 > T ) by

(5.5) Px(Cj |Aj∩Bj∩K) ≥
∫

G
Px(τG > T )Px(xj(τ

G,j
1 ) ∈ dx |Aj∩Bj∩K) ≥ p−(T,Gδ, G)

(note that the position of the jump is on the trajectory of x1 that stays in Gδ). At the

same time Aj , Bj and K are independent with Px(Aj |K) = Px(Aj) ≥ 1 − p+(T, G2δ, G)

and Px(Bj |K) = (N − 1)−1. Putting all together, the probability from (5.2) is bounded

below by

(5.6) p0 =
[
p−(T,Gδ, G)(1− p+(T, G2δ, G))(N − 1)−1

]N−1
p−(T, G2δ, Gδ) > 0 .

Part 2. We shall apply Lemma 2 with F = F2δ, τ = τL to obtain the conclusion of the

theorem. ¤
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Let l : [0,∞) → {1, 2, . . . , N} and η : [0,∞) → Ḡ be random processes adapted to (Ft)t≥0

such that (i) l(t) is piecewise constant and η(t) = xl(t)(t) on intervals [τk−1, τk), k ≥ 1 and

(ii) η continuous with η(t) ≡ η(τk−) for all t ≥ τk if η(τk−) ∈ ∂G. A pair (l(·), η(·)) is said

a lineage. The stopping time τk when (ii) happens is said the lifetime of the lineage and is

denoted by τ(η).

For t1 < t2, i1, i2 two of the N labels, we say that xi1(t1) is an ancestor of xi2(t2) (or

there exists a lineage from xi1(t1) to xi2(t2)) and we write (t1, i1) ¹ (t2, i2) if there exists

a lineage (l(·), η(·)) with τ(η) ≥ t2 such that l(t1) = i1, η(t1) = xi1(t1) and l(t2) = i2,

η(t2) = xi2(t2). On the set of pairs (t, i), the lineage introduces a relation of partial order.

Theorem 3. Assume G is a regular bounded domain and the process is non-explosive. Let

t1 < t2 and i1, i2 two of the N labels. If (t1, i1) ¹ (t2, i2), then

(i) the lineage they belong to is unique up to time t = t2;

(ii) the labels/colors are identical at both endpoints, C(xi1(t1)) = C(xi2(t2)) and as a

consequence, a lineage will never change label;

(iii) For any t ≥ 0 and any index i, there exists an index i0 such that (0, i0) ¹ (t, i);

(iv) There exists a unique lineage with infinite lifetime.

Proof. (i) Assume (l′(·), η′(·)), (l′′(·), η′′(·)) are two lineages going from (t1, i1) to (t2, i2).

Lineages may intersect in two ways: either on open intervals (τk−1, τk) as diffusion paths

(with zero probability except in dimension one), or at branching times τk. Only intersections

of the second type are proper because the particles do not interact during the diffusive

episodes. Two lineages will properly intersect at time t only if they coincide on [0, t];

otherwise, they will have to intersect in the open set G, which is impossible by construction.

Evidently, lineages may diverge after t.

(ii) The colors may change only at times τk. At jump time, the particle performing the

jump from the boundary adopts the label of the one in G, whose label coincides with the

label of the lineage. Again by construction, at a branching point the label is preserved for

all offspring, so the lineage does not change label, having C(xl(τk−)) = C(xl(τk)).

(iii) Theorem 1 shows that 0 = τ0 < τ1 < τ2 < . . . and limk→∞ τk = +∞ a.s. Let k(t) be

the integer k ≥ 1 such that τk−1 ≤ t < τk; then one can verify (iii) by induction over k.
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(iv) At time t = 0 we label C(xi(0)) = i for all indexes i. We know from Proposition 4 that

τL < ∞ a.s., which implies due to (ii) that at time t = τL only one lineage, starting at (0, i0)

is still alive (did not reach the boundary). Due to (iii), we deduce that at time t ≥ τL, all

particles have lineages all the way to (0, i0). Let τk
L, k ≥ 1 be defined inductively by setting

τL = τ1
L and re-labeling the particles at time τL by C(xi(τL)) = i with τ2

L > τ1
L being exactly

the time after τ1
L when all labels become identical once again. Due to the strong Markov

property and again Proposition 4, τ2
L < ∞ a.s. and we re-apply (ii)-(iii) to see that only one

index i1 survives, making (τ1
L, i1) the only ancestor of all (τ2

L, i), 1 ≤ i ≤ N . Since τL ≥ τ1

we immediately have τk
L bounded below by a subsequence of (τjk

)k≥1 of the boundary hits.

