
MTH309: Counting and Graph Theory

draft

Coral Gables, Sep 2024

Abstract

Some notes for MTH309

Contents

0 Functions, inductions, and algorithms 2
0.1 Functions . 2
0.2 Induction and factorization . 4
0.3 The fundamental theorem of arithmetics . 7
0.4 Algorithms . 8

1 Counting 9
1.1 Additive and multiplicative principles . 9
1.2 Binomials . 10
1.3 Permutations and k-permutations . 15
1.4 Inversion, even and odd permutations . 18

2 Sequences and their difference 19
2.1 The k-th difference of a sequence . 20
2.2 The sequence of partial sums . 23
2.3 The geometric sequence and its sum . 24

3 Graph Theory 25
3.1 Graphs, multigraphs, and operations . 26
3.2 Trees . 28
3.3 Bipartite graphs . 30

4 Graph drawings, polytopes and planar graphs 31
4.1 A crash course on polytopes, linear optimization . 32
4.2 Euler’s theorem . 35

5 Networks 40
5.1 Max-flow-min-cut and Ford-Fulkerson’s algorithm . 43
5.2 Consequences on Marriage . 46

1

0 Functions, inductions, and algorithms

You are probably all familiar with the infinite set of natural numbers (also known as “nonnegative
integers”)

N = {0, 1, 2, 3, . . . , n, n+ 1, . . .}
It is usually stated in textbooks that natural numbers “come from Nature”. This is not entirely
true: To accept them, three important abstraction steps are necessary. These steps are non-
trivial, as throughout the history of mankind, not all populations have accepted them:

• the notion of cardinality, i.e. the realization that two finite sets in bijection with one
another have something in common; whence the names of numbers. This is not universal:
Even today, the Pirahã people in Amazonas, Brazil, have no names for numbers, and have
no linguistic way of expressing exact quantity, not even “one”. 1

• the notion of zero, as the cardinality of an “empty set”. The ancient Greeks had no symbol
for zero, for example; Mayas did have a symbol for zero around the year 36 BC, using it as
placeholder in their base-20 numerical system; arithmetic operations with zero were first
introduced by the Indian mathematician Brahmagupta2, around 650 AD.

• the existence of an infinite set, that is, a set that can be in bijection with a proper subset
of itself. The bijection in this case is the successor map, that is, the map that adds one to
each element; so an equivalent way of formulating this principle is, “the belief that every
number has a successor”. Once again, this intuition is not universal, and in logic there is
a movement of logicians from around 1900, called (strict) finitists, who rejected it.

Given natural numbers a and b, we say that “a divides b” (or that “a is a divisor of b”, or
equivalently that “b is a multiple of a”) if there exists a natural number k such that

b = k · a.

Definition 1 (Prime numbers). Prime numbers are the natural numbers with exactly two
distinct divisors (so 1 is not prime!):

2, 3, 5, 7, 11, 13, . . .

Given two natural numbers a and b, their greatest common divisor, denoted by gcd(a, b) is
the largest integer that divides both a and b.

Example 2. If p is prime, then it has only 1 and p as divisors. Thus for any natural number n

gcd(p, n) =

{
p if p divides n,
1 otherwise.

0.1 Functions

Let X,Y be any two sets. Recall that their Cartesian product is defined by

X × Y def
= {(x, y) such that x ∈ X, y ∈ Y }.

Definition 3. A function f : X −→ Y consists of two sets X,Y and a subset F ⊆ X × Y , such
that for each element x ∈ X there is always exactly one element y of Y for which (x, y) ∈ F .
Usually we denote this y by f(x), and we say it is the image of x (under f). We also call X
(resp. Y) the domain (resp. the codomain) of the function. The image of the set X is the set

ImX
def
= {f(x) such that x ∈ X}.

1Frank et al., Number as a cognitive technology: Evidence from Pirahã language and cognition, Cognition 108
(2008), 819–824.

2Wallin, Nils-Bertil,“The History of Zero”. YaleGlobal online, 19 November 2002

2

Functions are typically described by a formula that tells us how to find f(x) given x. For
example, given any set X, the identity function on X (usually denoted by idX) is the function
whose output is always identical to the input. In this case, our notation to “explain the function”
is

idX : X −→ X
x 7−→ x.

Sometimes one does not have an explicit formula, but there is still a clear general method
to associate x with its image: for example,

f : N −→ N
x 7−→ the x-th prime number.

In the worst case scenario, if we do not see a general pattern, we can always express f by
specifying all its values:

f : {0, 1, 2} −→ {0, 1, 2}
0 7−→ 1
1 7−→ 0
2 7−→ 2.

