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Abstract

Some notes for the first lectures of my Linear Algebra course.

Contents

0 Preliminaries: Rings and fields 2
0.1 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Matrices 4
1.1 From linear systems to matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The Gauss–Jordan algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Elementary matrices and inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Diagonal, triangular, symmetric matrices . . . . . . . . . . . . . . . . . . . . . . 13

2 Trace and determinant of square matrices 17
2.1 The trace of a square matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The determinant, defined inductively, and Cauchy–Binet for fields . . . . . . . . 18
2.3 Cofactor expansions, adjoint matrices, and Cauchy–Binet for rings . . . . . . . . 24
2.4 Consequences on linear systems with coefficients in an infinite field . . . . . . . . 30

3 General vector spaces 31
3.1 Subspaces, spans, linearly independent sets and bases . . . . . . . . . . . . . . . 33
3.2 Different bases, same cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Grassmann’s formula, linear maps, and the rank . . . . . . . . . . . . . . . . . . 39

4 Orthogonality in Rn and in Rn, with R any ring 45
4.1 Orthogonal matrices and orthogonal vectors . . . . . . . . . . . . . . . . . . . . . 45
4.2 The case of the Euclidean space Rn . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Projections and the Gram-Schmidt algorithm in Rn . . . . . . . . . . . . . . . . 50

1



0 Preliminaries: Rings and fields

You are probably all familiar with the infinite set of natural numbers (aka “nonnegative integers”)

N = {0, 1, 2, 3, . . . , n, n+ 1, . . .}

with the set of integers

Z = {0, 1,−1, 2,−2, 3,−3, . . . , n,−n, n+ 1,−n− 1, . . .}

and with the set of rational numbers or fractions

Q =
{a
b

: a ∈ Z, b ∈ N \ {0}
}
,

where we consider two fractions a
b ,

a′

b′ identical if ab′ = a′b. For example, 1
2 , −1−2 , and 3

6 are the
same. Addition and multiplication are defined by

a

b
+
c

d

def
=
ad+ cb

bd
and

a

b

c

d

def
=
ac

bd
.

You might also know larger sets R,C from Calculus. Here is a more general framework:

0.1 Rings

Definition 1 (Ring). A ring with 1, throughout called simply a ring, consists of a set R
endowed with two internal operations + and · that satisfy the following axioms:

(R1) The operation + is associative. That is, for all x, y, z in R, x+ (y + z) = (x+ y) + z.

(R2) The operation + is commutative. That is, for all x, y, z in R, x+ y = y + x.

(R3) The operation + has a unique neutral element. That is, there exists an element z in R
such that for all x in R, x+ z = x. From now on we denote such element by “0”.

(R4) Every element has a unique additive inverse. That is, for all x in R there exists exactly
one element y in A such that x+ y = 0. From now on we denote such element by “−x”.

(R5) The operation · is associative. That is, for all x, y, z in R, x · (y · z) = (x · y) · z.

(R6) The operation · has a unique neutral element, different than 0. That is, there exists a
unique element z 6= 0 in R such that for all x in R, xz = x. From now on we denote such
neutral element by “1”.

(R7) The operation · distributes +: for all x, y, z in R, x · (y + z) = (x · y) + (x · z).

Example 2. Z,Q,R,C are C-rings with 1. N is not a ring: additive inverses are not included.

Example 3. The set {True,False} is a C-ring with the logical operations of XOR (“exclusive
or”: either-or, bot not both) and AND.

Notation. We write a−b as a shortening of a+(−b). Moreover, we usually write xy instead
of x · y. Note also that by associativity, it is not ambiguous to write abcd instead of a(b(cd)) or
of (ab)(cd). In fact, no matter how you insert brackets, the result is always the same.
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Remark 4. Some textbooks rephrase axiom (R3) as “The operation + has a neutral element”.
Uniqueness is anyway necessary: Were there two neutral elements z1 and z2, we would have
z1 +z2 = z1 (because z2 is neutral) yet also z1 +z2 = z2 (being z1 neutral), so z1 = z2. Similarly
for (R6): If we only knew that multiplicative inverses exist, then their uniqueness would follow
automatically, since for neutral elements z1, z2 we would have simultaneously that z1z2 = z1
and z1z2 = z2. Finally, some textbooks rephrase axiom (R4) as “Every element has an additive
inverse”. Also in this case, uniqueness is implicit: Were there elements y1, y2 in A such that
x+y1 = 0 = x+y2, then we would have y1 = y1+0 = y1+(x+y2) = (y1+x)+y2 = 0+y2 = y2.

Note that in the definition of ring we are not demanding the commutativity of the · operation.
We will see later that matrices form a ring where ab 6= ba in general. We are also not demanding
the existence of ‘multiplicative inverses’. Z is a ring where multiplicative inverses are never
included, except for 1 and −1.

Definition 5. Any ring (with 1) R is called commutative if it satisfies the extra axiom

(R8) The operation · is commutative. That is, for all x, y, z in R, x · y = y · x.

Definition 6. Let R be a ring (with 1). An element x in R is called invertible in R if there
exists an element y in R such that xy = yx = 1.

For example, 1 is always invertible, because 1 · 1 = 1. Note that being invertible depends on
the ring chosen: 3 is invertible in Q, but it is not invertible in Z.

Proposition 7. Let R be a C-ring. For all a in R, a · 0 = 0 = 0 · a.

Proof. Being 0 neutral element, 0 = 0 + 0, and a · 0 + 0 = a · 0. So

a · 0 + 0 = a · 0 = a · (0 + 0) = a · 0 + a · 0,

where in the last step we used distributivity. So adding −a · 0 to both sides, we get 0 = a · 0.
Analogously one shows 0 = 0 · a.

Corollary 8. The element 0 is never invertible.

Proof. By axiom (R6), the element we called 0 and the element we called 1 are different. Since
0 · a is always 0, it can never be 1.

Proposition 9. Let x be an element of a ring R. Suppose x is “right invertible” (i.e. there
exists an element y1 in A such that xy1 = 1) and “left invertible” (i.e. there exists an element
y2 in R such that y2x = 1). Then x is invertible, and y1 = y2.

Proof. One has y2 = y2(xy1) = (y2x)y1 = y1.

Notation. In consequence of the previous proposition, any invertible element x has exactly
one inverse, which we shall denote by x−1.

Proposition 10. Let x, y be elements of a ring R. If x, y are invertible, so is their product, as

(xy)−1 = y−1x−1.

Proof. Clearly (xy)(y−1x−1) = x(yy−1)x−1 = xx−1 = 1 (make sure you get all steps!), and
similarly (y−1x−1)(xy) = 1.

Corollary 11. Let x be an element of a ring A. If x is invertible, then so is xn, as

(xn)−1 =
(
x−1

)n
.

Proof. Exercise: Check that
(
x−1

)n · xn = 1 and that xn ·
(
x−1

)n
= 1.
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0.2 Fields

Definition 12 (Fields). A field is a set F endowed with two internal operations + and · that
satisfy the following nine axioms:

(F1) The operation + is associative. That is, for all x, y, z in F, x+ (y + z) = (x+ y) + z.

(F2) The operation + is commutative. That is, for all x, y, z in F, x+ y = y + x.

(F3) The operation + has a unique neutral element. That is, there exists an element z in F
such that for all x in F, x+ z = x. From now on we denote such element by “0”.

(F4) Every element has a unique additive inverse. That is, for all x in F there exists exactly
one element y in F such that x+ y = 0. From now on we denote such element by “−x”.

(F5) The operation · is associative. That is, for all x, y, z in F, x · (y · z) = (x · y) · z.

(F6) The operation · is commutative. That is, for all x, y, z in F, x · y = y · x.

(F7) The operation · has a unique neutral element different than 0. That is, there exists a
unique element z 6= 0 in F such that for all x in F, xz = x. From now on we denote such
neutral element by “1”.

(F8) Every element except 0 has a unique multiplicative inverse. That is, for all x 6= 0 in F
there exists exactly one element y in F such that xy = 1. From now on we denote such
element by “x−1”.

(F9) The operation · distributes +: for all x, y, z in F, x · (y + z) = (x · y) + (x · z).

Example 13. Fields are precisely commutative rings where every nonzero element is invertible.

1 Matrices

1.1 From linear systems to matrices

Definition 14. Let R be a ring. A linear equation (over R) is an expression of the type

a1x1 + . . .+ anxn = b,

where a1, . . . , an, b are elements of R, called coefficients. The xi’s are called unknowns or vari-
ables. A solution for the equation above is an element (p1, . . . , pn) ∈ Rn for which a1p1 + . . .+
anpn = b. Sometimes we write it x1 = p1, . . ., xn = pn.

Example 15. The equation 0x+ 0y + 0z = 2 has no solution.
The equation 2x = 3 has exactly one solution, x = 1.5.
The equation 0x+ 0y = 0 has infinitely many solutions. In fact, any value of x and y will do.
The equation x− 3y = 0 has infinitely many solutions, but not any pair of values would work.
If we set y = t, then x must equal 3t. Thus the solution set is {(3t, t) : t ∈ R}.

Definition 16. A linear system is a finite set of m linear equations in the same set of n variables,
equations which we want to be hold true simultaneously. In other words, a linear system is an
expression of the form 

a1,1x1 + . . .+ a1,nxn = b1
a2,1x1 + . . .+ a2,nxn = b2
...
am,1x1 + . . .+ am,nxn = bm
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where the ai,j ’s and the bi’s are elements of R, called coefficients. We use the convention to start
numbering top-to-bottom and left-to-right, because that is how we write in the Western world.

Notation When n ≤ 3, for the variables we prefer to use the letters x, y, z.

Example 17. The system {
x− y = 1
2x+ y = 6

has the unique solution (x, y) = (73 ,
4
3). Note that each of the two equations above had infinitely

many solutions. There is a geometric application of this “solving problem”: Namely, when
R = R, in the Cartesian plane, the equations x − y = 1 and 2x + y = 6 represent two lines.
Solving the system is therefore the way to find the intersection point of the two lines. This
explains the name linear.

Example 18. The system {
x− y = 1
2x− 2y = 6

has no solutions. If you fancy the geometric interpretation above, the equations x− y = 1 and
2x− 2y = 6 over R represent two parallel lines.

Example 19. The system 
x+ y − z = 1
2x− y + z = 6
x− 2y + 2z = 5

has infinitely many solutions, though not every triple will do: In fact, x is forced to be equal to
−7. However, any triple (−7, 8 + s, s), with s ∈ R, will do. Note also that the third equation
is “superfluous”, in the sense that it is obtainable by subtracting the first equation from the
second one. Is there a geometric interpretation? Sure: x+ y− z = 1 over R = R is the equation
of a plane in R3, whereas 2x− y + z = 6 is a different plane that intersects the previous one in
a line `. At this point a random third plane would probably intersect this line ` in a point; the
third plane we chose, however, happens to contain ` entirely. So the final intersection is the line
` itself.

Example 20. The system {
x+ y − z = 1
2x+ 2y − 2z = 2

has infinitely many solutions. (Note that the second equation is superfluous: It is merely the
first equation multiplied through by a constant.) If we set z = s and y = t, the only request we
get from the linear system is x = s− t+ 1. Thus the solution set is {(s− t+ 1, t, s) : s, t ∈ R}.
There are now “two degrees of freedom”, in the sense that we are now free to pick s and t
independently. The geometric interpretation is that we are intersecting two identical planes in
three-dimensional space; thus the solution set is two-dimensional.

There are many more applications beside the geometric one that we stressed above. The
main common aspect of all these applications is this: Nature is complex, but linear systems are
easy to solve. So if we can approximate a complex problem in terms of a linear one, we are
able to quickly provide approximate answers. This is basically the idea behind Calculus: How
do you measure the length of a curve? It is difficult. But if you approximate it with small
segments, and that’s what derivatives are about, then you can compute their lengths and add
them up... Since this course is called “linear algebra” and not “geometry of linear subspaces”,
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we will mostly present things algebraically, without explaining every time how to apply these
finds to geometric intersection problem.

In these first lectures we shall deal with three main questions:
(A) How do we explain a system of linear equations to the computer?
(B) What techniques can we apply to solve it? (What moves are legitimate?)
(C) What is our goal? What is a “checkmate” situation, i.e. a system we certainly know how

to solve?
Here are the answers:

(A). Matrices

We encode a linear system simply by means of a spreadsheet, where columns correspond to
variables, and rows to equations. The only thing to pay attention to, is: please place the
coefficients in the correct variable column.

Example 21. 
x+ y − z = 1
2x− y + z = 6
x− 2z = 5

 

 1 1 −1 1
2 −1 1 6
1 0 −2 5


Note that the last column corresponds to the “constant term”. So a system of m linear equations
in n variables is translated into a spreadsheet (usually called “augmented matrix”) of m rows,
and n+ 1 columns.

Definition 22. An m×n matrix A is an array of numbers in a ring R 1, called entries, arranged
in rows (numbered from top to bottom) and columns (numbered from left to right). The entry
in row i and column j is denoted by ai,j . Thus a generic m× n matrix looks like

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

. . .

am,1 am,2 . . . am,n


Definition 23. The elements ai,i are called diagonal elements. The first diagonal element is at
the top left of the matrix; the last one, though, need not be at the bottom right. (It depends
on whether m < n, m = n, or m > n.) An m× n matrix is called square if m = n. In a square
matrix, the last diagonal element is at the bottom right corner.

Definition 24 (Identity matrix). Let m be any positive integer. The identity matrix Im is the
m×m matrix that has 1s on the diagonal, and 0s elsewhere. This is always well-defined because
any ring has elements called 0 and 1.

Note: The plural of “matrix” is “matrices”.

Definition 25. Given two m × n matrices A,B with entries ai,j , bi,j in the same ring R, we
define A+B to be the matrix C with entries ci,j defined by

ci,j = ai,j + bi,j .

1For some application, e.g. the Gauss–Jordan algorithm, it will be necessary to require R to be a “field”, like
R or Q. In this course, we will typically consider matrices with entries in Q or R.
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Definition 26. Given an ` ×m matrix A and an m × n matrix B, both with entries in some
ring R, we define A×B (or simply “AB”) to be the `× n matrix C with entries ci,j defined by

ci,j =
m∑
k=1

ai,kbk,j .

Theorem 27. Let m be any positive integer. Given any ring R, the set Mm,m(R) of square
(m×m) matrices forms a ring with respect to the two operations above. The zero element is the
matrix with all entries 0R, whereas the 1 is the identity Im.

Definition 28. Given an m× n matrix A with entries ai,j in a ring R, and an element r ∈ R,
we define rA to be the m× n matrix with entries defined by

(rA)i,j = r · (a)i,j .

In other words, rA is the matrix obtained by multiplying every single entry of A by r.

Notation. Let 
a1,1x1 + . . .+ a1,nxn = b1
a2,1x1 + . . .+ a2,nxn = b2
...
am,1x1 + . . .+ am,nxn = bm

be a linear system. If we adopt the convention that x is the n× 1 matrix

x
def
=


x1
x2
...
xn


and b is the m× 1 matrix

b
def
=


b1
x2
...
bm

 ,

then the linear system can be rewritten in a much more compact way as

Ax = b.

(B). Legal moves

The following three moves obviously modify a linear system but do not change the solution set:

1. Interchange two equations.

2. Multiplying all terms of an equation by an invertible q ∈ R.

3. Replacing an equation (∗) by the sum of (∗) and q times another equation (**) from the
same linear system. (Or in other words, adding to one equation a constant times another
equation.)
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The third move may confuse you, but the crucial point is that the “other equation” (**) is
brought along unchanged. This allows you to reverse the move: Just add to equation (*) −q
times equation (**). For this third step, q may be chosen to be zero, although this would result
in no change to the system whatsoever.

Example 29. Obviously the linear systems below are equivalent
x+ y − z = 1
2x− y + z = 6
x− 2z = 5

and


7x+ 7y − 7z = 7
2x− y + z = 6
x− 2z = 5

Example 30. Obviously the systems below are equivalent
x+ y − z = 1
2x− y + z = 6
x− 2z = 5

and


2x− y + z = 6
x+ y − z = 1
x− 2z = 5

Example 31. The systems below are equivalent: The move was, adding to equation (ii) −2
times equation (i). 

x+ y − z = 1
2x− y + z = 6
x− 2z = 5

 


x+ y − z = 1
−3y + 3z = 4
x− 2z = 5

Note that equation (ii) was modified, but equation (i) was copy-pasted. If we now add to
equation (ii) +2 times equation (i), we go back to the original system:

x+ y − z = 1
−3y + 3z = 4
x− 2z = 5

 


x+ y − z = 1
2x− y + z = 6
x− 2z = 5

These moves can obviously be explained to the computer, which understand spreasheets very
well, and generalized to arbitrary rings, as follows. Suppose that we are allowed to perform these
three moves on a m× n matrix with entries in a ring R.