Then limk→∞ τk
L = +∞ with probability one, implying that the construction can be done

for any t > 0. The uniqueness is a consequence of (i). ¤

6. The two particle case

As seen in Section 2, the many particle case is always non-explosive, which points to

N = 2 as a benchmark of critical behavior. Here we can derive the transition function of

the surviving particle. Denote X the position of the surviving particle at the time of the

first boundary visit. If the particles start at x1 and x2 respectively, then

(6.1) P(x1,x2)(X ∈ dy) = Px1(x1(τ2) ∈ dy, τ1 > τ2) + Px2(x2(τ1) ∈ dy, τ2 > τ1)

(6.2) =
∫ ∞

0
Px1(x1(t) ∈ dy, τ1 > t)Px2(τ2 ∈ dt)+

∫ ∞

0
Px2(x2(t) ∈ dy, τ2 > t)Px1(τ1 ∈ dt) .

When x1 = x2 = x we obtain the transition probability S(x, dy) of the interior Markov

chain tracing the locations Xk = x1(τk), k ≥ 1 right after a jump. It is

(6.3) S(x, dy) = P (X1 ∈ dy |X0 = x) = Px(X ∈ dy) = 2
∫ ∞

0
PG(t, x, dy)Px(τG ∈ dt) ,

where

(6.4) Px(τG > t) =
∫

G
pG(t, x, y)dy .

Combining (6.3) and (6.4) and integrating by parts we can write the alternative formula

(not used in this paper)

(6.5) Px(X ∈ dy) = 2δx(dy) + 2
∫ ∞

0
PG(τG > t)∂tp

G(t, x, dy)dt .
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Due to independence,

(6.6) Px(τ1 ∧ τ2 > t) = (Px(τG > t))2 , Ex[τ1 ∧ τ2] =
∫ ∞

0
(Px(τG > t))2dt .

6.1. Two particles on the half-line. Assume D = (0,∞), N = 2 and each particle

follows xi(t) = xi − µt + wi(t), i = 1, 2, where wi(t) are independent Brownian motions.

The density function of the Brownian motion on the positive half-line with drift −µ killed

at the origin is

(6.7) pG(t, x, y) =
1√
2πt

(
e−

(y−x)2

2t − e−
(y+x)2

2t

)
e−µ(y−x)− 1

2
µ2

,

as can be seen by applying Girsanov’s formula or directly by verification of the Kolmogorov

equations. Starting with (6.4) and noticing that the adjoint of L is L∗y = 1
2

d2

dy2 + µ d
dy with

Dirichlet b.c. at zero, the density of τG, in this case, is

(6.8)
d

dt
Px(τG ∈ dt) = −

∫

G

d

dt
pG(t, x, y)dy = −

∫

G
L∗yp

G(t, x, y)dy

(6.9) =
1
2
∂yp

G(t, x, 0) .

The transition probability (6.3) reads

(6.10) Px(X ∈ dy) =
∫ ∞

0
PG(t, x, dy)∂yp

G(t, x, 0)dt .

Proposition 5. The following estimates are satisfied

(6.11) 2Ex[τ1 ∧ τ2] = Ex[X2] ∼ o(x) , lim
x→0

Ex[X]
x

= 2 .

Proof. Observing that −µ < 0, then τG < ∞ and even more so τ1 ∧ τ2 ≤ τG < ∞ with

probability one, the optional stopping theorem (at t = τ1 ∧ τ2) applied to the martingales

M1(t) = x1(t) + x2(t) + 2µt and M2(t) = x2
1(t) + x2

2(t)− 2x1(t)x2(t)− 2t shows that

(6.12) Ex[X] + 2µEx[τ1 ∧ τ2] = 2x , Ex[X2]− 2Ex[τ1 ∧ τ2] = 0 .

We want to prove the two limits (the second is a consequence of the first)

(6.13) lim
x→0

2Ex[τ1 ∧ τ2]
x

= lim
x→0

Ex[X2]
x

= 0 , lim
x→0

Ex[X]
x

= 2 .