Definition 4. A function f : X → Y is injective if for each x 6= x′ one has f(x) 6= f(x′).

We assume familiarity with logic and quantifiers (∀, ∃) and logical equivalence (contraposi-
tives, etc.) For example, it should be clear that an equivalent way to define injectivity is:

∀x, x′ ∈ X, f(x) = f(x′)⇒ x = x′.

Injectivity depends not only on the “formula”, but also on the domain involved. For example,
the function “first letter of” is injective on the set { Alba, Bruno }, but not injective on the set
{ Alba, Alice, Bruno }.

Definition 5. A function f : X → Y is surjective if the image of X coincides with the codomain
Y ; or in other words, if for each y ∈ Y there is some x ∈ X (not necessarily unique) such that
y = f(x).

Surjectivity depends not only on the “formula” for f , but also on the domain and the
codomain. For example, let E be the set of even natural numbers:

f : N −→ N
x 7−→ 2x

is not surjective,
f : N −→ E

x 7−→ 2x
is,

f : N \ {0} −→ E
x 7−→ 2x

is not.

Definition 6. A function f : X → Y is bijective if it is both injective and surjective. That is,
if for each y ∈ Y there exists exactly one x ∈ X such that y = f(x).

Given a function f : X → Y and a function g : Y → Z, their composite is the function

g ◦ f : X −→ Z
x 7−→ g(f(x)).

Proposition 7. Let f : X → Y be a function between two non-empty sets.
(1) f is surjective ⇐⇒ there exists g : Y → X (called “right inverse”) such that f ◦ g = idY .
(2) f is injective ⇐⇒ there exists g : Y → X (called “left inverse”) such that g ◦ f = idX .
(3) f is bijective ⇐⇒ there exists g : Y → X (called “inverse”) such that g ◦ f = idX and

f ◦ g = idY .

3

Remark 8. Before starting with the proof, note that two functions are equal when they have
same domain, same codomain, and they yield same outputs when given same inputs. So to
verify an equality of functions like g ◦ f = idY , both going from Y to Y , we’ll need to check that
g ◦ f(y) = idY (y) for all y ∈ Y .

Proof of Proposition 7.
(1), “⇒”. Define

g : Y −→ X
y 7−→ some x such that f(x) = y.

(If there is more than one x such that f(x) = y, we simply choose one.) Then by con-
struction, f ◦ g(y) = f(x) = y for all y ∈ Y . Hence f ◦ g = idY .

(1), “⇐”. For each y ∈ Y , we know that idY (y) = f ◦ g(y), so y = f(g(y)), which means
y ∈ Im f .

(2), “⇒”. Choose a point x0 of X. Define

g : Y −→ X

y 7−→
{
x0, if y /∈ Im f
the unique x such that f(x) = y, if y ∈ Im f.

Then for all x in X, g ◦ f(x) = g(f(x)) = x. So g ◦ f = idX .
(2), “⇐”. Suppose f(x) = f(x′). Applying g, and remembering that g ◦ f = idX , we get

x = idX(x) = g ◦ f(x) = g(f(x)) = g(f(x′)) = g ◦ f(x′) = idX(x′) = x′.

(3), “⇒”. This does not follow immediately from items (1) and (2), because a priori it could
be that the two g’s (right inverse and left inverse) are different. However, if f is bijective
we can simply define

g : Y −→ X
y 7−→ the unique x such that f(x) = y.

and it is easy to see that it does the trick.
(3), “⇐”. This follows from (1) and (2). (Why?)

0.2 Induction and factorization

Induction is a standard technique to prove a statement for infinite subsets of N. It is based on
the fact that every natural number is obtained from 0 by adding 1 sufficiently many times. So
if we show that a property P holds for zero and is maintained when we move from any number
to its successor, then P holds also for one, for two, for three.... and eventually is shared by all
natural numbers.

Formally, a proof by induction consists of two parts:
• (“Basis”) We prove that the statement holds true for a specific integer n0.
• (“Step”) We prove that, if there exists a natural number n such that the statement holds

for n, then the statement must hold also for n+ 1.
Once again, the validity of the statement for n0 implies the validity for n0 + 1, which in turn
implies the validity for n0+2, and so on: A domino effect, which eventually proves the statement
for all integers n ≥ n0. If our basis was n0 = 0, then we end up proving the statement for the
whole of N.

4

Example 9. Let us prove by induction that

n+1∑
i=0

i =

(
n+ 2

2

)
for all n ∈ N.