1. Swap two rows.

2. Multiplying a row through by an invertible q ∈ R.

3. Add q times one row to another, for some q ∈ R (invertible or not).

These moves, however many, do not affect the solution set of the corresponding linear system.
The three moves above are called elementary row operations.

(C). The goal

When is a linear system immediately solvable? We want a “halting criterion” for the computer:
The idea is to program it with a “do moves on your spreadsheet until you reach an ideal situation
in which you can stop.” What is this ideal situation?

Definition 32 (RRE form). A matrix m × n with entries in a ring R is in RRE form if it
satisfies the following four conditions:
(RRE1) If a row does not consist entirely of zeroes, the first nonzero number is a 1. (We call

this a leading 1.)
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(RRE2) If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

(RRE3) In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

(RRE4) Each column that contains a leading 1 has zeros everywhere else in that column.

Remark 33. RRE stands for “Reduced Row Echelon”. Anton’s textbook uses the expression
“in Row Echelon form” (without “reduced”) to denote a matrix that satisfies (RRE1), (RRE2)
and (RRE3), though not necessarily (RRE4). Some other textbooks use the same expression
“in Row Echelon form” to describe a matrix that satisfies just (RRE2) and (RRE3). To avoid
confusion, we will try not to use this expression altogether.

Non-Example 34. The following matrices are not in RRE form.

 1 0 0
0 0 1
0 1 0

  1 0 8 1
0 1 0 6
0 0 1 0




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1




1 0 1
0 2 1
0 0 0
0 0 0


Example 35. The following three matrices are in RRE form.

 1 0 8 1
0 1 0 6
0 0 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 1
0 1 2
0 0 0
0 0 0


Theorem 36. A square matrix in RRE form is either a matrix with a zero row, or the identity.

Proof. There is one leading 1 in each row by (RRE1), and the column of any leading 1 contains
no other leading 1 by (RRE4). So the m leading ones are to be placed in distinct columns. But
there are m columns, so by the Pigeonhole Principle, there is exactly one 1 in each column.
Thus every row contains one 1, and no further element. So there is exactly one 1 in every row
and column. Condition (RRE3) forces the ones to be on the diagonal.

Why is this idea? Because if an augmented matrix is already in RRE form, the
system is already solved!

Example 37. The three matrices in RRE form above, with entries in R, correspond to the
linear systems 

x+ 8z = 1
y = 6
0 = 0


x = 0
y = 0
z = 0
0 = 1


x = 1
y = 2
0 = 0
0 = 0

The first one has infinitely many solutions {(1 − 8z, 6, z) : z ∈ R}. The second system has
no solution, due to the impossibility of the last equation. The third system has exactly one
solution, {(1, 2)}.

In the next lecture, we will see a German strategy (called “Gauss-Jordan”) to always get
to the goal with the moves available. Or more formally, to “reduce any augmented matrix into
RRE form, using (only) elementary row operations”. The strategy only works if the entries are
in a field.
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1.2 The Gauss–Jordan algorithm

A matrix with all entries equal to zero is already in reduced row echelon form. For all other
matrices with entries in a field F, we can run the following pair of algorithms:

Downward phase
• Find a leftmost nonzero element p. (That is, among all nonzero elements, pick one furthest

to the left). With a row swap, bring it to the top row. Note that the columns left of p, if
any exist, are all zeroes, because of the way p was chosen.

• Multiply the first row by p−1, which exists because F is a field and p 6= 0. Now row 1 has
a leading 1, in some column i.

• We want to zero out all entries in the i-th column, below the leading 1. To this end, for
any j such that ai,j 6= 0, add to row j the multiple of row 1 by the constant −aij . Note
that this has no effect on the zeroes in the columns left of i (if i > 1). Also, there is no
effect on other rows: Only row j is affected. For this reason, for fixed i, you may zero out
the nonzero ai,j ’s in any order you like.

• Now column i has only one 1 in the top row, whereas all columns < i are full of zeroes.
Let A′ be the matrix obtained from A by deleting the first row and the first i columns.
Replace A with A′ and start over.

At the end of this first algorithm, we have a matrix that satisfies (RRE1), (RRE2), (RRE3),
but not necessarily (RRE4). Namely, above any leading 1 there might be nonzero entries. To
achieve (RRE4), we run a second “correction algorithm”:

Upward phase
• begin with the last nonzero row, and check if above its leading 1 the entries are all zero.

If not, adds suitable multiple of the last nonzero row to the rows above to introduce zeros
above the leading 1 of the last row.

• Now move up to the second-last nonzero row, and check if above its leading 1 the entries
are all zero. If not, add suitable multiples of this row to the rows above to clear up the
column of the leading 1.

• Now move up one row, and so on.

Example 38.

A =


0 0 2 1 0
0 3 6 0 9
0 0 0 0 0
0 0 0 −1 0

 


0 3 6 0 9
0 0 2 1 0
0 0 0 0 0
0 0 0 −1 0

 


0 1 2 0 3
0 0 2 1 0
0 0 0 0 0
0 0 0 −1 0


Since

 2 1 0
0 0 0
0 −1 0

 
 1 1

2 0
0 0 0
0 −1 0

 and

(
0 0
−1 0

)
 

(
−1 0
0 0

)
 

(
1 0
0 0

)
we arrived from A to

A′ =


0 1 2 0 3
0 0 1 1

2 0
0 0 0 1 0
0 0 0 0 0

 .

This concludes the ‘downward phase’. Now for the upward phase,

A′ =


0 1 2 0 3
0 0 1 1

2 0
0 0 0 1 0
0 0 0 0 0

 


0 1 2 0 3
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 


0 1 0 0 3
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
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and we are done.

Remark 39. Inside the algorithm there are moments in which a choice is necessary; for example,
at the beginning, if there are two different leftmost nonzero entries, either one can be chosen to
become the first leading 1. But let R,R′ be two RRE matrices obtained from the same matrix
A, via different choices while performing the algorithm. If we view R,R′ and A as augmented
matrices, the associated linear systems must have the same solutions (because our moves do not
change the solution set). Using this, one can prove that R = R′. In other words, the RRE form
of a matrix is unique.

1.3 Elementary matrices and inverses

Definition 40. Let R be any ring. For fixed m ∈ N, there are three types of so-called “elemen-
tary m×m matrices”:

• Ei,j is the matrix obtained from Im by swapping rows i, j;
• Ei,j(q) is the matrix obtained from Im by replacing row i with “row i plus z times row j”;
• Ei(q) is the matrix obtained from Im by multiplying row i by some invertible q in R.

For example, for m = 2 and R = Q, we have:

I =

(
1 0
0 1

)
, E1,2 =

(
0 1
1 0

)
, E1,2(4) =

(
1 4
0 1

)
, and E2(7) =

(
1 0
0 7

)
.

These elementary matrices help us perform the analogous operations on a generic matrix A.
In fact,

• Ei,jA is the matrix obtained from A by swapping rows i, j;
• Ei,j(q)A is obtained from A by replacing row i with “row i plus q times row j”;
• Ei(q)A is obtained from A by multiplying row i by some invertible q.

For example,

E1,2

(
a b
c d

)
=

(
c d
a b

)
; E1,2(4)

(
a b
c d

)
=

(
a+ 4c b+ 4d
c d

)
; E2(7)

(
a b
c d

)
=

(
a b
7c 7d

)
.

Remark 41. An analogous result holds for columns:
• AEi,j is obtained from A by swapping columns i, j;
• AEi,j(q) is obtained from A by replacing column i with “column i plus q times column j”;
• AEi(q) is obtained from A by multiplying column i by some invertible q.

For example,(
a b
c d

)
E1,2 =

(
b a
d c

)
;

(
a b
c d

)
E1,2(4) =

(
a+ 4b b
c+ 4d d

)
;

(
a b
c d

)
E2(7) =

(
a 7b
c 7d

)
.

Proposition 42. All elementary matrices are invertible.

Proof. The inverse of Ei,j is Ei,j itself (swapping back!); the inverse of Ei,j(q) is Ei,j(−q) (re-
subtracting back what we had added); and the inverse of Ei(q) is Ei(q

−1) (scaling back). Note
that for this third result, it was crucial to pick a q that is invertible.

The algorithm we have seen in the previous section proves automatically the following:

Theorem 43 (Gauss). Given any nonzero m × n matrix A with entries in a field F (for ex-
ample, F = R), there exists an m × n matrix M in RRE form and some elementary matrices
E0, E1, E2, . . . , E` (all of size m×m) such that

E`E`−1 · · ·E1E0A = M.

11



Proof. The effect of any legal move we perform during the Gauss–Jordan reduction is the same
as left-multiplying the matrix by some suitable elementary matrix.

This has a crucial consequence in terms of inverses. Note that only for square matrices
it makes sense to ask if they are invertible, because square matrices form a ring, whereas
m× n matrices with m 6= n do not.

Theorem 44. Given an m×m matrix A with entries in a field F, the following are equivalent:
(a) A is invertible;
(b) Ax = 0 has only one solution;
(c) the Gauss–Jordan algorithm reduces A to Im;
(d) A is a product of elementary matrices (of size m×m).

Proof. (a) ⇒ (b). Multiplying both sides of the equation Ax = 0 to the left by A−1, we get
x = 0.

(b) ⇒ (c). Since x = 0 is a solution, it must be the only one. Let A′ (resp. I ′) be the
m × (m + 1) matrix obtained from A (resp. Im) by appending to it an extra column of
zeroes on the right. Running the Gauss–Jordan algorithm must then reduce the matrix
A′ to I ′. The same steps, exactly in the same order, also reduce A to Im.

(c)⇒ (d). By Theorem 43, there are elementary matrices E0, E1, E2, . . . , E` (all of size m×m)
such that

E`E`−1 · · ·E1E0A = Im.

Now left-multiply both sides of the equation above by (E0)
−1(E1)

−1 · · · (E`−1)−1(E`)−1.
(Which exists, because elementary matrices are invertible.) We get

A = (E0)
−1(E1)

−1 · · · (E`−1)−1(E`)−1.

(d) ⇒ (a). Any product of invertible matrices is an invertible matrix.

Remark 45. Theorems 44 does not extend to matrices with entries in an arbitrary ring. Con-
sider for example the positive integer 7. We can view 7 as a 1×1 matrix over the ring Z. It is not
true that 7 is invertible, but it is true that 7x = 0 has only one solution. It is not true that the
Gauss–Jordan algorithm reduces 7 to 1 (because if we try to get a leading 1, we should multiply
by the inverse of 7, which does not exist.) And since we only defined elementary matrices of the
type Ei(q) for q invertible, 7 is not a product of elementary matrices.

Corollary 46. Given an m×m matrix A with entries in a field F, the following are equivalent:
(a) A is not invertible;
(b) Ax = 0 has some “nontrivial” solution x 6= 0;
(c) the Gauss–Jordan algorithm reduces A to a matrix whose bottom row is made of zeroes;
(d) A cannot be written as product of elementary matrices.

Proof. Straightforward from Theorems 44 and 36.

Corollary 47. Let A,B be m×m matrices with entries in a field. Then

AB is invertible ⇐⇒ both A,B are invertible.

Proof. The “⇐” direction is clear: as we saw already, the inverse of AB is B−1A−1, since

(AB)B−1A−1 = Im = B−1A−1(AB).

12



For the other direction: exploiting Theorem 44, we will prove the invertibility of B by showing
that Bx = 0 implies x = 0. Indeed, Bx = 0 implies ABtextbfx = A0 = 0, which by Theorem
44 has only x = 0 as solution. Thus B−1 exists. But then we can write A as a product of
invertible matrices:

A = (AB)(B−1).

Thus also A is invertible.

Corollary 48. Let A,B be m × m matrices with entries in a field. If AB = Im, then also
BA = Im.

Proof. If A is invertible, the result is easy: from AB = Im, left-multiplying by A−1, we get
B = A−1. Now suppose by contradiction that A is not invertible. Then its RRE form M of A
has a bottom row of zeroes. By Gauss’ theorem 43,

E`E`−1 · · ·E1E0A = M.

So if we multiply to the right by B the equation above, since AB = Im we get

E`E`−1 · · ·E1E0 = MB.

So MB is invertible, because it equals a product of elementary matrices, which are invertible.
But at the same time, we know that the last row of M is zero, so by the way we defined row-
by-column multiplication, the last row of MB must also consist entirely of zeroes. This means
that MB is not invertible. A contradiction.

Remark 49. Theorem 44 gives an algorithmic, explicit way to compute the inverse of a matrix
A, when it exists. The idea is to reduce A to a matrix in RRE form via the Gauss–Jordan
algorithm. If the resulting RRE matrix has a row of zeroes at the bottom, then A was not in-
vertible. If instead the resulting RRE matrix is the identity, then keeping track of the performed
operations we can write

E`E`−1 · · ·E1E0A = Im,

whence right-multiplication by A−1 yields

E`E`−1 · · ·E1E0 = A−1.

Remark 50. With a harder proof, Corollary 48 is still true for matrices in a commutative rings
2. However, there are non-commutative rings R over which AB = I2 but BA 6= I2

3.

1.4 Diagonal, triangular, symmetric matrices

Definition 51. A matrix A with entries in a ring R is called
• lower triangular, if ai,j = 0 for all i < j;
• upper triangular, if ai,j = 0 for all i > j; diagonal, if it is both upper and lower triangular.

Clearly, diagonal matrices are symmetric.

Example 52. Ei,j(r) is upper triangular if i < j and lower triangular if i > j. Ei(r), with r
invertible, is diagonal. Ei,j is neither upper nor lower triangular.

2Reutenauer–Straubing, Inversion of matrices over a commutative semiring, J. Algebra 88 (1984), 350–360.
3J. C. Shepherdson, Inverses and zero divisors in matrix rings, Proc. London Math. Soc. 1, (1951).
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Proposition 53. If A and B are m×m lower triangular matrices, so are their sum and their
product. The same is true for lower triangular (and thus, for diagonal).

Proof. Suppose ai,j = bi,j = 0 for all i < j. Then obviously ai,j + bi,j = 0 for all i < j. Now
given i < j, consider a new term k in {1, . . . ,m}. If k < j, then bk,j is zero. On the other hand,
if k ≥ j, then k > i, and so ai,k is zero. Either way,

(AB)i,j =
∑

k = 1mai,kbk,j = 0.

This shows that lower triangular matrices are closed with respect to sum and matrix multipli-
cation. A completely analogous proof shows the same for upper triangular matrices.

Definition 54. The transpose of an m× n matrix A is the n×m matrix A> such that

(A>)i,j = (A)j,i.

In other words, A> is obtained from A by reflection along the main diagonal. It is clear
from the definition that (A>)> = A. Note that A is upper triangular if and only if A> is lower
triangular.

Remark 55. The “dot product” v •w from calculus, defined as

(v1, . . . , vn) • (w1, . . . , wn)
def
= v1w1 + . . .+ vnwn,

can be seen as a matrix multiplication: It is simply vw>.

Definition 56. The (necessarily square!) matrices A for which A = A> are called symmetric
matrices.

Example 57. The identity and the elementary matrices Ei(q) are symmetric for any (invertible)
q. Instead E12(1) and E12 are not symmetric.

Proposition 58. If A,B are two m× n matrices (same shape!), then

(A+B)> = A> +B>.

In particular, the sum of two symmetric matrices is symmetric.

Proof. The first part is left as exercise to you. For the second one: if A = A> and B = B>,
then by the first part

(A+B)> = A> +B> = A+B.

Proposition 59. If A is an m× n matrix with entries in a ring R, and r is an element of R,
then

(rA)> = r(A>).

In particular, the multiples of a symmetric matrix are symmetric.

Proof. Left to you.

Proposition 60. Let R be a commutative ring. Let A be an ` ×m matrix with entries in R.
Let B be an m× n matrix with entries in R. Then

(AB)> = B>A>.
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Proof. Note first that if A is `×m and B is m× n, then A> is m× ` and B> is n×m, so the
expression B>A> makes perfect sense (whereas A>B>, if ` 6= n, does not). Let us check if the
elements in row i and column j of the two matrices (AB)> and B>A> are the same. Indeed,

(
(AB)>

)
i,j

def
= (AB)j,i =

m∑
k=1

aj,kbk,i, and

(
B>A>

)
i,j

=
m∑
k=1

(
B>
)
i,k

(
A>
)
k,j

=
m∑
k=1

bk,iaj,k.

The commutativity of R enables us to conclude, because aj,kbk,i = bk,iaj,k inside R.

Proposition 61. If A is an invertible square matrix with entries in a commutative ring, then
(A>) also is, and (

A>
)−1

=
(
A−1

)>
.