Since we calculate the limit as x → 0, we may assume 0 < x ≤ 1. Using (6.6), we shall

prove directly the first limit in (6.13)

(6.14) lim
x→0

∫∞
0 (Px(τG > t))2dt

x
= lim

x→0

(
2

∫ ∞

0
Px(τG > t)

d

dx
Px(τG > t)dt

)
= 0 .
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To have (6.14), we use L’Hospital’s rule; it is necessary to justify the differentiation under

the integral and the limits as x → 0.

From (6.7) we derive

(6.15) Px(τG > t) = Φ(
x− µt√

t
)− e2µx(1− Φ(

x + µt√
t

)) ,

where Φ′(z) = 1√
2π

e−
z2

2 . This is evidently in the interval [0, 1] and thus bounded and has

limit zero at x = 0. It remains to show that the absolute value of the derivative has an

upper bound, uniformly in x ∈ [0, 1] that is integrable in t ∈ (0,∞). The derivative is

(6.16)
d

dx
Px(τG > t) =

1√
t

(
Φ′(

x− µt√
t

) + e2µxΦ′(
x + µt√

t
)
)
− 2µe2µx

(
1− Φ(

x + µt√
t

)
)

.

We break down (6.16) in the term containing 1√
t
Φ′(x−µt√

t
); the term containing e2µx√

t
Φ′(x+µt√

t
),

both bounded above by eµ√
t
Φ′(µ

√
t), which is integrable in t on (0,∞); and the third part,

with absolute value bounded above by 2µe2µ(1− Φ(µ
√

t)), which is also integrable
∫ ∞

0
1− Φ(µ

√
t)dt ≤

(
1 +

√
2
π

) 1
µ2

< ∞ .

The last inequality comes from the estimate on the error function

1− Φ(µ
√

t) =
∫ ∞

µ
√

t

1√
2π

e−
z2

2 dz ≤
∫ ∞

µ
√

t
z

1√
2π

e−
z2

2 dz =
1√
2π

e−
µ2t
2

when µ
√

t ≥ 1. ¤

6.2. Brownian motion without drift.

Proposition 6. When µ = 0, the distribution of V = X/x is independent of the starting

point x having density

(6.17) fV (v) =
8v

π[(v − 1)2 + 1][(v + 1)2 + 1]
.

Since fV (v) ∼ O(v) at v = 0 and fV (v) ∼ O(v−3) at v = +∞, the random variable V has

moments E[V a] up to a < 2, with µV = 2, σ2
V = ∞ and E[ln V ] > 0.

Proof. The cumulative distribution function of the hitting time τG, based on (6.4) applied

to (6.7) is 2(1− Φ( x√
t
)) and the density is

(6.18) − d

dt
Px(τG > t) =

x√
2πt3

e−
x2

2t
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so (6.3) reads

(6.19)
Px(X ∈ dy)

dy
=

∫ ∞

0

x

πt2

(
e−

(y−x)2+x2

2t − e−
(y+x)2+x2

2t

)
dt

(6.20) =
x

π

( 2
(y − x)2 + x2

− 2
(y + x)2 + x2

)
=

1
x

fV (
y

x
) .

In the last equality we identified the alternative formula

(6.21) fV (v) =
2
π

( 1
(v − 1)2 + 1

− 1
(v + 1)2 + 1

)

with

(6.22) FV (v) = P (V ≤ v) = 1− 2
π

(
arctan(v + 1)− arctan(v − 1)

)
.

One can calculate explicitly

(6.23) E[V ] =
[ 1
π

ln(
1 + (v − 1)2

1 + (v + 1)2
) +

2
π

(arctan(v − 1) + arctan(v + 1))
]∣∣∣
∞

0
= 2 .

The logarithm lnV is integrable and we can determine numerically that E[lnV ] ≈ 0.34.

¤

The interior chain (Xn) satisfies lnXn = ln x0 +
∑n

k=1 ln Vk where Vk are i.i.d. with

distribution (6.17). By the law of large numbers, we have ln Xn
n → E[lnV ] > 0 as n → ∞

with probability one so Px0(limn→∞Xn = ∞) = 1.
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