• (“Basis”) For n = 0, the formula above boils down to 0 + 1 =
(
2
2

)
, which is correct. This

brings good luck!
• (“Step”) Let us assume that

∑n+1
i=0 i =

(
n+2
2

)
holds true for some n. Then

n+2∑
i=0

i = (n+ 2) +
n+1∑
i=0

i
!
= (n+ 2) +

(
n+ 2

2

)
=

(
n+ 2

1

)
+

(
n+ 2

2

)
=

(
n+ 3

2

)
.

Non-Example 10. Here is a “fake proof” by induction that

n+1∑
i=0

i =
(2n+ 3)2

8
for all positive integers n.

Let us assume that
∑n+1

i=0 i = (2n+3)2

8 holds true for some n. Then

n+2∑
i=0

i = (n+ 2) +
n+1∑
i=0

i
!
= (n+ 2) +

(2n+ 3)2

8
=

4n2 + 20n+ 25

8
=

(2n+ 5)2

8
=

(2(n+ 2) + 1)2

8
.

What did we do wrong? Induction consists of two parts, a step and a basis... The basis is not
superfluous! We need a domino tile where our domino effect can start.

Remark 11. A common mistake is to memorize the induction step as follows, “Let us assume
that the statement holds for all n; then let us prove it for n + 1”. This makes no sense: If we
already know that the statement holds for all n, then we are done!, no need to think about n+1.
That’s not how induction works. What instead we are assuming is much less, namely, that the
statement holds for one specific n; from there we want to be able to say the same thing about
its successor, n+ 1.

We should pay special attention to whether our induction step is imposing extra conditions
on n. If the induction step works only for n ≥ n0, then the basis for the induction should be its
verification at n0, and not at 0.

Example 12. Let us prove that n2 − 5n+ 6 ≥ 0 for all integers n. Let’s assume it for n; then

(n+ 1)2 − 5(n+ 1) + 6 = (n2 + 2n+ 1)− 5n− 5 + 6 = (n2 − 5n+ 6) + 2n− 4 ≥ 2n− 4.

Now to conclude we would like to say that 2n− 4 ≥ 0. But this is true only when n ≥ 2. So we
are not done yet; it is incorrect for us to “make the domino tiling start” at n = 0 because as far
as we know, the validity at 0 might not imply the validity at 1. So we proceed as follows:

• First, we ask ourselves whether the claim holds true for n = 2, which is the correct
induction basis. Since 22 − 10 + 6 = 0, the answer is “yes”. Together with the induction
step, this does prove

“n2 − 5n+ 6 ≥ 0 for all integers n ≥ 2.”

• This is not what we were asked to do, but almost: we are left with only finitely many cases
to consider!, namely, n = 0 and n = 1. We can check them by hand: for n = 0 we have
0− 0 + 6 > 0, for n = 1 we have 12 − 5 + 6 = 0. This concludes the proof.

5

Non-Example 13. Here is a “fake proof” (by induction on the number n of students) that

“all students will receive the same grade in the final”.

For n = 1, we are considering a class consisting of only one student, so the claim is clear.
Now suppose we have proved the claim for classes with n students. Let C be any class with
n + 1 students. Let x, y be any two students enrolled in the class, and let z be any other
student. Consider S \{x}: this is a set of n students, so we can apply the inductive assumption:
Everybody in S \ {x} is going to get the same grade. In particular, y and z will get the same
grade. Analogously, by the inductive assumption everybody in S \ {y} will get the same grade,
so in particular x and z. Summing up, x, y, z will all get the same grade. But then any two
students x, y will get the same grade. What is wrong here?

(Hint: If in a proof you pick three different elements from a set, then you are implicitly
assuming that the set has at least three elements. Note that if we have a class of 3 students,
and any pair of them gets the same grade, then indeed they all get the same grade...)

There is a variant of induction which sometimes is easier to use than the one above. It is
called strong induction, or sometimes “complete’ or “generalized induction”. Essentially, it
is just normal induction plus “bookkeeping”, i.e. keeping track of everything you have proven
before. It consists of two parts:

• (“Basis”) Prove a statement for a specific integer n0.
• (“Step”) Prove that, if there is a natural number n such that the statement holds for every

natural number k such that n0 ≤ k ≤ n, then the statement must hold also for n+ 1.
Let us use the shortening P (n)for “the property holds for n”. It is easy to see how generalized

induction works: First of all, P (n0) implies P (n0 + 1). Now that we know P (n0) and P (n0 + 1),
we can infer P (n0 + 2). But then we know P (n0) P (n0 + 1), and P (n0 + 2), which together
imply P (n0 + 3). And so on: Another domino effect, which results in a proof of the statement
for all integers n ≥ n0. The difference with classical induction is that instead of proving

P (n)⇒ P (n+ 1),

where P (n) stands for “the property holds for n”, we keep track at each step of what we have
proven already and show

[P (n) and P (n− 1) and P (n− 2) . . . and P(n0 + 1) and Pn0]⇒ P (n+ 1).