In particular, if a symmetric matrix is invertible, and the entries are in a commutative ring,
then the inverse is also symmetric.

Proof. If A is m×m invertible with entries in a commutative ring, by the previous proposition

A>
(
A−1

)>
=
(
A−1A

)>
= (Im)> = Im.

As for the second part: the zero matrix is clearly symmetric, but not invertible. That said, if A
is symmetric and invertible, then by the first part

A−1 =
(
A>
)−1

=
(
A−1

)>
Remark 62. The previous Propositions are not true for matrices over non-commutative rings.
If r, s are elements of R such that rs 6= sr, we can view them as 1 × 1 matrices, and (rs)> =
rs 6= sr = s>r>. It is more complicated to see this, but there are also non-commutative rings R
such that some 2× 2 matrix A with entries in R is invertible and symmetric, but has an inverse
that is not symmetric.

Remark 63. The product of two symmetric matrices is typically not symmetric, even if the
entries of A are from a field. You can see for yourself how the ‘obvious’ proof goes wrong:

(AB)> = B>A> = BA (not AB!).

For a counterexample, look at the following matrices with entries in Q:(
1 2
2 3

)(
2 1
1 0

)
=

(
4 1
7 2

)
.

However, when AB = BA, and the entries of A are from a commutative ring, then indeed
(AB)> = B>A> = BA = AB, so the product of commuting symmetric matrices with entries in
a commutative ring is indeed symmetric. A special case is the one below:

Proposition 64. Let R be a commutative ring. If a matrix A with entries in R is symmetric,
so are its power An, with n ∈ N.
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Proof. AA2 is the product of commuting symmetric matrices. Same for A3 = A ·A2, and so on.
If we know that An is symmetric, then

(An+1)> = (A ·An)> = (An)> ·A> = An ·A = An+1.

Remark 65. Let R be a non-commutative ring. Let r, s be elements such that rs 6= sr. Then(
r s
s 0

)2

=

(
r s
s 0

)(
r s
s 0

)
=

(
r2 + s2 sr
rs 0

)
gives an example of a symmetric matrix A with A2 not symmetric.

Remark 66. Remember that AB 6= BA in general, so formulas like (A+B)2 = A2 +2AB+B2

do not work for matrices. In fact, all we can say is

(A+B)2 = (A+B)(A+B) = A2 +AB +BA+B2.

The right-hand side equals A2 + 2AB +B2 precisely when AB = BA.

Proposition 67. Let R be a commutative ring. For any m × n matrix A with entries in R,
both matrices AA>, A>A are symmetric.

Proof. Left to you. Note that by Remark 65, the “R commutative” assumption is necessary.

Proposition 68. For any square matrix A, the matrix A+A> is symmetric.

Proof. Left to you.
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2 Trace and determinant of square matrices

In this section, we always work with square matrices. We start with an important definition:

Definition 69 (Similarity). Let A, B be two m×m matrices with entries in a ring R. We say
that B is similar to A if there exists an invertible matrix P such that

B = P−1AP.

For example, any matrix is similar to itself (by taking P = Im). Note that if B is similar to A,
then automatically A is similar to B: In fact, if B = P−1AP , then PB = AP and PBP−1 = A;
so setting Q = P−1, we can write

Q−1BQ = A.

For this reason, we usually say that “A and B are similar matrices” if either is similar to the
other. Finally, note that if A is similar to B, and B is similar to C, then A is automatically
similar to C. The proof is left to you.

2.1 The trace of a square matrix

Definition 70. The trace of a square m×m matrix A with entries in some ring R is the sum
of its diagonal elements, i.e.

trace(A)
def
=

m∑
i=1

ai,i.

Proposition 71. For any square matrix A, trace(A) = trace(A>).

Proof. The diagonal elements of A and A> are the same.

Proposition 72. For all m×m matrices A,B with entries in some ring R, and for all elements
r ∈ R, one has

trace(A+B) = trace(A) + trace(B) and trace(rA) = r trace(A).

Proof. Exercise.

Proposition 73. For all m×m matrices A,B with entries in a commutative ring

trace(AB) = trace(BA)

even if this might be different from trace(A) trace(B) = trace(B) trace(A).

Proof. One has

trace(AB) =
m∑
i=1

(AB)i,i =

m∑
i=1

m∑
k=1

ai,kbk,i =

m∑
i=1

m∑
k=1

bk,iai,k =

m∑
i=1

(BA)i,i = trace(BA).

However, in the following example

A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
, AB =

(
1 0
0 0

)
, BA =

(
0 0
0 1

)
,

one immediately sees that

trace(AB) = trace(BA) = 1 6= 0 = 0 · 0 = trace(A) · trace(B) = trace(B) · trace(A).
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Remark 74. The previous proof also shows that

trace(AB) = trace(BA)

even if A and B are rectangular, i.e. if A is m × n and B is n ×m with n 6= m. In this case
trace(A) and trace(B) are not even defined.

Corollary 75. Similar matrices have same trace.

Proof. Suppose B = P−1AP , for some invertible matrix P . Set C = P−1A. By the previous
proposition, trace(CP ) = trace(PC). But CP is B, and PC is A.

Remark 76. Given three m×m matrices A,B,C, it is typically not true that

trace(ABC) = trace(ACB).

For example, take

A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
, C =

(
a b
c d

)
.

Then

ABC =

(
1 0
0 0

)(
a b
c d

)
=

(
a 0
0 0

)
while ACB =

(
c d
0 0

)(
0 0
1 0

)
=

(
d 0
0 0

)
.

What is true is that the trace (for matrices with entries in a commutative ring) is invariant
under “circular shifts”, i.e.

trace(ABCD) = trace(BCDA) = trace(CDAB) = trace(DABC).

This is very easy to prove: for example to show trace(ABCD) = trace(BCDA), just call

B′
def
= BCD, and use the fact that we know already, namely, that

trace(AB′) = trace(B′A).

Proposition 77. Let A be a matrix with entries in the ring (Z, Q or) R. Then

trace(AA>) ≥ 0,

with equality if and only if A is the zero matrix.

Proof. Let A be an m × n matrix. The (i, i) entry of AA> is the dot product of the i-th row
of A with itself. So it equals

∑n
j=1(ai,j)

2. Thus all summands of the trace of AA> are sums of

squares, and in particular non-negative. Also, if some ai,j is not zero, then (ai,j)
2 is positive, so

the trace of AA> is also positive. So if the trace of AA> is zero, all the ai,j ’s must be zero.

2.2 The determinant, defined inductively, and Cauchy–Binet for fields

The determinant is a function defined on square matrices that has the four following properties:
• The determinant of the identity matrix is 1.
• The exchange of two rows multiplies the determinant by −1.
• Multiplying a row by an element r multiplies the determinant by this r.
• Adding a multiple of one row to another row does not change the determinant.
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The difficult part is to give a definition. The official definition involves permutations, a topic
you will see either in Abstract Algebra or in Discrete Mathematics. A second possible definition
is to use the four properties above, because it turns out that they determine the function. In
this course you will see instead a third, somewhat “recursive” definition, in which you’ll be
told how to compute the determinant of a 1 × 1 matrix; and then, assuming you know how to
compute determinants of (m− 1)× (m− 1) matrices, you are going to be told how to compute
the determinant of an m ×m matrix. There is a problem with the way the book presents it,
namely, circularity: It omits the proof of Theorem 2.1.1, which is needed for its definition of
“determinant”, but then it uses Theorem 2.1.1 to prove other three statements (Theorem 2.2.1,
2.2.2 and 2.2.3) which are somewhat necessary to prove Theorem 2.1.1 using this “recursive”
definition of determinant. So I fixed it here for you.

Definition 78 (Determinant). Let A be a square matrix with entries in a ring R.

• If A is a 1× 1 matrix consisting of a single element a, we set detA
def
= a.

• If A is an m×m matrix with m ≥ 2, we set

detA
def
=

m∑
i=1

(−1)i+1 · ai,1 ·MA
i,1,

where MA
i,1, usually called “the minor of (i, 1) in A”, is the determinant of the (m− 1)×

(m− 1) matrix obtained from A by removing the i-th row and the 1st column.

Notation. The element (−1)i+1 ·MA
i,1 is called “the cofactor of (i, 1) in A”; which explains

why this way of computing the determinant is usually called a “cofactor expansion along the
first column”, and typically denoted by CAi,j . In these notes we use the notation A−i,−j for the
matrix obtained from a matrix A by deleting the i-th row and the j-th column. So for example
detA−i,1 = MA

i,1 and (−1)i+1 detA−i,1 = CAi,j .

Example 79. det

(
a b
c d

)
= (−1)2 · a · det(d) + (−1)3 · c · det(b) = ad− cb.

Remark 80. While trace(A+B) = trace(A)+trace(B), in general det(A+B) 6= detA+detB.
For example,

det

(
1 0
0 1

)
= 1 6= 0 + 0 = det

(
1 0
0 0

)
+ det

(
0 0
0 1

)
.

Also, while trace(rA) = r trace(A), in general det rA 6= r detA: for example,

det

(
2 0
0 2

)
= 4 6= 2 det

(
1 0
0 1

)
.

Example 81. det

 1 0 0
0 a b
0 c d

 = (−1)2 · 1 · det

(
a b
c d

)
= ad− cb. In particular, det I3 = 1.

Proposition 82. The determinant of an upper triangular matrix is the product of its diagonal
elements. In particular, det Im = 1.

Proof. The first column is zero below a1,1. Hence,

detA = a1,1 ·MA
1,1,

and MA
1,1 is upper triangular of size (m−1)× (m−1). Iterating the argument, we conclude.
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For Lower Triangular matrices, see Proposition 89 below.

Example 83. det

 0 a b
1 0 0
0 c d

 = (−1)3 · 1 · det

(
a b
c d

)
= −(ad− cb).

Example 84. det

 1 0 0
0 2a 2b
0 c d

 = (−1)2 · 1 · det

(
2a 2b
c d

)
= 2(ad− cb).

Example 85. det

 1 0 0
0 a+ c b+ d
0 c d

 = (a+ c)d− c(b+ d) = ad− cb.

Example 86. For a general 3× 3 matrix, a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 = a1,1a2,2a3,3−a1,1a3,2a2,3−a2,1a1,2a3,3+a2,1a3,2a1,3+a3,1a1,2a2,3−a3,1a2,2a1,3.

In general, it can be proven inductively that the determinant of an m ×m matrix consists
of m! = m(m − 1)(m − 2) · · · 1 summands, and each summand is the product of m entries, no
two of which are in the same row/column.

Here however we are not interested in figuring out the formula for a 5×5 matrix, say. Instead,
the idea is to reduce the matrix into RRE form, and control how the determinant changes along
the process. Recall that there are two possibilities for the RRE form of a square matrix: Either
it is the identity, which has determinant 1, or it is a matrix with a row of zeroes, in which case
the determinant is zero because of the next Lemma.

Lemma 87. Let A,B,C be three m × m matrices that are identical except for the k-th row.
Suppose the k-th row of C is the sum of the k-th rows of A and B. Then detA+ detB = detC.

Proof. When m = 1 the claim is obvious. Now suppose the statement has already been proven
for (m− 1)× (m− 1) matrices, and let’s show it for m×m matrices. If we erase from A,B,C
row k and column 1, we get three identical matrices. With the language of “minors”, we have
MA
k,1 = MB

k,1 = MC
k,1. If instead we erase from A,B,C some row i different than k, and column

1, we still get three matrices A′, B′, C ′ that are identical, all of size (m−1)× (m−1), except for
some row of C ′ that is the sum of the corresponding rows of A′ and B′. So because we believe
the theorem for matrices of size (m− 1)× (m− 1), we have that detA′ + detB′ = detC ′. But
then, splitting the three cases i = k and i 6= k, we get

detC
def
=
∑m

i=1(−1)i+1ci,1M
C
i,1

= (−1)k+1ck,1M
C
k,1 +

∑
i 6=k(−1)i+1ci,1M

C
i,1

= (−1)k+1(ak,1 + bk,1)M
C
k,1 +

∑
i 6=k(−1)i+1ci,1(M

A
i,1 +MB

i,1)

= (−1)k+1ak,1M
C
k,1 +

∑
i 6=k(−1)i+1ci,1M

A
i,1 + (−1)k+1bk,1M

C
k,1 +

∑
i 6=k(−1)i+1bi,1M

B
i,1

= (−1)k+1ak,1M
A
k,1 +

∑
i 6=k(−1)i+1ai,1M

A
i,1 + (−1)k+1bk,1M

B
k,1 +

∑
i 6=k(−1)i+1bi,1M

B
i,1

=
∑m

i=1(−1)i+1ai,1M
A
i,1 +

∑m
i=1(−1)i+1bi,1M

B
i,1

= detA+ detB.

Lemma 88. The determinant of a matrix with a zero row is 0.
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Proof. If the k-th row of A consists of all zeroes, then we can apply the previous lemma with
B = C = A: we get

detA+ detA = detA,

which by cancelation implies detA = 0.

Proposition 89. The determinant of a lower triangular matrix is the product of its diagonal
elements.

Proof. Let A be a lower triangular matrix. We know a1,j = 0 for all j > 1. Thus, the matrix
obtained from A by erasing row i and column 1, if i > 1 has a first row of zeroes, and thus has
determinant zero by Lemma 88. In other words MA

i,1 = 0 for all i ≥ 2. But then

detA = a1,1 ·MA
1,1 +

∑
i≥2

(−1)i+1ai,1M
A
i,1 = a1,1 ·MA

1,1,

and MA
1,1 is a lower triangular of size (m−1)×(m−1). Iterating the argument, we conclude.

Lemma 90. If B is obtained from A by swapping 2 consecutive rows, detB = −detA.

Proof. When m = 2, det

(
c d
a b

)
= cb−ad = −(ad− cb) = −det

(
a b
c d

)
. Now suppose the

statement has already been proven for (m−1)× (m−1) matrices, and let’s show it for an m×m
matrix A. Let k − 1, k be the two swapped rows. By induction, when i /∈ {k − 1, k} we believe
MB
i,1 = −MA

i,1; note also that when i /∈ {k − 1, k}, bi,1 = ai,1. As for the remaining two cases,

i ∈ {k − 1, k}, we have that MB
k−1,1 = MA

k,1, bk−1,1 = ak,1, and symmetrically MB
k,1 = MA

k−1,1
and bk,1 = ak−1,1. So summing up,

detB
def
=
∑m

i=1(−1)i+1bi,1M
B
i,1

= (−1)kbk−1,1M
B
k−1,1 + (−1)k+1bk,1M

B
k,1 +

∑
i/∈{k−1,k}(−1)i+1bi,1M

B
i,1

= (−1)kak,1M
A
k,1 + (−1)k+1ak−1,1M

A
k−1,1 +

∑
i/∈{k−1,k}(−1)i+1ai,1(−MA

i,1)

= −
(

(−1)k+1ak,1M
A
k,1 + (−1)kak−1,1M

A
k−1,1 +

∑
i/∈{k−1,k}(−1)i+1ai,1M

A
i,1

)
= −detA.

Lemma 91. If C is obtained from A by swapping any two rows, detC = −detA.

Proof. To swap rows p and q, with p < q, we can perform 2(q − p) − 1 swaps of adjacent
rows, namely: with (p, p + 1), (p + 1, p + 2), . . . , (q − 1, q) (a total of q − p steps) we bring row
p to the q-th row, and row q to the (q − 1)-st row; so with the subsequent q − p − 1 steps
(q − 2, q − 1), (q − 3, q − 2), . . . (p, p + 1) we bring back what was the original row q from the
(q− 1)-st to the p-th place. Now, the number 2(q− p)− 1 is always odd, so we are flipping the
determinant to its additive inverse an odd number of times.

Lemma 92. If A has two identical rows, detA = 0.

Proof. With the same proof technique of the previous Lemma, after performing a finite number
of row swaps (which do not change the determinant, apart from possibly flipping it to its additive
inverse), we may assume that the two identical rows are row 1 and row 2. Now for 2×2 matrices

the statement is true: det

(
a b
a b

)
= ab − ab = 0. Now suppose the statement has already

been proven for (m− 1)× (m− 1) matrices, and let’s show it for an m×m matrix A. If A′ is
the matrix obtained from A by removing column 1 and some row i ≥ 3, then A′ has also two
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equal rows and size (m− 1)× (m− 1), so by induction we believe that its determinant is zero.
That is, MA

i,1 = 0 for i ≥ 3. But then

detA = a1,1M
A
1,1 − a2,1MA

2,1 +
∑

i≥3(−1)i+1ai,1 ·MA
i,1

= a1,1M
A
1,1 − a2,1MA

2,1 + 0

= 0,

because a1,1 = a2,1 and MA
1,1 = MA

2,1.

Lemma 93. Let A,C be matrices with entries in a commutative ring R. If C is obtained from
A by multiplying all elements of some row by the same element r in R, then detC = r detA.

Proof. The claim is true for 1× 1 matrices, obviously. Note that for the first time the commu-
tativity of the ring is necessary, because already for m = 2, if rs 6= sr,

det

(
r r
−s 0

)
= sr 6= rs = r det

(
1 1
−s 0

)
.

Now suppose the statement has already been proven for (m−1)×(m−1) matrices, and let’s show
it for m ×m matrices, with m ≥ 2. Let k be the row that gets multiplied. Then in particular
ck,1 = r · ak,1. Since all other rows of the matrices C and A are identical, MC

k,1 = MA
k,1. On the

other hand, let i be any element different than k. Then ci,1 = ai,1. Let A′ and C ′, respectively, be
the (m−1)× (m−1) matrices obtained from A and C, respectively, by deleting the first column
and the i-th row. Then C ′ is identical to A′ except for one row, which is the corresponding
row of A′ multiplied by r. But since we believe the claim for (m − 1) × (m − 1) matrices,
detC ′ = r · detA′. So

detC
def
=
∑m

i=1(−1)i+1ci,1M
C
i,1

= (−1)k+1ck,1M
C
k,1 +

∑m
i 6=k(−1)i+1ci,1M

C
i,1

= (−1)k+1r · ak,1MA
k,1 +

∑m
i 6=k(−1)i+1ai,1 · r ·MA

i,1

= (−1)k+1r · ak,1MA
k,1 +

∑m
i 6=k(−1)i+1r · ai,1 ·MA

i,1

= r ·
(

(−1)k+1ak,1M
A
k,1 +

∑m
i 6=k(−1)i+1ai,1 ·MA

i,1

)
= r · detA.

Lemma 94. Let A,C be matrices with entries in a commutative ring R. If C is obtained from
A by replacing row k with “row k plus r times row h”, for some h 6= k and some r in R, then
detC = detA.

Proof. Let B be the matrix obtained from X by replacing row k with r times row h. Let B′ be
the matrix obtained from A by replacing row k with row h. From Lemma 87, we have

detA+ detB = detC.

So we have to show that detB = 0. But B is obtained from B′ by multiplying by r a single row
of B′; thus detB = r · detB′ by Lemma 93; and B′ has two equal rows (namely, rows h and k),
so detB′ = 0 by Lemma 88.

Proposition 95. Let R be any ring. The three elementary matrices have determinant

detEi,j = −1, detEi(r) = r, detEi,j(r) = 1.

Proof. Apply Lemmas 91, 93, and 94 to A = Im, which has determinant 1.
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Lemma 96. Let E be an elementary m×m matrix. Let B be any m×m matrix. Then

det(EB) = detE · detB.

Proof. We simply check in all three cases. If E = Eij , then EB is obtained from B by swapping
rows i and j, so indeed detE = −1 by the previous proposition, and det(EB) = −detB
by Lemma 91. If E = Ei(r) with r invertible, then detE = r by the previous proposition,
and det(EB) = r detB by 93. Finally, if if E = Ei(z) with z 6= 0, then detE = 1 and
det(EB) = detB by Lemma 94.

Theorem 97 (Cauchy–Binet for fields). For any two m ×m matrices A,B with entries in a
field F,

det(AB) = detA · detB = det(BA).

Moreover, A is invertible if and only if detA 6= 0.

Proof. By Gauss–Jordan theorem, we can write

Ek Ek−1 · · ·Ek A = M

for some elementary matrices Eh and some RRE square matrix M . By Theorem 36 , there are
two cases:
(a) if Ek Ek−1 · · ·E2E1A = In, then A = E−11 E−12 · · ·E−1k−1E

−1
k , so A is a product of elementary

matrices. In this case by repeated application of Lemma 96 we get

det(AB) = det(E−11 E−12 · · ·E
−1
k B) = det(E−11 ) det(E−12 · · ·E−1k B) = . . .

= det(E−11 ) det(E−12 ) · · · det(E−1k ) detB

= det(E−11 E−12 ) det(E−13 ) · · · det(E−1k ) detB = . . .

= det(E−11 E−12 · · ·E−1k ) det(B) = detAdetB.

(b) if Ek Ek−1 · · ·E2E1A has a row of zeroes, then so does (Ek Ek−1 · · ·E2E1A)B, because of
how the row-by-column product is defined. So by Lemma 88 det((Ek Ek−1 · · ·E2E1AB) =
0. But again by repeated application of Lemma 96 we get

0 = det(Ek Ek−1 · · ·E2E1AB) = detE1 detE2 · · · detEk det(AB).

Since on the right hand side the first k factors of the are nonzero, it follows that det(AB) = 0.
Analogously,

0 = det(Ek Ek−1 · · ·E2E1A) = detE1 detE2 · · · detEk detA,

which implies detA = 0.
So the formula det(AB) = detA · detB is proven. Since detA and detB live in a commutative
ring R, it follows that

det(BA) = detB · detA = detA · detB.

As for the second claim: We just saw that when A is not invertible, detA = 0. Conversely, when
A is invertible, since detAdetA−1 = det(AA−1) = 1 it must be detA 6= 0.

Remark 98. The proof of Theorem 97 gives an algorithmic, explicit way to compute the
determinant of a square matrix A with entries over a field. The idea is to reduce A to a
matrix in RRE form via the Gauss–Jordan algorithm. If the resulting RRE matrix has a row of
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zeroes at the bottom, then detA = 0. If instead the resulting RRE matrix is the identity, then
keeping track of the performed operations we can write

E`E`−1 · · ·E1E0A = Im,

or in other words

A = (E`E`−1 · · ·E1E0)
−1 = (E0)

−1(E1)
−1 · · · (E`)−1,

whence by Theorem 97 we get

detA = (detE0)
−1(detE1)

−1 · · · (detE`)
−1.

So what do we do to compute the determinant, if the ring R is not a field, e.g. if R = Z? For
R = Z there is a nice strategy available: just view the entries as elements of Q, and compute the
determinant over Q via matrix reduction. In the end, any fractions you might have generated
along the way will simplify, and you will get an integer, because if all entries of a matrix are
integers, so is detA. This “trick” of finding a larger field your ring is contained into, is however
not always possible: it only works for domains, i.e. rings where rs = 0 implies that either r = 0
or s = 0. (Since fields are domains, and subrings of domains are themselves domains, it won’t
possible for a non-domain R to be contained in any field.)

Remark 99. Theorem 97 does extend also to matrices with entries over any commutative ring,
but one has to be careful in how to generalize the second part: For example, in the world of
1× 1 matrices with entries in Z, 2 is not invertible, but its determinant is 2, not 0. The correct
generalization of the second part is that “A is invertible if and only if detA is invertible”,
cf. Theorem 106.

2.3 Cofactor expansions, adjoint matrices, and Cauchy–Binet for rings

To finish this chapter, it remains to reconcile the definition of determinant given here with the
more general, but ambiguous one, given in Anton’s book. We do this for all matrices with entries
over a commutative ring.

Theorem 100. For any square matrix A with entries in a commutative ring, one has

detA = detA>.

First proof. The statement is obviously true for 1 × 1 matrices, and easily shown for 2 × 2
matrices, for which we see already the importance of the commutativity assumption:

det

(
a b
c d

)
= ad− cb = ad− bc = det

(
a c
b d

)
.

For m ≥ 3, we will show the equivalent statement that the determinant of A (defined as a
cofactor expansion along the first column) equals also the cofactor expansion along the first row.
In other words, we will prove that

m∑
i=1

(−1)i+1 · ai,1 ·MA
i,1 =

m∑
j=1

(−1)1+j · a1,j ·MA
1,j ,
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where MA
1,j is the determinant of the (m − 1) × (m − 1) matrix obtained from A by removing

the 1-st row and the j-th column. In fact, the i = 1, j = 1 option gives the same summand on
both sides, so the equation above can be simplified: we have to show that

m∑
i=2

(−1)i+1 · ai,1 ·MA
i,1 =

m∑
j=2

(−1)1+j · a1,j ·MA
1,j . (1)

The idea to complete the proof is now to fix i, j ≥ 2, and compare the terms containing ai,1a1,j
on both sides of Equation 1 . I took this proof from ximera.osu.edu/oerlinalg.

Fix i ≥ 2 and focus only of the term ai,1. In the left hand side, it appears only in the term

(−1)i+1ai,1M
A
i,1 = (−1)i+1ai,1 detA−i,−1 = (−1)i+1ai,1 det(A−i,−1)

>,

where the last step is justified by the fact that A−i,−1 has size (m−1)× (m−1). In other words,
we are allowed to evaluate detA−i,−1 by cofactor expansion on the first row. We just have to
be careful about the subscripts: Since the first column of A was removed, the j-th column of A
contains the (j − 1)-st column of A−i,−1. So on the left hand side of Equation 1, ai,1 appears in
an expression equal to

(−1)i+1ai,1

[
(−1)1+1a1,2 det(A−i,−1)−1,−1 + . . .+ x(−1)1+(j−1)ai,1 det(A−i,−1)−1,−(j−1) + . . .

]
and more importantly, for fixed j ≥ 2, ai,1a1,j appears only in the term

(−1)i+1ai,1

[
a1,j(−1)1+(j−1) det(A−i,−1)−1,−(j−1)

]
,

which can be rewritten as

(−1)i+j+1ai,1a1,j det(A−i,−1)−1,−(j−1). (2)

This complete our analysis of the left hand side of Equation 1. Now let us check how ai,1a1,j
appears in the right hand side of Equation 1. First of all, a1,j appears only in the quantity

(−1)1+ja1,jM
A
1,j = (−1)1+ja1,j detA−1,−j .

If we can expand detA−1,−j the usual way (along the first column), we get that the quantity
above equals

(−1)1+ja1,j

[
(−1)1+1a2,1 det(A−1,−j)−1,−1 + . . .+ (−1)(i−1)+1ai,1 det(A−1,−j)−(i−1),−1 + . . .

]
.

More importantly, for fixed i ≥ 2, ai,1a1,j appears only in the term

(−1)1+ja1,j

[
ai,1(−1)(i−1)+1 det(A−1,−j)−(i−1),−1

]
,

which simplifies to
(−1)i+j+1ai,1a1,j det(A−1,−j)−(i−1),−1. (3)

If we compare equations (2) and (3), we see that we have obtained the same quantities: In fact,
let B the matrix obtained by deleting the first and the ith row of A, and the first and the jth
column of A. According to the order of the deletions, if we first delete row i and column 1,
then in the next step we have to delete row 1 and column j − 1 (!), so B = A−i,−1)−1,−(j−1). If
instead we first delete row 1 and column j, then in a second round we should delete column 1
and the row now called i− 1, so we see that B = (A−1,−j)−(i−1),−1.
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Second proof, valid only for entries in a field. For matrices A with entries in a field, a much
simpler proof that detA = detA> is available, using the Gauss-Jordan reduction and Cauchy–
Binet’s theorem. First you verify that detE = detE> for every elementary matrix E, which is
super-easy because

E>i,j = Ei,j , Ei(r)
> = Ei(r), Ei,j(r)

> = Ej,i(r).

Then we distinguish two cases: if A is not invertible, then neither is A> (because A>B = Im
would imply B>A = Im), so both detA and detA> equal zero by Theorem 97. If instead A is
invertible, then via Gauss-Jordan we can write

E`E`−1 · · ·E1E0A = Im,

whence by Cauchy-Binet’s Theorem 97we get detA = (detE` detE`−1 · · · detE1 detE0)
−1; but

also, if we transpose both sides we get

A>E>0 E
>
1 · · ·E>`−1E>` = Im,

whence by Cauchy-Binet’s Theorem 97 we get detA> = (detE>` detE>`−1 · · · detE>1 detE>0 )−1.

Since detE = detE> for all elementary matrices, we conclude that also in this case detA> =
detA.

Corollary 101. For matrices A with entries in any commutative ring R:
(i) If A has a zero column, detA = 0.
(ii) If A has two identical columns, detA = 0.
(iii) If C is obtained from A by multiplying all elements of some column by the same element r

in R, then detC = r detA.
(iv) If C is obtained from A by replacing column k with “column k plus r times column h”, for

some h 6= k and some r in R, then detC = detA.

Proof. (i) From Theorem 100 and Lemma 88.
(ii) From Theorem 100 and Lemma 92.
(iii) From Theorem 100 and Lemma 93.
(iv) From Theorem 100 and Lemma 94.

Theorem 102 (Cofactor expansion along any column of row). For any square matrix A, for
any fixed j ∈ {1, . . . ,m}, one has

detA =

m∑
i=1

(−1)i+j · ai,j ·MA
i,j ,

where MA
i,j, usually called “ the (i, j)-minor of A”, is the determinant of the (m− 1)× (m− 1)

matrix obtained from A by removing the i-th row and the j-th column. The formula above is
called “cofactor expansion along the j-th column of A”. And also, for fixed i ∈ {1, . . . ,m},

detA =
m∑
j=1

(−1)i+j · ai,j ·MA
i,j ,

a formula called “cofactor expansion along the i-th row of A”.
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Proof. By performing j − 1 swaps, move the column j to position 1. Let B be the matrix
obtained. By Lemma 91, we know that detA> = (−1)j−1 detB>; so by Theorem 100

detA = detA> = (−1)j−1 detB> = (−1)j−1 detB.

But by definition,
detB = (−1)i+1bi,1M

B
i,1 = (−1)i+1ai,jM

A
i,j .

Putting together the previous two equations, we conclude:

detA = (−1)j−1
m∑
i=1

(−1)i+1ai,jM
A
i,j =

m∑
i=1

(−1)i+j−2ai,jM
A
i,j =

m∑
i=1

(−1)i+jai,jM
A
i,j .

The second claim follows immediately from the first claim and the fact that detA = detA>.

Inverse of a matrix via the adjoint

The best method to find the inverse of a matrix is certainly via the Gauss–Jordan reduction.
However, since we made the effort to look into determinants and cofactor expansions, there is
a formula of some interest, particularly if the ring R of the entries is not a field (and so the
Gauss–Jordan reduction is unavailable).

Definition 103. Let A be an m×m matrix with entries in a commutative ring. The cofactor
matrix CA and its transpose, the adjoint matrix AdjA, are defined as follows:

C(A)i,j
def
= CAi,j = (−1)i+jMA

i,j = (−1)i+j detA−i,−j

AdjAi,j
def
= CAj,i = (−1)i+jMA

j,i = (−1)i+j detA−j,−i

Theorem 104. For any m×m matrix A with entries in a commutative ring R,

AAdjA = detA · Im.

In particular, if detA is invertible in R, A has an inverse, namely, (detA)−1 ·AdjA.

Proof. Let us call P the m×m matrix obtained from the row-by-column product AAdjA. By
definition,

Pi,j =
m∑
k=1

ai,k(AdjA)k,j =
m∑
k=1

ai,kCj,k =
m∑
k=1

(−1)j+kai,kM
A
j,k.

Now if i = j, we have

Pi,i =
m∑
k=1

(−1)i+kai,kM
A
i,k = detA

because of Theorem 102: It’s the cofactor expansion along the i-th row of A. It remains to see
that P (i, j) = 0 if i 6= j. That is completely not proven in Anton’s book, but the point is this:
consider the matrix B obtained from A by copy-pasting the i-th row into the j-th row of A. If
we compute the determinant of B along the j-th row, by Theorem 102 we get

detB =

m∑
k=1

(−1)j+kbj,kM
B
j,k.
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But B and A are identical except for the j-th row, so MB
j,k = MA

j,k; and by the way B was
constructed, bj,k = bi,k = ai,k. So the expression above becomes

detB =
m∑
k=1

(−1)j+kai,kM
A
j,k.

Now the right hand side is precisely the quantity we want to be zero. But since B has two equal
rows, by Lemma 92 we have detB = 0.

Theorem 105 (Cauchy–Binet for entries in Z). For any two m×m matrices A,B with entries
in the ring Z,

det(AB) = detA · detB = det(BA).

Moreover, A is invertible if and only if detA is ±1.

Proof. Since the entries of A are in Z, they are also in Q. So by viewing A,B as elements of
Mm,m(Q), Theorem 97 tells us that inside Q

det(AB) = detA · detB = det(BA).

A priori, as we said, this is an equality in Q. But both sides of the equality above can be computed
from the entries of A via sums and products; so this is actually an equality of elements in Z.
This shows the first part. Now if A is invertible within the world of matrices with entries in Z,
let B be its inverse: both detA and detB are integers, and by Cauchy–Binet

detAdetB = det(AB) = det Im = 1.