Here is an example in which we need to assume not just P (n), but also P (n− 1):

Definition 14 (Fibonacci numbers). The n-th Fibonacci number Fn is defined inductively as
follows: F0 = 0, F1 = 0, and Fn = Fn−1 + Fn−2 for all n ≥ 2.

Proposition 15. F0 + F1 + . . .+ Fn = Fn+2 − 1.

Proof. Indeed for n = 0 we have F0 = 0 = F2− 1. Suppose now the statement has already been
proven for all integers up to n. In particular, not just for n, but also for n− 1Then

F0 + F1 + . . .+ Fn + Fn+1 = (Fn+2 − 1) + Fn+1 = Fn+3 − 1.

Proposition 16. Any integer n ≥ 2 can be “factored”, i.e. written as product of primes.

Proof. The statement is true for n = 2, because “2 = 2” writes 2 as products of primes. Now let
n be an integer, and suppose the claim has already been proven for any integer in {2, 3, . . . , n−1}.
If n is prime, then

n = n

6

is a valid way to write down n as a product of primes, and we are done. If n is composite, then

n = n1 · n2,

with 2 ≤ ni < n (for i = 1, 2). By strong induction, both ni can be written as product of primes.
But then so can n.

0.3 The fundamental theorem of arithmetics

Here are a few famous results by Euclid, all derived using induction.

Theorem 17 (Euclid). There are infinitely many primes.

Proof. Let p1, . . . , pr be the complete list of the first r primes. Consider the number

n
def
= 1 + p1p2 · · · pr

and let p be any prime factor of n; the existence of one such p is guaranteed by Proposition 16.
Were p belonging to {p1, . . . , pr}, then

1 = p1 · · · pr − n

would be a difference of two multiples of p; and thus 1 itself would be a multiple of p, a
contradiction. So p does not belong to {p1, . . . , pr}, and in particular, p is larger than all of
p1, . . . , pr. This already suffices to prove that primes are infinitely many, because for any r,
given a complete list of the first r primes, we showed how to produce yet another prime.

Remark 18. In some textbooks, the theorem above is often misquoted as follows: given the set
of the first k primes, their product plus one is a larger prime. This argument is incorrect:

1 + (2 · 3 · 5 · 7 · 11 · 13) = 30031

is divisible by 59.

Lemma 19 (Euclid). Let a and b be natural numbers. If a prime number p divides ab, it divides
either a or b.

Proof. 3 We proceed by strong induction on the minimum of the pair {a, b}. Up to relabeling,
we can assume a ≤ b, so that a is the smallest of the pair. If a = 0, or a = 1, then the claim is
clear. So we assume a ≥ 2 and distinguish two cases: either a is prime, or not.

• Suppose a is prime. Let p be a prime that does not divide a but divides ab for some b.
Using the classical division of integers with remainder, write p = aq + r with 0 ≤ r < a.
Since ab = pc for some integer c, we have that

ab = pc = (aq + r)c = acq + rc.

This implies that rc = a(b−cq), so the prime a divides rc. Since r < a, by strong induction
the theorem holds for the pair {r, c}; that is, when a prime divides rc, it divides either r
or c. But the prime a divides rc and does not divide r, because r < a. Hence, a divides c.
Writing c = ad for some integer d, we get

ab = pc = pad,

and canceling a we get b = pd. So p divides b.

3Proof due to Barry Cipra, math.stackexchange.com/questions/1581173/proof-of-euclids-lemma, 2015

7

math.stackexchange.com/questions/1581173/proof-of-euclids-lemma

• Suppose a is not prime. Then a = d1 · d2, with both d1, d2 < a. Let p be a prime that
does not divide a, and divides ab for some b. Then p divides neither d1 nor d2 (or else it
would divide a), but

p divides d1d2 b.

By strong induction (since d1 < a) the statement of the theorem holds for the pair {d1, d2b}:
so either p divides d1 (which is false), or p divides d2b. Hence,

p divides d2 b.

By strong induction (since d2 < a) the statement of the theorem holds for the pair {d2, b}:
so either p divides d2 (which is false), or p divides d2b. Hence, p divides b.

Lemma 20. Let a1, . . . , an be natural numbers. If a prime number p divides their product, then
p divides (at least) one of {a1, . . . , an}.

Proof. The case n = 2 is Lemma 19. By induction, suppose p divides a1 · . . . · an · an+1. Call

b
def
= a1 · . . . · an. Since p divides b · an+1, by Lemma 19 either p divides an+1, or p divides b, in

which case by inductive assumption p divides one of {a1, . . . , an}.