But the only integer divisors of 1 are ±1. So either detA and detB are both 1, or they are
both −1. As for the converse, this is given by Theorem 104: if detA = ±1, then Theorem
104 constructs an inverse matrix all of whose elements are in Z, because all entries of AdjA are
integers, and we only need to divide them by either 1 or −1.

This gives us the idea to extend Cauchy–Binet to arbitrary commutative rings.

Theorem 106 (Cauchy–Binet for fields). For any two m×m matrices A,B with entries in a
ring R,

det(AB) = detA · detB = det(BA).

Moreover, A is invertible if and only if detA is invertible in R.

Sketch of proof. For the first part, the idea is to use some abstract algebra, plus the proof of
Cuachy–Binet for fields that we already have. One calls domain a commutative ring R in which
if a product is zero, then one of the factors must be zero as well. For example, Z is a domain;
and every field is a domain. It can be seen that if R is a domain, so is the ring of polynomials
with coefficients in R and one variable x. We denote such ring by R[x]. Iterating the argument,
if a ring R is a domain, so is its ring of polynomials with coefficients in R and n variables. We
denote such ring by R[x1, . . . , xn]. For example, Z[x1, . . . , xn] is a domain. Now, given a domain
D, there is a canonical way to construct the smallest field containing D; the idea is to follow
the construction of Q from Z. That is, we consider the set of fractions

FD
def
=
{a
b

: a ∈ D, b ∈ D, b 6= 0
}

with the convention that we consider two fractions a
b ,

a′

b′ equal if ab′ = a′b. This set is called
field of fractions of D, and one can see that this is a field: Exactly like for the fractions you
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know, the inverse of an element a
b , with a 6= 0, is simply b

a . Now, the premise is over: We
want to show Cauchy–Binet for m × m matrices with entries in a commutative ring R. The
idea is to show it as an identity of polynomials with coefficients in Z. That is, we consider the
entries a1,1, . . . , am,m as m2 variables and to prove Cauchy–Binet as an identity for polynomials
in Z[a1,1, . . . , am,m]. But if we set D = Z[a1,1, . . . , am,m], then D is a domain for the reasons
mentioned above (it is a ring of polynomials with n = m2 variables over the domain Z), so we
can form its field of fractions FD. Inside FD, the identity by Cauchy–Binet will be true, because
we have proved it for matrices with entry in any field. But then since this both sides of this
identity are in D, the identity will hold for D as well. This establishes det(AB) = detA · detB.
As for the second part: if A is invertible, then detAdetA−1 = det(AA−1 = det Im = 1, so detA
is invertible. The converse implication is given by Theorem 104.

Lemma 107. Let A be a matrix with entries in a commutative ring. If A is upper triangular,
and i ≤ j + 1, then A−i,−j is upper triangular. Moreover, when i < j, detA−i,−j = 0.

Proof. We only have to prove the first statement; the second one follows by transposing. Set
M

def
= A−i,−j . Then

mh,k =


ah,k if h < i and k < j;
ah,k+1 if h < i and k ≥ j;
ah+1,k if h ≥ i and k < j;
ah+1,k+1 if h ≥ i and k ≥ j.

Now suppose that i ≤ j + 1 and h > k. This rules out the case “h < i and k ≥ j”, because we
would have

h < i ≤ j + 1 ≤ k + 1,

which (since they are integers) is the same as h ≤ k, contradicting h > k. But if h > k, all three
statements

h > k, h+ 1 > k, h+ 1 > k + 1

are true; so either way, looking at the formula above, mh,k is copy-pasted from an entry of A
with row-index larger that the column-index. But in the upper triangular matrix A, any element
below the diagonal is zero. So mh,k = 0. This proves that M

def
= A−i,−j is upper triangular. Now

suppose that i < j. The (i+ 1)-st row of A begins with at least i+ 1 zeroes; since the i-th row
of A is deleted, and j > i, all of these i+ 1 zeroes will be in the i-th row of M , which therefore
has a 0 on the main diagonal. But the determinant of an upper triangular matrix is the product
of its diagonal elements. If one of them is zero, the product is zero.

Note that the assumptions i ≤ j+ 1 and i < j are really necessary (and sharp bounds): The
3× 3 matrix E1,2(1) is upper triangular, but if we remove row 3 and column 1, what we get is
not upper triangular. And if from E1,2(1) we remove row 1 and column 1, what we get is I2,
which has determinant 1, not 0. As an exercise, you may show the “transpose statement”: if B
is lower triangular, and i ≥ j − 1, then B−i,−j is lower triangular; and if in addition i > j, then
detB−i,−j = 0.

Theorem 108. Let A be a square matrix with entries in a commutative ring.
(1) If A is upper triangular, so is the adjunct matrix AdjA.
(2) If A is upper triangular and invertible, so is its inverse A−1.
(3) If A is lower triangular, so is the adjunct matrix AdjA.
(4) If A is lower triangular and invertible, so is its inverse A−1.
(5) If A is diagonal, so is the adjunct matrix AdjA.
(6) If A is diagonal and invertible, so is its inverse A−1.
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Proof. All these statements follow from statement number (i). In fact (ii) follows from (i) via
the formula A−1 = (detA)−1 · AdjA. Moreover, (iii) and (iv) are easily obtainable from (i) and
(ii, respectively, by transposing. And then (v) follows from putting together (i) and (iii), while
(vi) follows from putting together (ii) and (iv). So, let focus on statement (i).

Let A be upper triangular (i.e. ai,j = 0 for all i > j). Recall that its cofactor matrix is

C(A)i,j
def
= CAi,j = (−1)i+jMA

i,j = (−1)i+j detA−i,−j .

But when i < j, A−i,−j is upper triangular with determinant zero, because of Lemma 107. So
when i < j, we have C(A)i,j = 0, which means that the cofactor matrix is lower triangular. So
its transpose, the adjunct matrix, is upper triangular.

2.4 Consequences on linear systems with coefficients in an infinite field

We introduce the determinant of square matrices. We defined it by cofactor expansion along
the first column, but it turns out that can be computed by cofactor expansion along any row
or column of your convenience4. In addition to the four properties we claimed at the beginning,
Cauchy–Binet’s theorem revealed a very important fact:

• det(AB) = detA · detB;
• A is invertible if and only if detA is invertible in R.

When R is a field, the second statement becomes, “A is invertible if and only if detA 6= 0.”
Now let us consider again the situation of a linear system Ax = b, with A,b matrices with

entries in an infinite field, like Q or R or C. (There are also finite fields: A field with two
elements is given in Example 3).

Proposition 109. Let A an m × m matrix and b an m × 1 matrix, both with entries in an
infinite field F.

• If detA 6= 0, then Ax = b has a unique solution, namely, x = A−1b.
• If detA = 0 and b = 0, then Ax = b has infinitely many solutions.
• If detA = 0 and b 6= 0, then Ax = b may have either infinitely many solutions, or none.

In particular, a linear system over an infinite field can only have 0 or 1 or +∞ solutions.

Proof. Part (i) is clear from Theorem 97, because if detA 6= 0, then A is invertible.
Part (ii) follows from Theorem 44: Since detA = 0, the Ax = b has more than one solution. So
it has a solution x 6= 0. But then for any element f ∈ F, f · x is also a solution, because

A(fx) = f(Ax) = f0 = 0.

So there at least as many solutions as elements of F: Using that F is infinite, we conclude.
As for Part (iii): Some systems, like the one below, have zero solutions(

1 0
2 0

)(
x1
x2

)
=

(
1
1

)
.

We claim though that if Ax = b 6= 0, with detA = 0, has one solution, then automatically it
must have infinitely many others. In fact, let y be any of the infinitely many solution of Ax = 0.
Then y + z is another solution of Ax = b, because

A(y + z) = Ay +Az = 0 + b = b.

Since y + z 6= y′ + z for y 6= y′, we conclude.
4This makes some previous result look simple, for example, that the determinant of a matrix equals the deter-

minant of its transpose, or that swapping consecutive rows brings a minus sign to the determinant. Technically
this is not a new proof though, because we used Lemma 91 and Theorem 100 for the proof of Theorem 102.
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3 General vector spaces

Definition 110 (Vector spaces). (cf. Anton, Ch. 4.1) Let F be a field. An F-vector space is
a set V together with an operation (v, w) 7→ v + w from V × V to V (called “sum”) and an
operation (λ, v) 7→ λv from F×V to V (called “scalar multiplication”) that satisfy the following
axioms:

(VS1) + is associative. That is, for all u, v, w in V , (u+ v) + w = u+ (v + w).

(VS2) + is commutative. That is, for all v, w in V , v + w = w + v.

(VS3) + has a unique neutral element. That is, ∃!z in V such that for all v in V , v + z = v.
We shall call this z “0”.

(VS4) Every element has a unique additive inverse. That is, for all v in V ∃!y in V such that
v + y = 0. We shall call this y “−v”.

(VS5) For all v in V and for all λ, µ in F, λ(µv) = (λµ)v.

(VS6) For all v in V and for all λ, µ in F, (λ+ µ)v = λv + µv.

(VS7) For all v, w in V and for all λ in F, λ(v + w) = λv + λw.

(VS8) For all v in V , 1v = v.

The elements of F are usually called scalars, whereas the elements of V are usually referred to
as vectors.

Remark 111. As with the “ring” axioms, in (VS3) and/or in (VS4) one might as well delete
the word ‘unique’: The resulting definitions would be equivalent.

Non-Example 112. With respect to the usual sum and product of fractions, Z is not a Q-vector
space. The reason is hidden not in the eight axioms, but in the first sentence: The operation
(λ, v) 7→ λv should go from Q× Z to Z, but 1

2 · 3 is not in Z.

Example 113. Any field F has a natural structure of vector space over any subfield G ⊆ F. In
fact, there is an obvious scalar multiplication

G× F −→ F
(λ, α) 7→ λα.

In particular (by choosing G = F), any field F is itself an F-vector space.

Example 114. With the usual operations of sum and product, R is an R−vector space and
also a Q-vector space. However, Q is a vector space over Q, but not over R. The reason is that
the product of one element in Q and one in R is necessarily in R, but not necessarily in Q.

Remark 115. We saw that there exists a field with two elements. Since a field must contain a
0 and a 1, and (according to the convention of these notes) they must be different, the smallest
field has two elements. That field is automatically a vector space over itself. However, it is not
the smallest vector space! The vector space axioms do not require the existence of a special
element different than 0 in V , so actually the set {0} is a vector space over any field. Not every
set is a vector space, though. For example, one can prove via field theory if a vector space has
finite size, that size must be a prime power So, a six-element set cannot be given the structure
of F-vector space, no matter what you pick for F, and no matter the operations.
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Example 116. Rn is an R-vector space. More generally, the Cartesian product Fn is an F-
vector space with the usual coordinate-wise sum and multiplication of (all entries of) a vector

by a scalar: λ · (x1, . . . , xn)
def
= (λx1, . . . , λxn).

Example 117. Let F be any field. Let m,n be positive integers. The set of m × n matrices
with entries in F is an F-vector space, with the usual entry-wise sum and multiplication of (all
entries of) a matrix by a scalar.

Example 118. Let F be a field. Let d be a natural number. Define

P (d,F)
def
= {a0 + a1x+ . . .+ adx

d : ai ∈ F}.

This is the set of all polynomials of degree ≤ d with coefficients in F, plus the polynomial 0
(which by some conventions does not have a degree, by some other conventions has degree −1).
This P (d,F) is an F-vector space: Any two polynomials of degree ≤ d sum up to a polynomial
of degree ≤ d, or possibly the zero polynomial. And if we multiply a polynomial of degree k by
a constant, we get either the zero polynomial if the constant is zero, or a polynomial of degree
k if the constant is nonzero.

Example 119. Let I ⊆ R be an arbitrary subset of the real line (typically I = N, or I an
interval). The set of functions f : I −→ R is an R-vector space with the operations

(f + g)(x)
def
= f(x) + g(x) and (λf)(x)

def
= λ · f(x).

Non-Example 120. (cf. Anton, Ch. 4.1, Ex. 7) On R2, with the usual sum, consider the
following “exotic scalar multiplication” ◦ : R× R2 → R2:

λ ◦ (x, y)
def
= (λx, 0).

This satisfies all axioms from (VS1) to (VS7), but not (VS8). So , R2 is not a vector space with
respect to componentwise sum and ◦.

Non-Example 121. On R2, with the usual sum, consider the “exotic scalar multiplication”
• : R× R2 → R2,

λ ◦ (x, y)
def
= λ2x, λ2y).

This satisfies all axioms, except (VS6).

Lemma 122 (Cancellation). Let F be a field. Let V be an F-vector space. For all u, v, w ∈ V ,
if u+ v = u+ w then v = w.

Proof. Add −u to both sides of the equation u+ v = u+ w.

Proposition 123. (cf. Anton, Theorem 4.1.1) Let F be a field. Let V be an F-vector space.
For all v ∈ V and for all λ ∈ F, one has:
(1) 0v = 0.
(2) λ0 = 0.
(3) (−1)v = −v.
(4) if λv = 0, then either λ = 0 or v = 0.

Proof. (1) Follows from 0v + 0v = (0 + 0)v = 0v, via the Cancellation lemma.
(2) Follows from λ0 = λ(0 + 0) = λ0 + λ0, via the Cancellation lemma.
(3) Follows from (−1)v + v = (−1)v + 1v = (−1 + 1)v = 0v = 0 by the item above.
(4) If λ 6= 0, since F is a field, λ is invertible. So we can multiply by λ−1 the equation λv = 0

obtaining 1v = λ−10. Or in other words, v = 0.
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3.1 Subspaces, spans, linearly independent sets and bases

Definition 124. A subspace of an F-vector space V is a nonempty subset W ⊆ V that is a
vector space with respect to the same operations (restricted to W ).

Proposition 125. (cf. Anton, Theorem 4.2.1) Let V be an F-vector space. Let W be a nonempty
subset of V . Then W is a subspace of V ⇐⇒ W satisfies

(SS1) for each w1, w2 in W , for each λ in F, the element w1 + λw2 is in W .

Proof. The ‘⇒’ direction is clear. For the opposite: the only interesting axioms to verify are
(VS3) and (VS4), as all others are trivially satisfied. Since W is nonempty, it has a vector w in
it. By choosing λ = 0 and w1 = w2 = w, we see that 0 is in W , so W satisfies (VS3). But then
by choosing w1 = 0 and λ = −1, we see that for any w2 in W , the element −1 ·w2 is also in W .
But by Proposition 123, item (3), this means that for any w2 in W , the element −w2 is also in
W . So W satisfies (VS4) as well.

Proposition 126. (cf. Anton, Theorem 4.2.4) The solution set of a homogeneous linear system
Ax = 0 of m equations in n real unknowns, is a subspace of Rn.

Proof. Let us use Proposition 125. Let x and y be two solutions. This means Ax = 0 and
Ay = 0. But then, for all λ in R, x + λy is also a solution, because

A(x + λy) = Ax + λAy = 0 + λ · 0 = 0.

Note that the word “homogeneous” is crucial. If Ax = b and Ay = b, then A(x + λy) =
b + λ · b, which is typically not equal to b when b 6= 0.

Definition 127. Let F be a field. Let V be an F-vector space. Let ∅ ( X ⊆ V be an arbitrary,
nonempty set. A linear combination of elements of X over F is an expression of the type

a1x1 + . . .+ anxn,

for some n ∈ N, for some a1, . . . , an in F, and for some x1, . . . , xn in X. A trivial linear
combination is one where all the ai’s are zero.

Theorem 128. (cf. Anton, Theorem 4.2.3) Let F be a field. Let V be an F-vector space. Let
∅ ( X ⊆ V . The set of all linear combinations of elements of X is a subspace of V , called
span(X). It is the smallest subspace of V that contains X.

Proof. Let us define span(X)
def
= {a1x1 + . . .+ anxn : n ∈ N, ai ∈ F, xi ∈ X}. Let us prove that

this is a subspace using Proposition 125. Let λ be in F. Let w1, w2 be in span(X). This means
that w1 = a1x1 + . . .+ a`x` and w2 = b1y1 + . . .+ bmym, for some ai, bj in F and some xi, yj in

X. If we set n
def
= `+m, and for all j ∈ {1, . . . ,m} we also set x`+j

def
= yj and a`+j

def
= λbj , we get

w1 + λw2 = a1x1 + . . .+ a`x` + λb1y1 + . . .+ λbmym
= a1x1 + . . .+ a`x` + a`+1x`+1 + . . .+ a`+mx`+m
= a1x1 + . . . + anxn,

which means that w1 + λw2 is also in span(X). So span(X) is a subspace. Now, clearly
X ⊆ span(X), as any x in X can be written as 1 · x. Also, any subspace that contains X, must
contain all expressions of the type a1x1 + . . .+ anxn, if the ai’s are chosen in F and the xi’s are
chosen in X; which tells us that the smallest subspace containing X is span(X).
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Definition 129. Let F be a field. Let V be an F-vector space. Let X ⊆ V be an arbitrary set
of vectors (possibly infinite, possibly empty). We say that X is:

• linearly independent (LI), if for any n ∈ N, for any vectors x1, . . . , xn in X and for any
scalars a1, . . . , an in F, the following holds:

if a1x1 + . . .+ anxn = 0, then a1 = a2 = . . . = an = 0.

In other words, X is LI if and only if the only linear combination of finitely many elements
of X that equals zero, is the trivial one.

• a set of generators for V , if for every v in V one can find finitely many elements a1, . . . , an
of F and elements x1, . . . , xn of X ⊆ V such that

v = a1x1 + . . . anxn.

In other words, if every element of V can be written as a linear combination of finitely
many elements of X.

• a basis for V , if it is both LI and a set of generators.

Remark 130. “X is a set of generator for W” is synonymous with “span(X) ⊇ W”, not with
“span(X) = W”. We usually say that “X spans W” whenever “span(X) = W”. Beware of the
expression “X generates W”, because some authors use it in the sense of “span(X) = W” and
some others in the sense of “span(X) ⊇W”. We shall avoid the expression altogether.

Example 131. (cf. Anton, Theorem 4.3.2)
• The empty set is LI, but it is not a set of generator of any subspace.
• A one-element set X = {x} is LI if and only if v 6= 0.
• A two-element set is LI if and only if neither vector is a scalar multiple of the other.
• Any set (finite or not) X ⊆ V that contains the zero vector, is not LI. In fact, λ0 = 0 for

all values of λ ∈ F, and not just for λ = 0.

Proposition 132. Let V be an F-vector space. Let X ⊆ Y ⊆ V .
(1) If Y is LI, so is X.
(2) If X is a set of generators for V , so is Y .

Proof. Both items follow immediately from the observation that if X ⊆ Y ⊆ V , then any linear
combination of elements of X is also a linear combination of elements of Y .

Note: Anton’s book defines the three notions (LI, set of generators, basis) only when X is
finite. Here is a proof that the definitions of Anton’s book agree with ours, when we restrict
ourselves to the finite case:

Proposition 133. Let X = {x1, . . . , xm} be a finite set in an F-vector space V . The following
two statements are equivalent to one another:

(i) X is LI;
(ii) the only scalars a1, . . . , am in F for which a1x1+. . .+amxm = 0 are a1 = a2 = . . . = am = 0.

Moreover, the following two statements are equivalent to one another:
(a) X is a set of generators for V .
(b) for each v in V , there are scalars a1, . . . , am in F for which a1x1 + . . .+ amxm = v.
Finally the following two statements are equivalent to one another:
(1) X is a basis for V ;
(2) for each v in V there is a unique choice of m scalars a1, . . . , am in F such that a1x1 + . . .+

amxm = v.
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Proof. ‘(i) ⇒ (ii)’ is obvious: the LI definition works for all n, so in particular with n = m.
‘(ii) ⇒ (i)’: Suppose n ≤ m, and a1x1 + . . .+ anxn = 0. Then a1x1 + . . .+ anxn + 0xn+1 + . . .+
0xm = 0. But this is a linear combination of x1, . . . , xm, so by the assumption a1 = . . . = an = 0.
‘(a)⇒ (b)’: Up to relabeling, suppose v is a linear combination of x1, . . . , xn, with n < m. Then
we can also write v = a1x1 + . . .+ anxn + 0xn+1 + . . .+ 0xm, so v is also a linear combination
of x1, . . . , xm.
‘(b) ⇒ (a)’: this is obvious, take n = m. ‘(1) ⇒ (2)’: Suppose a1x1 + . . . + amxm = v =
b1x1 + . . .+ bmxm, with the ai’s and the bi’s in F. Then

(a1 − b1)x1 + . . .+ (am − bm)xm = 0.

But since {x1, . . . , xm} is LI, we must have a1 = b1, . . . , am = bm.
‘(2) ⇒ (1)’: clearly {x1, . . . , xm} is a set of generators. By contradiction, suppose c1x1 + . . . +
cmxm = 0 for some scalars c1, . . . , cm that are not all zero. Then

(a1 + c1)x1 + . . .+ (am + cm)xm = (a1x1 + . . .+ amxm) + (c1x1 + . . .+ cmxm) = v + 0 = v

is another way to write v as linear combination of {x1, . . . , xm}. For these last two implications,
see also Anton, Theorem 4.4.1.

Example 134. Inside V = R3, an R-vector space, let X = {e1 = (1, 0, 0), e2 = (0, 1, 0)}. This
X is LI because none of the two vectors is a scalar multiple of the other. X is not a set of
generators for R3, because any linear combination of e1 and e2 will have third coordinate zero.
However, consider W

def
= R2×{0}. This is a subspace of R3 (check!) that contains X. Since any

element of the form (a, b, 0) can be written as (a, b, 0) = a(1, 0, 0) + b(0, 1, 0) = ae1 + be2, our X
is a set of generators for W .

3.2 Different bases, same cardinality

Lemma 135 (‘Plus-minus lemma’). (cf. Anton, Theorem 4.5.3) Let V be an F-vector space.
Let X be a subset of V (finite or not).
(1) if X is LI, then for any v ∈ V not in X,

v /∈ span(X)⇐⇒ X ∪ {v} is LI .

(2) if X is not LI, then there is an x in X such that

spanX = span(X − {x}),

where X − {x} is the set obtained removing x from X.

Proof. (1), ⇐: Were v in span(X), we could find b1, . . . , bn ∈ F and x1, . . . , xn in X such that

b1x1 + . . .+ bnxn = v.

But then the expression
b1x1 + . . .+ bnxn − v = 0

would contradict the assumption that X ∪ {v} is linearly independent.
(1), ⇒: Suppose that for some a1, . . . , an, an+1 ∈ F, and for some x1, . . . , xn from X,

a1x1 + . . .+ anxn + an+1v = 0.
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If an+1 = 0 then the linear independence ofX implies that all ai’s are zero, and we are done.

If instead an+1 6= 0, dividing the expression above by −an+1 and setting bi
def
= ai(an+1)

−1

we obtain
b1x1 + . . .+ bnxn = v,

which contradicts the assumption v /∈ span(X).
(2): By the assumption, we can find scalars a1, . . . an not all zero and vectors x1, . . . , xn inside

X such that
a1x1 + . . .+ anxn = 0.

For any i such that ai is not zero, we can take aixi to the right hand side and divide
by −ai; the result is an equation that expresses xi as a linear combination of the other
vectors.

Lemma 136 (Steinitz Exchange Lemma). Let F be a field. Let V be a F-vector space. Suppose
that L = {`1, . . . , `m} is a LI set in V , and G = {g1, . . . , gn} is a set of generators for V . Then
for all k ∈ {0, . . . ,m}, one has k ≤ n, and up to relabeling the elements of G, one has

V = span(`1, . . . , `k, gk+1, . . . , gn).

In particular (choosing k = m), one has m ≤ n.

Proof. By induction on k. The case k = 0 is clear. Suppose the claim holds for some k < m,
and let us prove it for k + 1. Since

`k+1 ∈ V = span(`1, . . . , `k, gk+1, . . . , gn),

we can find elements a1, . . . , an in F such that

uk+1 =

k∑
j=1

aj`j +

n∑
j=k+1

ajgj . (4)

But since the `j ’s are linearly independent, at least one of {ak+1, . . . , an} must be nonzero. This
already implies k + 1 ≤ n. Up to relabeling the elements `k+1, . . . , `n, we will assume that
ak+1 6= 0. But then we can rewrite Equation 4 as

`k+1 −
k∑
j=1

aj`j −
n∑

j=k+2

ajgj = ak+1gk+1,

and dividing by ak+1 6= 0, we obtain that

gk+1 is in span(`1, . . . , `k, `k+1, gk+2, . . . , gn).

On the other hand, Equation 4 also tells us that

`k+1 is in span(`1, . . . , `k, gk+1, gk+2, . . . , gn).

So we conclude that

span(`1, . . . , `k, `k+1, gk+2, . . . , gn) = span(`1, . . . , `k, gk+1, gk+2, . . . , gn).

But our inductive assumption was that V = span(`1, . . . , `k, gk+1, gk+2, . . . , gn), and what we
wanted to show is that V = span(`1, . . . , `k, `k+1, gk+2, . . . , gn). So we are done.
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Theorem 137 (Equal cardinality of bases). (cf. Anton’s Theorems 4.5.1, 4.5.4, 4.5.5) Let V
be a F-vector space that has a finite set of generators.
(1) Any finite set of generators for V contains a basis of V .
(2) Any LI set in V is contained in a basis of V .
(3) Any two bases of V have the same number of elements, which we shall call “ dimF V ”.
(4) Any set with more than dimF V vectors of V is linearly dependent.
(5) Any set with less than dimF V vectors of V does not span V .
(6) Any LI set with exactly dimF V vectors is a basis.
(7) Any set of generators of V with exactly dimF V vectors is a basis.

Proof. Let k be the size of a finite set of generators for V .
(1) Let X be a finite set of generators for V . If X is LI, it is a basis, and we are done. Otherwise,

by Lemma 135 we can find a vector x0 in X such that

V = spanX = spanX1, where X1
def
= X − {x0}.

If this X1 is LI, we stop; if not, we find an x1 in X such that

V = spanX = spanX1 = spanX2, where X2
def
= X1 − {x1}.

And so on. At each iteration, we discard one element from X. Since X is finite, at some
point the algorithm terminates, and we have a basis.

(2) By Steinitz’ Exchange Lemma V cannot contain LI sets with more than k elements. So,
let X be a (necessarily finite) LI set in V . If span(X) ( V , then X is the desired basis. If
instead span(X) ( V , choose an element v1 in V outside span(X) and set

X1
def
= X ∪ {v1}.

This X1 is still LI by Lemma 135. If X1 is a basis, we stop; otherwise, we repeat the
argument above, choose a v2 in V outside span(X1) and set

X2
def
= X1 ∪ {v2} = X ∪ {v1, v2}.

And so on. The algorithm cannot go on expanding the LI set forever, because we cannot
have LI sets with more than k elements. So eventually it must stop, yielding a basis.

(3) First of all, we claim that because V has a finite set of k generators, then all LI sets in
V must be finite. In fact, if V contained a LI sets L with infinitely many elements, by
Proposition 132 any (k + 1)-element subset of L would be still LI, in contradiction with
Steinitz’ Exchange Lemma. So the claim is proven; in particular, all bases of V must be
finite. Now if {v1, . . . vm} and {w1, . . . , wn} are both bases, then in particular {v1, . . . vm}
is LI and {w1, . . . , wn} is a set of generators, so by Steinitz’ Exchange Lemma m ≤ n; but
also, {w1, . . . , wn} is LI and {v1, . . . vm} is a set of generators, so again by Steinitz’ Exchange
Lemma n ≤ m. So m = n.

(4) Were the set LI, we could expand it to a basis with more than dimF V elements.
(5) Were the set spanning V , we could extract from it a basis with less than dimF V elements.
(6) Were the set not spanning V , we could expand to a basis with more than dimF V elements.
(7) Were the set not LI, we could extract from it a basis with less than dimF V elements.

With minimal modifications, these facts are basically also true for vector spaces that do not
have a finite set of generators. The proof is not algorithmic and requires a Lemma from set
theory, which we state without proof:
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Lemma 138. Let (Ej)j∈J be finite sets, not necessarily disjoint, all contained in some set I.
Let U be the union of the Ej. Then:

• If J is finite, then so is U .
• If J is infinite, then so is U . Moreover, U is in bijection with J .

Theorem 139. Let V be an arbitrary F-vector space.
• Any set of generators for V contains a basis of V .
• Any LI set in V is contained in a basis of V .
• Between any two bases of V , there is a bijection.

Sketch of proof. • The family of generating sets for V is a nonempty family that can be
partially ordered by inclusion. So it has at least one minimal element. Let B be any
minimal element. This B must be LI, for otherwise a linear dependence would tell us (via
Lemma 135) that there is some v in B such that spanB = span(B−{v}); so B−{v} would
be a set of generators for V strictly smaller than B, a contradiction with the minimality
of B. So B is an LI set of generators for V , or in other words, a basis of V .

• Let X be an LI set. Let C be the family of LI sets that contain X. Since C is a nonempty
family that can be partially ordered by inclusion, it has one or more maximal elements.
Let B be any maximal element. The span of B must be the whole V , because otherwise
we could pick an element v in V outside span(B) and obtain via Lemma 135 that B ∪{v}
is still LI; a contradiction with the maximality of B. So B is a basis.

• We have already proven the claim in case V has a finite generating set. It only remains
to discuss the case in which V has bases (ui)i∈I and (xj)j∈J , with I, J both infinite. By
definition of “ (ui)i∈I is a basis”, every xj can be written as

xj =
∑
i∈Ej

aijui, for some finite subsets Ej of I. (5)

Let U ⊆ I be the union of all Ej . We claim that U = I. From the claim, the conclusion
follows immediately by the previous Lemma, which tells us that U is in bijection with J .
So let us prove the claim by contradiction.
Let k be an element of I that does not belong to U . So, k does not belong to any of the
Ej . Consider uk, the corresponding element of the basis (ui)i∈I for V . Since uk is in V ,
and (xj)j∈J form a basis, we can express uk as linear combination of the xj ; from that
expression, using Equation 5, we can in turn replace each xj as a linear combination of
only some of the ui’s, with uk missing out, because it does not belong to any of the Ej . So
in conclusion, we can write uk as a linear combination of the other ui’s. This contradics
the fact that the ui’s are a basis.

We conclude with a very useful “basis criterion for Rn”, valid for any positive integer n.

Theorem 140. (implied by Anton’s Theorem 4.8.8) Let F be a field. Let n be any positive
integer. Let v1, . . . ,vn be vectors in Fn, which means that each vi can be viewed as a column of
n scalars. Let A be the square matrix obtained by juxtaposing the columns vi, i.e.

A
def
= (v1|v2| . . . |vn) .

Then detA 6= 0 if and only if v1, . . . ,vn are a basis of Fn.

Proof. First of all, notice that Fn has dimension n. In fact, if ei is the vector with a 1 in position
i and 0 in all other positions, then it is easy to see that

{e1, . . . , en}
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form a basis of Fn. So by Theorem 137, any LI set of n vectors in Rn is a basis.
Now let x = (x1, . . . xn)> be a solution of the system Ax = 0. Since the columns of A are

v1, . . . ,vn, the equation Ax = 0 can also be written as

x1v1 + x2v2 + . . .+ xnvn = 0.

So detA 6= 0 if and only if the system Ax = 0 admits only the x = 0 solution; if and only if the
only linear combination of the columns of A yielding zero, is the trivial one; if and only if the
set of the n vectors v1, . . . ,vn in the n-dimensional space Fn is LI; if and only if {v1, . . . ,vn} is
a basis.

Example 141. Do the vectors (1, 2, 3), (4, 5, 6) and (7, 8, 9) span R3? Well,

det

 1 4 7
2 5 8
3 6 9

 = 1 det

(
5 8
6 9

)
− 2 det

(
4 7
6 9

)
+ 3 det

(
4 7
5 8

)
= −3 + 12− 9 = 0,

so they don’t.

Remark 142. We chose to position the 3 vectors in R3 above as columns. Some other authors
prefer to position them as rows. Nothing changes, of course, since detA = detA> for all square
matrices A.

This is a nice trick. Unfortunately, it only works for exactly n vectors in Rn. But what if
we have a set X of 4 vectors in R3, say? How do we know if X spans R3? Well, we could argue
that they do span R3 if and only if we can extract a basis from X. In other words, if we form a
3× 4 matrix whose columns are the vectors in X, the question boils down to: Does this matrix
have a 3× 3 submatrix with nonzero determinant?

Even more generally, suppose we have k vectors in Rn, and suppose that they do not span
Rn. We may wonder: What is the dimension of the space they span, then? It could be any
number between 0 and n−1. Is there a way to read off this number from the k×n matrix whose
columns are the given k vectors? The answer is in the next section, where we will generalize
and understand Theorem 140 deeper.

3.3 Grassmann’s formula, linear maps, and the rank

It is easy to see that the intersection of two or more subspaces is a subspace:

Proposition 143. (cf. Anton, Theorem 4.2.2) Let (Mi)i∈I be a family of subspaces of some
F-vector space V . Their intersection is also an F-vector space.

Proof. If a, b belong to the intersection, they belong to each Mi. Since each Mi is a subspace, for
all λ ∈ F, a+ λb belongs to Mi. So a+ λb belongs to the intersection of all Mi. By Proposition
125, we conclude.