Theorem 21 (Euclid). Any integer n ≥ 2 has a unique factorization into weakly-increasing
primes.

Proof. By Proposition 16, n has a factorization into primes; after possibly reordering such
primes, we get a factorization into weakly-increasing primes. We want to show uniqueness. So,
suppose there are natural numbers r, s for which

p1 · · · pr = q1 · · · qs,

where p1 ≤ p2 ≤ . . . ≤ pr are prime numbers, and q1 ≤ q2 ≤ . . . ≤ qs are also prime numbers.
Since p1 divides the product of the qj ’s, by Lemma 20 it must divide at least one of the qj ’s.

Because they are both primes, this actually means that p1 is equal to one of the qj ’s. Since q1
is the smallest of the qj ’s, this means that

p1 ≥ q1.

Symmetrically, q1 divides the product of the pi’s, so it must divide one of them by Lemma 20.
By primality, q1 is equal to one of the pi’s, so in particular

p1 ≤ q1.

Now we cancel p1 and q1, and proceed recursively. Because

p2 · . . . · pr = q2 · . . . · qs,

we get that p2 = q2; and so on. It follows that r = s and pi = qi for each i.

0.4 Algorithms

There is a way of phrasing inductive proofs in terms of algorithms, which are “procedures to solve
a mathematical problem that are guaranteed to terminate, i.e. to succeed in a finite number of
steps”. The proof above for example can be viewed as an algorithm: Suppose you wish to factor
n. Initialize p = 2 and ask yourself: Does p divide n? If yes, we can write n = pn′ and move on
to factor n′. Note that factoring n′ is an easier task (in the proofs by induction, in fact, it is a
task that you assume already solved.) If instead p does not divide n, increment p by 1, and go
back to the step where you asked yourself if p divides n.

8

Algorithm 22 (Factorization by trial division). INPUT: an integer n > 1.

Initialize A
def
= [] (the empty list), f

def
= 2.

while n > 1:
if f divides n, append f to the list A, and replace n with n

f .
else: replace f with f + 1.

return A.

The one above is a valid algorithm, because the “while” loop cannot go on forever: At each
iteration, either n gets smaller (and the while loop gets blocked as soon as n goes below 2) or f
increases; in this second case, the worst case scenario is when n is a prime number, and f must
be incremented n− 2 times until it reaches n.

Here is another, more famous example:

Theorem 23 (Euclidean Algorithm). Let n,m be positive integers. Let n = qm + r, with
0 ≤ r < m (the classical division with remainder). Then

gcd(n,m) = gcd(m, r).

Proof. Set d1
def
= gcd(n,m) and d2

def
= gcd(m, r). Since d1 divides both n and m, it divides also

r = n− qm; so it’s a common divisor of m and r. So d1 ≤ d2. On the other hand, d2 divides m
and r, so it divides also n = qm+ r. So it’s a common divisor of n and m. So d2 ≤ d1.

This result allows you to compute the greatest common divisor of two numbers.

Algorithm 24. INPUT: a, b positive integers, with b < a.
def gcd(a, b):

Do the Euclidean division a = qb+ r.
if r = 0:

return b.
else:

return gcd(b, r).

1 Counting

1.1 Additive and multiplicative principles

See the book, Chapter 1.1. At the level of sets, if |A| denotes the size of a set A, we have the
two following, intuitive facts:

• (additive principle) If A and B are disjoint, |A ∪B| = |A|+ |B|.

• (multiplicative principle) |A×B| = |A| · |B|.

Note: If A and B are not disjoint, one has |A ∪B| ≤ |A|+ |B|. In fact, the correct formula,
called principle of inclusion-exclusion, is the following:

|A ∪B| = |A|+ |B| − |A ∩B|.

There is also a formula for n sets instead of two, but it’s more complicated and we will see it
later. See Chapter 1.6 of the book, or the wikipedia voice for “Principle of inclusion/exclusion”.

9

1.2 Binomials

We define the factorial function inductively, as

0!
def
= 1, and n!

def
= n · (n− 1)!

Definition 25. Let 0 ≤ k 6= n be natural numbers. Define(
n

k

)
def
=

n!

k! · (n− k)!

Remark 26. It is obvious from the definition that for all 0 ≤ k ≤ n,(
n

k

)
=

(
n

n− k

)
.

Also, it is obvious that
(
n
0

)
=
(
n
n

)
= 1 for all n. It is instead not obvious from the definition

whether this quantity
(
n
k

)
is always an integer: We will prove it below.

Lemma 27 (Recurrence relation for binomial coefficients). For all 1 ≤ k ≤ n,(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Proof. Let us compute the right hand side above:

(n− 1)!

k!(n− 1− k)!
+

(n− 1)!

(k − 1)!(n− k)!
=

(n− k)(n− 1)!

k!(n− k)!
+
k(n− 1)!

k!(n− k)!
=

n(n− 1)!

k!(n− k)!
=

(
n

k

)
.

Lemma 28 (Counting interpretation). For all 0 ≤ k ≤ n,
(
n
k

)
is a natural number: It counts

the number of size-k subsets of [n]
def
= {1, . . . , n}.

Proof. Let B(n, k) be the number of size-k subsets of [n]
def
= {1, . . . , n}. It is clear that

B(0, 0) = 1 =

(
0

0

)
. (1)

Now if 1 ≤ k ≤ n, a size k-subset S of [n] can either contain the element n, or not. If it does,
then S \ {n} is a subset of [n− 1]; and in fact, the function

f : {size-k-subsets of [n] containing n} −→ {size-(k − 1)-subsets of [n− 1]}
S 7−→ S \ {n}

is a bijection, its inverse being

g : {size-(k − 1)-subsets of [n− 1]} −→ {size-k-subsets of [n] containing n}
T 7−→ T ∪ {n}.

Thus the number of size-k-subsets of [n] containing n is just B(n − 1, k − 1). But what is the
number of size-k-subsets of [n] not containing n? Well, this is simply B(n− 1, k), because any
size-k subset of [n] avoiding n is a subset of [n− 1]. Thus we showed

B(n, k) = B(n− 1, k) +B(n− 1, k − 1). (2)

10

But then we can prove our claim by induction on n. The basis (n = 0) is given by Equation 1.
Now we are ready to prove the inductive step, suppose that there exists an n such that, for all
k such that 0 ≤ k ≤ n, we have B(n, k) =

(
n
k

)
. Then for all k such that 1 ≤ k ≤ n, we have

B(n+ 1, k) = B(n, k) +B(n, k − 1) =

(
n

k

)
+

(
n− 1

k − 1

)
=

(
n+ 1

k

)
.

where the first equality is by Equation 2, the second is by inductive assumption, and the third
is by Lemma 27. Note that the claim above is valid when 1 ≤ k ≤ n, so there are still the two
cases k = 0 and k = n+ 1 to consider; but it is clear from the definitions that for all n

B(n+ 1, 0) = 1 =

(
n+ 1

0

)
and B(n+ 1, n+ 1) = 1 =

(
n+ 1

n+ 1

)
.

Thus for all k such that 0 ≤ k ≤ n+ 1, we have B(n+ 1, k) =
(
n+1
k

)
, as desired.

Theorem 29 (Newton’s formula). For any natural number n,

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

Proof. By induction. When n = 0, k is forced to be equal to 0, and the claim boils down to
1 = 1. Now suppose the formula above holds for some n. Then

(x+ y)n+1 = (x+ y)(x+ y)n =
= x(x+ y)n + y(x+ y)n =
=
∑n

k=0

(
n
k

)
xk+1yn−k +

∑n
k=0

(
n
k

)
xkyn+1−k =

=
∑n+1

h=1

(
n
h−1
)
xhyn−(k−1) +

∑n
k=0

(
n
k

)
xkyn+1−k =

= xn+1 +
∑n

i=1

(
n
i−1
)
xiyn+1−i +

∑n
i=0

(
n
i

)
xiyn+1−i =

= xn+1 +
∑n

i=1

(
n
i−1
)
xiyn+1−i +

∑n
i=1

(
n
i

)
xiyn+1−i + yn+1 =

= xn+1 +
∑n

i=1

[(
n
i−1
)

+
(
n
i

)]
xiyn+1−i + yn+1 =

= xn+1 +
∑n

i=1

(
n+1
i

)
xiyn+1−i + yn+1 =

=
∑n+1

i=0

(
n+1
i

)
xiyn+1−i.

Corollary 30.
∑n

k=0

(
n
k

)
= 2n.

Proof. Plug in x = y = 1 into Newton’s formula.

Corollary 31. For all 1 ≤ k ≤ n, one has
(
n
k

)
< 2n.

Proof.
(
n
k

)
plus other binomial coefficients, which are positive numbers, yields 2n.

Proposition 32. Let 0 ≤ k ≤ n be integers. Then(
n

k

)
<

(
n

k + 1

)
if and only if k <

n− 1

2
.

Proof. It follows from the fact that
(
n
k+1

)
= n−k

k+1

(
n
k

)
(exercise).

There is another very interesting interpretation of binomial coefficients (see Section 1.5 of
the book).

11

Theorem 33 (“Stars and bars”). Let k, n be positive integers. The total number of nonnegative
integer solutions of the equation x1 + . . .+ xn = k is(

k + n− 1

k

)
.