Obviously M ∩N is the largest subspace contained in both M and N (the smallest being {0}).
But what is the smallest subspace containing both M and N (the largest being all of V )?

Remark 144. The ‘easy’ answer, M ∪N , is wrong. In fact, the union is usually not a subspace.
For example think of V = R2, M = span(e1), M = span(e2). Then M ∪N is the two Cartesian
axes together. However, this is not a vector space, because e1 + e2 does not belong to it. So
it’s not closed with respect to addition.
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Definition 145. Let M,N be subspaces of some F-vector space V . Set

M +N
def
= {x+ y : x ∈M,y ∈ N}.

If M ∩N = {0}, we sometimes write M ⊕N instead of M +N .

Lemma 146. M +N is the smallest subspace of V that contains both M and N .

Proof. Exercise. Hint: First show via Proposition 125 that M +N is a subspace. Then writing
x = x + 0 show that M ⊆ M + N , and similarly writing y = 0 + y show that N ⊆ M + N .
Finally, consider any subspace W that contains both M and N , and show that W must contain
all sums of the form x+ y, if x is in M ⊆W and y is in N ⊆W .

Lemma 147. If X is a set of generators for M and N is a set of generators for N , then X ∪Y
is a set of generator for M +N .

Proof. It is clear that span(X ∪ Y ) contains both span(X) = M and span(Y ) = N . Now let W
be a subspace of V that contains both M and N . Consider any expression of the form

a1x1 + . . .+ amxm + b1y1 + . . .+ bnyn,

with m,n ∈ N, a1, . . . , am, b1, . . . , bn in F, x1, . . . , xm in X, and y1, . . . , yn in Y . Since a1x1 +
. . .+ amxm is in M ⊆W and b1y1 + . . .+ bnyn is in N ⊆W , the expression above is in W . But
then W contains span(X ∪ Y ).

Corollary 148 (Grassmann’s formula). Let M,N be subspaces of some F-vector space. If dimM
and dimN are finite, one has

dim(M +N) = dimM + dimN − dim(M ∩N).

In particular, when M ∩N = {0}, one has dim(M ⊕N) = dimM + dimN .

Proof. Start with a basis z1, . . . , zn of M ∩ N . By Theorem 139, this can be expanded to a
basis x1, . . . , x`, z1, . . . , zn of M . Or, also, it can be expanded to a basis y1, . . . , ym, z1, . . . , zn
of N . We claim that B

def
= {x1, . . . , x`, y1, . . . , ym, z1, . . . , zn} is a basis for M +N . That B is a

generating set is easy to see; the difficult part is to show that B is linearly independent. Suppose

a1x1 + . . .+ a`x` + b1y1 + . . .+ bmym + c1z1 + . . .+ cnzn = 0. (6)

For convenience of notation, set

x
def
= a1x1 + . . .+ a`x`, y

def
= b1y1 + . . .+ bmym, z

def
= c1z1 + . . .+ cnzn.

Equation 6 tells us that x+ y + z = 0. But since x is in M and z is in M , so is y = −(x+ z).
At the same time y is N by definition, so y ∈M ∩N . Hence, we can write

y = d1z1 + . . .+ dnzn

for some scalars d1, . . . , dn in F. Since y = −(x+ z), we obtain

x+ z + d1z1 + . . .+ dnzn = 0.

Remembering what x and z stood for, this yields the combination

(c1 + d1)z1 + . . .+ (cn + dn)zn + a1x1 + . . .+ a`x` = 0.

But since x1, . . . , x`, z1, . . . , zn are linearly independent, all coefficients above are zero. In partic-
ular, a1 = . . . = a` = 0. Equation 6 becomes then a linear combination of y1, . . . , ym, z1, . . . , zn,
which are also linearly independent. So b1, . . . , bm and c1, . . . , cn must be zero as well.
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Definition 149. (cf. Anton’s Chapter 8.1) A linear map is a function T : V −→ W between
F-vector spaces that satisfies

T (λ1v1 + λ2v2) = λ1T (v1) + λ2T (v2).

Its kernel is kerT
def
= {v such that T (v) = 0}. Its image is imT

def
= {T (v) such that v ∈ V }. It is

easy to see that kerT is a subspace of V , whereas imT is a subspace of W .

Example 150. Let Pn be the R-vector space of polynomial functions

f(x) = a0 + a1x+ . . .+ anx
n

(of degree at most n). Then the derivative d
dx is a linear map from Pn to Pn−1. It is a surjective

map, so the image is the whole Pn−1; but it is not injective. The kernel of the derivative map
consists of the whole P0 (i.e. the constant polynomials).

Example 151. Let A be an m× n matrix with entries in F. Then ‘left-multiplication by A’

T : Fn −→ Fm
v 7−→ Av

is a linear map. Its kernel is

kerT = {x ∈ Fn such that Ax = 0}.

Its image is imT = {Ax : x ∈ Fn}, but it is convenient to rewrite it, with a trick already used
in Theorem 140, as follows: if x = (x1, . . . xn)>, and if v1, . . . ,vn are the columns of A, then

imT = {x1v1 + . . .+ xnvn : xi ∈ F} = span(v1, . . . ,vn).

The next result is sometimes called “rank–nullity theorem”, because some textbooks like to
refer to dim kerT as the “nullity” of T and to dim imT as the “rank” of T .

Theorem 152 (Rank-nullity theorem). (cf. Anton’s Theorems 4.8.2 and 8.1.4) Let V be a
finite-dimensional vector space. For any linear map T : V −→W ,

dim kerT + dim imT = dimV.

Proof. Set n
def
= dimV . Since kerT is a subspace of a finite-dimensional vector space, it has a

finite basis v1, . . . , vk. By Theorem 139, this basis can be expanded to a basis for V ; since all
bases of V must have the same number n of elements, this means that we can find a basis for V
of the form v1, . . . , vk, x1, . . . xn−k. But then in W we have

imT = span(T (v1), . . . , T (vk), T (x1), . . . T (xn−k)) = span (T (x1), . . . T (xn−k)) .

It remains to see that T (x1), . . . T (xn−k) is a linearly independent set. Suppose there are scalars
λ1, . . . , λn−k in F such that

λ1T (x1) + . . .+ λn−kT (xn−k) = 0.

The left hand side, by definition of linear map, equals T (λ1x1 + . . .+λn−kxn−k); so the formula
above tells us that λ1x1 + . . .+λn−kxn−k is in kerT , which is spanned by v1, . . . , vk. Unless the
λi’s are all zero, this contradicts the fact that v1, . . . , vk, x1, . . . xn−k are linearly independent.
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In case T is the left-multiplication by A discussed above, we obtain an important result.

Definition 153. Let A be an m× n matrix with entries in a field F.
• The rank of A is the dimension of the subspace of Fm spanned by its n columns.
• The nullity of A is dim{x ∈ Fn such that Ax = 0}, a subspace of Fn.

Corollary 154. (cf. Anton’s theorem 4.8.2) Given any m×n matrix A, the rank of A plus the
nullity of A equals n.

Proof. Apply the rank-nullity theorem to the map

T : Fn −→ Fm
v 7−→ Av

and see Example 151 for how to interpret dim imT as the dimension of the space spanned by
the columns of A.

Corollary 155. The rank of any m× n matrix is at most min(m,n).

Proof. By definition it is the dimension of a subspace of Rm, so it is at most m. By the rank-
nullity theorem, it is also at most n.

Corollary 156. (implied by Anton’s Theorem 4.8.8) Let A be a square m × m matrix with
entries in a field F. A has rank m if and only if it is invertible.

Proof. By the rank-nullity theorem, the rank of A is exactly m if and only if the nullity of A
is 0; if and only if the subspace {x : Ax = 0} is equal to {0}; if and only if Ax = 0 has only
x = 0 as solution; if and only if A is invertible.

It is possible to say something more about the rank, because of the following Lemmas:

Lemma 157. If M is an RRE matrix with entries in a field F, the following three quantities
are equal:

• the rank of M , i.e. the dimension of the span of the columns of M ;
• the rank of M>, i.e. the dimension of the span of the rows of M ;
• the number of leading ones in M ;
• the number of nonzero rows of M .

Proof. Let M be an m× n matrix. Suppose M has r leading ones, which by definition of RRE
matrix, are in the first r rows; so r is also the number of nonzero rows. Clearly r ≤ min(m,n).
The r columns of the leading ones have ones in different positions, so they form an LI set. This
shows that the rank of the space spanned by the columns of M is at least r. Moreover, the
bottom m− r rows are made of zeroes, so any column vector in M ends with m− r zeroes. So
the span of columns of M is a subset (in fact, a subspace) of

{x ∈ Fn : xm−r+1 = xm−r+2 = . . . = xm = 0},

which has dimension r. So the rank of M is at most r. Hence, the rank of M is exactly r. Now
let us look at the space generated by the rows of M . Since the last m − r rows are zero, such
space is generated already by the first r rows. It remains to see that the first r rows are linearly
independent. This is clear because the leading ones are the only nonzero entry in each column.
So the rows of M also span a space of dimension r.

Lemma 158. Let A be an m × n matrix with entries in a field F. Let B be an m × n matrix
obtained from A via an elementary row operation. Then:
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• The span of the rows of A is the same as the span of the rows of B.
• The span of the columns of A may be different than the span of the columns of B, but the

two subspaces have the same dimension.

Proof. The first item is easy and left to you. For the second item: Any linear dependence
between some columns of the matrix A can be expressed as we did above as a nonzero vector
x with Ax = 0. Now let E be an elementary matrix. Let B = EA. Then Bx = EAx = 0,
which expresses a linear dependence among the same columns of B. So if certain columns of A
are linearly dependent, the same columns in B are also linearly dependent. Conversely, if some
columns of B are linearly dependent, this means that there exists a nonzero vector y such that
By = 0. But then Ay = E−1By = E−10 = 0. So the same columns in A are linearly dependent.
In conclusion, if a set of columns is linearly independent (respectively linearly dependent) then
it remains so under an elementary row operation. Hence, one elementary row operation does
not change the size of the largest set of linearly independent columns. Finally, consider

A =

(
1 3
2 6

)
and B =

(
1 3
0 0

)
.

Then B is obtained from A by adding −2 times the first row to the second one. The span of
the columns of A consists of all multiples of the vector

(
1
2

)
, whereas the span of the columns

of B consists of all multiples of the vector
(
1
0

)
; so even if they both have dimension 1, they are

different subspaces.

Theorem 159. Let A be an m × n matrix with entries in a field F. The following quantities
are equal:

• the rank of A, i.e. the dimension of the span of the columns of A;
• the rank of A>, i.e. the dimension of the span of the rows of A;
• the size of the largest square submatrix of A with nonzero determinant.

Proof. Via elementary operations, let us reduce A to its RRE form M . By Lemma 158, this
does not change the rank. By Lemma 157, the rank of M is the number r of leading ones. This
shows that the rank of A is the number of leading ones in M . Moreover, by Lemma 158 the
space spanned by all the rows does not change at all when passing from A to M . But the space
spanned by the rows of M has also dimension equal to r.

So we proved that the first two quantities are equal. It remains to show that the number
r of leading ones in the RRE form of A is also the size of the largest square submatrix of A
with invertible determinant. From the space spanned by all n columns of A, extract a basis of r
elements any way you want. Let B be the m× r submatrix of A formed by those r LI columns
that span the same space spanned by all columns. Clearly B has also rank r. If r = m, we stop:
B is square and has maximum rank, so by Corollary 156 it has nonzero determinant. If r < m,
we apply to B the already proved equivalence of the first two quantities: The dimension of the
span of the rows of B is equal to the dimension of the span of its columns, namely, r. So pick r
rows of B that span such space and restrict to the submatrix C of B formed by them. This C
is now an r × r matrix with rank r, so by Corollary 156 it has nonzero determinant.

An important application of this is to linear systems of the form Ax = 0. Notice that if
A′ is obtained from A by appending to it a zero column on the right, then the reduction into
RRE form of A and of A′ involve multiplications with the same matrices. Now if A is an m× n
matrix, then:

• the rank of A is the number of leading ones in the RRE form of A, and also in the RRE
form of A′; they will correspond to the variables that are “determined” by the system, and
must be equal to zero in a solution.
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• the nullity of A is the dimension of {x ∈ Fn such that Ax = 0}, i.e. the number of free
parameters in a solution. These are the variables that can take an arbitrary value in a
solution.

So a system Ax = 0 of m equations in n unknowns, if r = rank(A), has a solution that
contains exactly n− r independent parameters (“degrees of freedom”).

The same analysis is true for a system Ax = b, except that this system might be impossible.
So the correct statement is: a system Ax = b of m equations in n unknowns, if r = rank(A),
is either impossible, or it has a solution that contains exactly n − r independent parameters
(“degrees of freedom”).

We conclude the section with a characterization of ranks of matrices.

Remark 160. Unlike the notion of “determinant”, we defined the notion of “rank” only for
matrices with entries in a field. Several inequivalent generalizations to commutative rings are
possible: See e.g. https://mattbaker.blog/2022/12/24/linear-algebra-over-rings/
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4 Orthogonality in Rn and in Rn, with R any ring

4.1 Orthogonal matrices and orthogonal vectors

Definition 161. Let A be a square, n × n matrix with entries in a commutative ring R. We
say that A is orthogonal if

A>A = In,

or equivalently, if the inverse of A is the transpose of A. We say that A is a rotation if it is
orthogonal, and detA = 1.

Note that if A is orthogonal, so is A>. Also: From Cauchy–Binet’s formula, if A is orthogonal,
then

(detA)2 = detA · detA = detA> · detA = det(A>A) = det In = 1.

So it could be that detA = 1, but if R = Z, for example, it could also be that detA = −1. Note
that if R is Z, Q, R or C, then in R the equation x2 = 1 has exactly two solutions (x = 1 and
x = −1); but there are rings like Z2 in which the equation x2 = 1 has only one solution, because
−1 = 1; and there are also rings in which the equation x2 = 1 has infinitely many solutions. For
example, in the ring R formed by the 2 × 2 diagonal matrices with entries in R, any element

At
def
=

(
1 t
0 −1

)
has the property that AtAt = I2.

Definition 162. The dot product of two vectors x, y in Rn is the element of R defined by

x • y
def
=

n∑
i=1

xiyi.

Of course, the four quantities xy>, x>y, y>x and yx> are all equal to
∑n

i=1 xiyi, so any of
these quantities can also be taken as definition of x • y.

Lemma 163. (cf. Anton’s Theorems 3.2.2 and 3.2.3) Let R be a commutative ring. Let u,v,w
be three vectors in Rn. Let r ∈ R. Then:
(a) u • v = v • u;
(b) u • (v + w) = u • v + u •w;
(c) r(u • v) = (ru) • v;
(d) 0 • v = 0.

Proof. Exercise.

Lemma 164. (cf. Anton’s formula 26 on Ch.3) Let R be a commutative ring. Let u,v be two
vectors in Rn. For any n× n matrix A with entries in R,

(Au) • v = u • (A>v).

Proof. (Au) • v = (Au)>v = u>A>v = u • (A>v).

Proposition 165. Let R be a commutative ring. Let A be an n× n matrix with entries in R.
A is symmetric if and only if for all u,v in Rn one has

(Au) • v = u • (Av).

Proof. Exercise.
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Proposition 166. (similar to Anton’s Theorem 7.1.3) Let R be any commutative ring. For an
n× n matrix A with entries in R, the following are equivalent:
(a) A is orthogonal;
(b) (Ax) • (Ay) = x • y, for all x,y in Rn.
Furthermore, if R is either Z or a field, this third statement is equivalent to the other two:
(c) (Ax) • (Ax) = x • x, for all x in Rn.

Proof. ‘(a) ⇒ (b)’: By Lemma 164, (Ax) • (Ay) = x • (A>Ay) = x • y.
‘(b) ⇒ (a)’: By Lemma 164, x • A>Ay = Ax • Ay = x • y. In other words, if we call B the
matrix A>A− In, for all x,y in Rn we have that

x>By = x>(A>A− In)y = x>A>Ay − x>y = x •A>Ay − x • y = 0.

In particular, this is true for x = ei and y = ej: but since

ei
>Bej = bi,j ,

we obtain that bi,j = 0 for all i, j. So B is the zero matrix and A>A = In.
This shows that (a) and (b) are equivalent; clearly, (b) implies (c) by taking x = y. Now
suppose that R is either Z or a field, and assume (c) holds. In particular, if we call B the matrix
A>A− In, for all x in Rn we have that

x>Bx = 0.

Apply this to x = ei + ej. This tells us that

0 = (ei + ej)
>B(ei + ej) =

= ei
>Bei + ei

>Bej + ej
>Bei + ei

>Bei
= 0 + bi,j + bj,i + 0,

which tells us that bi,j = −bj,i. But the matrix B is symmetric, because it is the sum of the
symmetric matrix A>A and of the diagonal matrix −I. So bi,j = bj,i. This tells us that 2bi,j = 0
for all i, j. By the assumptions on R, this implies that bi,j = 0 for all i, j.

Remark 167. If R = Z2, consider the matrix

A =

(
1 1
0 0

)
.

Then A is not orthogonal. However, for all x = (x, y)> in (Z2)
2, one has

(Ax) • (Ax) =

(
x+ y

0

)
•
(
x+ y

0

)
= x2 + 2xy + y2 = x2 + y2 = x • x.

So in the previous Proposition, when R is an arbitrary commutative ring, (c) might not imply
(b) and (a).

Definition 168. Two vectors x, y in Rn are orthogonal if x • y = 0. In particular, the zero
vector is orthogonal to any vector.

Theorem 169 (Pythagoras’s theorem). If x, y in Rn are orthogonal, then

(x + y) • (x + y) = x • x + y • y.
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Proof. We have
(x + y) • (x + y) = x • x + x • y + y • x + y • y,

but some of the summands are zero by assumption.

Definition 170 (Orthogonal and orthonormal sets). A set of vectors in Rn is called orthogonal
if the dot product of any two distinct elements in it yields 0. A set of vectors in Rn is called
orthonormal if it is orthogonal, and the dot product of any element with itself yields 1.

Theorem 171. (cf. Anton’s Theorem 7.1.1) Let A be an n × n matrix with entries in a com-
mutative ring R.
A is orthogonal ⇐⇒ its columns form an orthonormal set in Rn.

Proof. The (i, j)-element of A>A is exactly obtained as the dot product of the i-th row of A>

(which is the same as the i-th column of A) with the j-th column of A. So, saying that the
diagonal element (i, i) of A>A is 1, means that the dot product of the i-th column of A with
itself yields 1. Instead, saying that A>A has zeroes off the diagonal, is the same as saying that
for i 6= j, the dot product of the i-th column of A with the j-th yields 0.

Theorem 172. Let F be a field. Any orthonormal set in Fn is LI.

Proof. Suppose
a1x1 + a2x2 + . . .+ amxm = 0

for some ai’s in R and some x1, . . . ,xm in our orthonormal set. If we take the dot product of
the expression above with a single xi, we obtain

a1(x1 • xi) + a2(x2 • xi) + . . .+ ai(xi • xi) + . . .+ am(xm • xi) = 0,

which by the orthonormality assumption simplifies to ai(1) = 0.

Remark 173. An orthogonal set need not be LI, because it may contain the zero vector. Or
more generally, it may contain vectors whose scalar product with themselves is zero.

Is it possible to transform an orthogonal set “without the zero vector in it” into an orthonor-
mal set? Well, the idea would be to “normalize” the vectors, i.e. divide each vector x by the
quantity x • x. However, can we make sure that x • x is a number different than zero? The
scalar

x • x =
n∑
i=1

(xi)
2

is a sum of squares, but we are in an arbitrary field F, so we cannot conclude that if a sum of
squares is zero, then all numbers are zero. For example, if F = C, one has 12 + i2 = 0. So the
dot prodoct of the vector (1, i) with itself, is zero.

For these reason, it is particularly interesting to focus on Rn, as an R-vector space.

4.2 The case of the Euclidean space Rn

Inside Rn there is a dot product with the crucial property that

x • x > 0 if x 6= 0 (7)

(because it is a sum of squares). This property immediately triggers several others. For example:
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Definition 174. The norm (or length) of a vector x = (x1, . . . , xn)> in Rn is defined as

||x|| def=
√

x • x.

Remark 175. Clearly, ||x|| = 0 if and only if x = 0. Note also that ‖λx‖ = |λ| • ‖x‖. Finally,

note that for n = 1, ||x|| def=
√
x2 = |x|, so the norm coincides with the absolute value.

For Rn we can strengthen Theorem 172 as follows:

Theorem 176. (cf. Anton’s Thm 6.3.1) In Rn, any orthogonal set of nonzero vectors is LI.

Proof. Suppose
a1x1 + a2x2 + . . .+ amxm = 0

for some ai’s in R and some x1, . . . ,xm 6= 0 in our orthogonal set. If we take the dot product
of the expression above with a single xi, we obtain

a1(x1 • xi) + a2(x2 • xi) + . . .+ ai(xi • xi) + . . .+ am(xm • xi) = 0,

which by the orthogonality assumption simplifies to ai||xi||2 = 0. Since xi is not zero, this
implies ai = 0.

Here are two famous inequalities:

Theorem 177 (Cauchy–Schwarz inequality). For all vectors x,y in Rn one has

|x • y| ≤ ||x|| ||y||,

with equality if and only if {x,y} is linearly dependent.

Proof. The inequality above involves nonnegative numbers. Now, to show that two real numbers
a, b satisfy 0 ≤ a ≤ b, it suffices to show 0 ≤ a2 ≤ b2. So we are going to show that

(x • y)2 ≤ (x • x)(y • y),

where the inequality is strict if and only if {x,y} is LI. But a two-element set {x,y} is LI if and
only if y 6= 0 and x 6= λy for any λ in R. So we distinguish three cases:

• if y = 0, then (x • y)2 = 02 = 0 = (x • x)(y • y);
• if x = λy for some λ, then (x • y)2 = (λy • y)2 = λ2(y • y)2 = (λy) • (λy)(y • y) =

(x • x) (y • y);
• if instead y 6= 0 and x 6= λy for all λ, then by Equation 7 we have

0 < (x− λy) • (x− λy) = (x • x)− 2λ(x • y) + λ2(y • y).

Since the inequality above holds true for all λ, in particular it holds for λ = x•y
y•y , which

means

0 < (x • x)− 2
(x • y)2

y • y
+

(x • y)2

(y • y)2
y • y = x • x− (x • y)2

(y • y)
.

Multiplying by (y • y), which is positive by Equation 7, we get (x • y)2 < (x • x) (y • y).
This proves the inequality. Note that the inequality holds with equality in the first two cases,
but is strict in the third case.
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Theorem 178 (Triangle inequality). For any x,y vectors of Rn, one has

||x + y|| ≤ ||x||+ ||y||.

with equality if and only if one of the two vectors is a positive multiple of the other, or one of
the two vectors is zero.

Proof. Since λ ≤ |λ| for all λ ∈ R, in particular we have that for all x,y vectors of Rn

x • y ≤ |x • y|.

But then applying the line above and the Cauchy–Schwarz inequality we obtain

||x + y||2 = (x + y) • (x + y)
= (x • x) + 2(x • y) + (y • y)
≤ ||x||2 + 2|x • y|+ ||y||2
≤ ||x||2 + 2||x|| ||y||+ ||y||2 =
= (||x||+ ||y||)2.

This proves the inequality. To have equality, all steps above must be equality. In particular, we
also must have x • y = |x • y|, which tells us that x • y ≥ 0, and we must have equality in the
Cauchy-Schwarz inequality, which tells us that {x,y} is linearly dependent. So either y = 0, or
x = 0, or x = λy 6= 0 for some λ 6= 0. But x • y ≥ 0 can then be rewritten as λ(y • y) ≥ 0, and
we know that (y • y) is positive by Equation 7; so λ must be positive as well.

Another formula of Euclidean geometry is the law of cosines. It says that in a triangle of
edge lengths a, b, c, if α is the angle opposite to the edge of length a one has

a2 = b2 + c2 − 2bc cosα.

(A particular case is Pythagora’s theorem: when α is a right angle, a2 = b2 + c2.) This formula
is absorbed into our definition of “dot product”, as follows:

Theorem 179. For any {x,y} set of LI vectors of Rn, in R one has the identity

x • y = ||x|| ||y|| cosα,

where α is the angle formed by x,y in the unique plane of Rn spanned by them.

Proof. By the law of cosines applied to the triangle formed by the vectors x, y and x−y, which
is opposite to α,

||x− y||2 = ||x||2 + ||y||2 − 2||x||||y|| cosα.

But then,
2||x||||y|| cosα = ||x||2 + ||y||2 − ||x− y||2 =

= (x • x) + (y • y)− (x− y) • (x− y) =
= 2(x • y).

Corollary 180. ‘Perpendicular’ (= forming an angle α equal to 90 or 270 degrees) is synony-
mous with ‘orthogonal’. In fact, given any non-zero vectors {x,y}, we have

0 = x • y = ||x|| ||y|| cosα ⇐⇒ cosα = 0 ⇐⇒ α = 90o or 270o.

Finally, notice the following fact: Given a vector (a, b, c)> in R3, what is the set of all vectors
perpendicular to it? It can be written as

{(x, y, z)> : (a, b, c)(x, y, z)> = 0},

and so it is the plane of equation ax + by + cz = 0. This generalizes to all dimensions: The
hyperplane orthogonal to a given nonzero vector a is the hyperplane of equation

a • x = 0.
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4.3 Projections and the Gram-Schmidt algorithm in Rn

Definition 181 (Projection). Let x,y ∈ Rn. We define the projection in direction x of y as

projx(y)
def
=

x • y

x • x
x if x 6= 0, and projx(y)

def
= 0 if x = 0.

Remark 182. Note that projx(y) is a vector proportional to x. The wording “in direction x”
suggests that projx(y) is invariant up to rescaling x: indeed, for any λ 6= 0,

projλx(y) =
(λx) • y

(λx) • (λx)
λx =

λ2

λ2
x • y

x • x
x = projx(y).

However, projx(y) does change if we rescale y: In fact, it is easy to see that

projx(λy) = λ projx(y).

Lemma 183. For all x,y ∈ Rn, the vector

z
def
= y − projx(y) is orthogonal to x.

More generally, for all x1, . . . ,xm,y in Rn, if {x1, . . . ,xm} is an orthogonal set, then so is
{x1, . . . ,xm, z}, where

z
def
= y − projx1

(y)− . . .− projxm
(y).

Proof. The first claim, which is also the case m = 1 of the second claim, is obvious if x = 0 (any
vector is orthogonal to 0!) and an easy computation if x 6= 0:

x • (y − projx(y)) = (x • y)− (x • projx(y))
def
= (x • y)− (x • x•y

x•xx)
= (x • y)− x•y

x•x(x • x) = 0.

For the second claim, we proceed by induction on m. Set w
def
= x−projx1

(y)− . . .−projxm−1
(y).

By inductive assumption, w is orthogonal to all of x1, . . . ,xm−1. Thus for all i ∈ {1, . . . ,m−1},

xi •
(
y − projx1

(y)− . . .− projxm
(y)
)

= xi •
(
w − projxm

(y)
)

= (xi •w)−
(
xi • projxm

(y)
)

= 0 − 0,

because projxm
(y) is “proportional to xm” and therefore orthogonal to all xi’s with i < m (here

we used the assumption that the xi’s are an orthogonal set). It remains to see whether the last
vector xm is also orthogonal to y − projx1

(y)− . . .− projxm
(y). Indeed,

xm •
(
y − projx1

(y)− . . .− projxm
(y)
)

= (xm • y)− (xm • projx1
(y))− . . .− (xm • projxm

(y))
= (xm • y)− 0− . . .− 0− (xm • projxm

(y))

= (xm • y)− xm •
(

xm•y
xm•xm

xm

)
= (xm • y)− xm•y

xm•xm
(xm • xm) = 0.

The next theorem is what authorized me to “draw” for you projx(y) the way I did in class:

Theorem 184. For all x,y ∈ Rn, there is a unique vector z orthogonal to x such that

y = λx + z,

for some λ ∈ R. In fact, if x 6= 0, the scalar λ is also uniquely determined, i.e. there is a unique
way to decompose y = λx + z with λ in R and z orthogonal to x.
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Proof. If x = 0, the (forced!) choice z = y works, because it is orthogonal to 0. If x 6= 0, the

choice λ = x•y
x•x works, because then λx

def
= projx(y) and z = y − projx(y) is indeed orthogonal

to x by Lemma 183. So the “existence” is clear. As for uniqueness, suppose

µx + w = y = λx + z,

with λ, µ ∈ R and w, z orthogonal to x. Let us rewrite the equality above as

(µ− λ)x = z−w.

If we take the dot product of both sides of this equality by x, we obtain

(µ− λ)||x||2 = 0− 0,

which implies µ− λ = 0. So µ = λ. But then

w = y − µx = y − λx = z.

Theorem 185 (Gram-Schmidt). (cf. Anton’s Theorem 6.3.5) Given a finite set of linearly
independent vectors v1, . . . ,vm in Rn, there exist a set of orthonormal vectors o1, . . . ,om with
the same span, and in fact, with the stronger property that span(v1, . . . ,vj) = span(o1, . . . ,oj)
for all j ≤ m. In particular, every nonzero subspace of Rn has an orthonormal basis.
Moreover, any orthonormal set of vectors in any subspace W ⊆ Rn can be completed to an
orthonormal basis of W .

Proof. Via the following recursive procedure, called Gram–Schmidt algorithm. Define

o1
def
= v1

o2
def
= v2 − projo1

v2
...

oj
def
= vj − projo1

vj − projo2
vj − . . .− projoj−1

vj.

By Lemma 183, an elementary induction shows the oi’s are all orthogonal to one another. So
by Theorem 176 the set of the oi’s is linearly independent. We claim that for all j,

span(v1, . . . ,vj) = span(o1, . . . ,oj).

In fact, the very definition of oj immediately implies that

vj = projo1
vj + projo2

vj + . . .+ projoj−1
vj + oj,

which is a way to write vj as a linear combination of {o1, . . . ,oj}. In other words, vj is in the
span of {o1, . . . ,oj}, and thus

span(v1, . . . ,vj) ⊆ span(o1, . . . ,oj).

But both lists above are linearly independent, so span(v1, . . . ,vj) is a j-dimensional subspace
of span(o1, . . . ,oj), which has also dimension j. So the two spaces are equal. Therefore, we
obtained a set of nonzero orthogonal vectors o1, . . . ,om with the same span of v1, . . . ,vm. Let
us “normalize”, i.e. let us replace each oi with o′i

def
= oi
||oi|| . This yields the desired orthonormal

set, because obviously span(o1, . . . ,om) = span(o′1, . . . ,o
′
m) and

o′i • o′i =
oi

||oi||
• oi

||oi||
=

1

||oi||2
(
o′i • o′i

)
= 1.
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This proves that every nonzero subspace of Rn has an orthonormal basis. But it also proves
something stronger, because of the following observation: if v1 and v2 are orthogonal, then
o2

def
= v2. More generally, if v1, . . . ,vj are orthogonal, then oi = vi for all i ≤ j. And in

particular, if we start with a list of vectors v1, . . . ,vm the first j of which are orthonormal, then
o′i = oi = vi for all i ≤ j. So if we have an orthonormal set of j vectors v1, . . . ,vj in any subspace
W ⊆ Rn, since these vectors are LI we can complete them to a basis v1, . . . ,vj,vj+1, . . . ,vm

of W ; and then when we can apply Gram-Schmidt to this basis, obtaining an orthonormal set
that spans W , or in other words, an orthonormal basis for W , such that the first j vectors of
this basis are exactly v1, . . . ,vj.

Example 186. (See Example 8, Chapter 6 in book) Consider the three vectors

u1 = (1, 1, 1)>, u2 = (0, 1, 1)>, u3 = (0, 0, 1)>.

The Gram-Schmidt algorithm, illustrated in the book, gives an orthogonal basis for R3, namely,

o1 = (1, 1, 1)>, o2 = (−2

3
,
1

3
,
1

3
)>, o3 = (0,−1

2
,−1

2
)>.

By normalizing, we get an orthonormal basis:

o′1 = (
1√
3
,

1√
3
,

1√
3

)>, o′2 = (− 2√
6
,

1√
6
,

1√
6

)>, o′3 = (0,− 1√
2
,− 1√

2
)>.

You may object: But the three vectors we started with, in the previous example, were an LI set!,
so they spanned R3 – and without any computation necessary, we already know an orthonormal
basis for R3, namely e1, e2, e3. So what is the point of using the Gram–Schmidt algorithm?
Well, in the list of orthogonal vectors we found, the first one is u1. Note that none of e1, e2, e3
is u1. This also explains why the Gram-Schmidt algorithm yields different results if you reshuffle
the original list of vectors: If you started with

(0, 0, 1)>, (0, 1, 1)>, (1, 1, 1)>

the algorithm would output an orthogonal basis whose first vector is (0, 0, 1)>, and whose second
vector w has the property that

span((0, 0, 1)>, (0, 1, 1)>) = span((0, 0, 1)>,w>).
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