‘Woah’ proof by the book. Imagine that we have to distribute a capital of k coins among n people.
(The coins are not distinguishable from one another, in the sense that it does not matter whether
person 1 gets the first or the third coin; but the people are distinct.) That’s the same as placing
exactly n − 1 bars into a string of k ‘stars’ or if you want, coins: then the first person gets
as many coins as to the left of the leftmost bar, and so on. That’s the same as picking n − 1
positions for the bars within a range of k+n−1 possible positions. That’s the same as choosing
a size-(n− 1) set out of a set of size k + n− 1. This can be done in exactly

(
k+n−1
n−1

)
ways. But(

k+n−1
n−1

)
=
(
k+n−1

k

)
.

Numeric proof by induction. Let f(k, n) be the total number of nonnegative integer solutions of
the equation x1 + . . .+ xn = k. For k = n = 1 indeed f(k, n) = 1 =

(
k+n−1

k

)
, as there is exactly

one solution to x1 = 1. So we proceed by induction. The nonnegative integer solutions of the
equation x1 + . . . + xn + xn+1 = k are of two disjoint types: Those with xn+1 = 0, which are
exactly f(k, n) (corresponding to ”distributing the k coins only among the first n people”); and
those with xn+1 ≥ 1, which are in bijection (by “giving one coin to the (n+ 1)-st guy already”)
to the set of nonnegative integer solutions of the equation x1 + . . .+ xn + yn+1 = k − 1. Thus

f(k, n+ 1) = f(k, n) + f(k − 1, n+ 1).

At the same time (
k + n

k

)
=

(
k + n− 1

k

)
+

(
k + n− 1

k − 1

)
,

because of the recursion of binomial coefficients. So f(k, n) =
(
k+n−1

k

)
by induction.

Remark 34. Suppose I want to know the total number of integer solutions of the equation
x1 +x2 +x3 = 100 with x1 ≥ 2, x2 ≥ 5, and x3 ≥ 13. Then I could already distribute 2 units to
claimant 1, 5 units to claimant 2, and 3 units to claimant 3, and focus on the the total number
of integer solutions of the equation y1 + y2 + y3 = 100− (2 + 5 + 13) = 80. So the answer is(

82

80

)
=

82 · 81

2
= 41 · 81.

Definition 35. A lattice path is a sequence of vectors v1, . . . ,vn in Z2 such that every consecu-
tive difference vi−vi−1 is in {(1, 0), (0, 1)}. That is, we are only allowed to move right (=East)
or upwards (=North).

Proposition 36. If a, b are nonnegative integers, then from (0, 0) to (a, b) there are exactly(
a+b
b

)
lattice paths.

Proof. Here is a numerical inductive proof. The point (a, b) can either be accessed from (a, b−1)
or from (a− 1, b), but not both. Thus if f(a, b) counts the number of lattice paths from (0, 0) to
(a, b), by partitioning those paths into those that get to (a, b−1) and those that get to (a−1, b),
we obtain

f(a, b) = f(a, b− 1) + f(a− 1, b).

By induction on n
def
= a+ b (the base case being n = 1) we conclude that f(a, b) =

(
a+b
b

)
.

12

A bijective proof is obtained by noticing that any such path can be encoded with a string of
Ns and Es, corrisponding to North or East moves. The string has length a+b and is completely
determined by the position of the a Ns. (Or, by the position of the b Es). Thus there are as
many strings as there are a-element subsets of [a + b] (or respectively, as there are b-element
subsets of [a+ b]). This leads to the count

(
a+b
a

)
(or, equivalently, to

(
a+b
b

)
).

Remark 37. There is a notion of multinomial coefficient, e.g. if n = k1 + . . .+km we can define(
n

k1, k2, . . . , km

)
def
=

n!

k1!k2! · · · .km!
.

(When m = 2, this is the classical binomial coefficient.) There is also natural generalization to
higher-dimensions of lattice paths: Let m be a positive integer. Let i ∈ {1, . . . ,m}. Let ei be
the vector of m integers with a 1 in position i, and zeroes elsewhere. For example, when m = 3,
we have

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

An m-dimensional lattice path is a sequence of vectors in Zm such that every consecutive differ-
ence vi − vi−1 belongs to the set {e1, . . . , em.}. It is easy to see that lattice paths on a grid Zm
from the origin to a point (a1, . . . , am) are exactly

(
a1+...+am
a1,a2,...,am

)
. The argument is the same as

above: for simplicity, let us do it for m = 3. Let f(a, b, c) count the number of lattice paths from
The point (a, b, c) can only be reached through (a − 1, b, c) or through (a, b − 1, c) or through
(a, b, c− 1). Thus

f(a, b, c) = f(a− 1, b, c) + f(a, b− 1, c) + f(a, b, c− 1).

Now by induction on n
def
= a+ b+ c, the basis being n = 1, we conclude f(a, b, c) =

(
a+b+c
a,b,c

)
.

Proposition 38 (Chu–Vandermonde’s identity). For any non-negative integers r,m, n,(
m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
.

Proof. Here is a simple bijective proof: Given m men and n women, how can I select a committee
of r people? The answer is

(
m+n
r

)
. But I could also pick k men in

(
m
k

)
ways and then r − k

women, in
(
n
r−k
)

ways.

Remark 39. This proof also generalizes to p genders, as follows:(
n1 + n2 + . . .+ np

m

)
=

∑
k1+...+kp=m

(
n1
k1

)(
n2
k2

)
· · ·
(
n+ p

kp

)
.

The idea is, set n = n1 + . . . + np. To form a committee of m people out of n, we could
equivalently select k1 out of the n1 of gender 1, then select k2 out of the n2 of gender 2, and so
on.

Notation. When n is a positive integer, we denote by [n] the set {1, 2, . . . , n}.

Theorem 40. The number of increasing functions f : [k]→ [n] is(
n

k

)
.

The number of non-decreasing functions f : [k]→ [n] is(
k + n− 1

k

)
.

13

Proof. For the first part: either by induction, or with the following bijective proof: we are
basically selecting {f(1), . . . , f(k)}, a size-k-subset of [n]. (For any such subset it is clear from
the order who is f(1), who is f(2) and so on.) As for the second part: It can be proven by
induction. Here is a bijective proof: any non-decreasing function from [k] to [n] is completely
determined once we specify, for each integer 0 ≤ m ≤ n, how many elements of [k] are assigned
value m. For example, consider a non-decreasing function f from [5] to [7]. If we know that
zero elements are mapped to 1 or 2, two elements are mapped to 3, one element is mapped to
4, zero elements to 5 and 6, and two elements are mapped to 7, then f is the map

f(1) = f(2) = 3, f(3) = 4, f(4) = f(5) = 7.

So basically determining any such function f uniquely is like picking a non-negative integer
solution for the equation x1 + . . .+ xn = k.

Proposition 41. If n is a nonnegative integer,
n∑
k=0

(
n

k

)2

=

(
2n

n

)
.

Proof. The ordinary proof is by induction on n. Here is a simple bijective proof from Wikipedia:
suppose you have 2n objects arranged in a row, and you want to select n of them. There are(
2n
n

)
ways to do this. But also, you could select k objects from the first n and n−k objects from

the second n. Thus (
2n

n

)
=

n∑
k=0

(
n

k

)(
n

n− k

)
.

Since
(
n

n−k
)

is the same as
(
n

n−k
)
, we are done.

Proposition 42. For any non-negative integer n, the (n+ 1)-st Fibonacci number is

Fn+1 =

bn/2c∑
k=0

(
n− k
k

)
.

Proof. By induction (simple exercise). Alternatively, here is a relatively simple bijective proof:
First show that Fn counts the number of ways to cover a n× 1 strip of squares using only 2× 1
and 1×1 tiles. But any such cover uses k tiles of the type 2×1 and n−2k tiles of type 1×1, for
some k ≤ bn/2c. The way to order k double tiles and n−2k single tiles are

(
n−k
k

)
, corresponding

to where you position the single tiles (“stars and bars”).

Proposition 43 (Hockey-Stick identity). If 0 ≤ r ≤ n are integers,
n∑

m=r

(
m

r

)
def
=

(
r

r

)
+

(
r + 1

r

)
+

(
r + 2

r

)
+ . . .+

(
n

r

)
=

(
n+ 1

r + 1

)
.

Proof. By induction on n (simple exercise). For a bijective proof, see Wikipedia.

Proposition 44. If 0 ≤ r ≤ n are integers,
n∑

m=r

(
n

m

)(
m

r

)
= 2n−r

(
n

r

)
.

Proof. By induction on n (exercise). Bijective proof: Say we have n marbles. On the left we
count the ways to first select a subset S ⊆ [n] with at least r marbles, and then color in red r
of the elements of S. Another way to get the same result is this: First we pick r marbles from
[n], and color them red; then we form a set S containing those r marbles, by independently
deciding, for each of the other n− r marbles, whether they belong to S or not.

14

1.3 Permutations and k-permutations

Theorem 45. The number of injective functions f : [k]→ [n] is

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
=

(
n

k

)
· k!

Proof. There are n options for f(1), then n− 1 options for f(2), and so on.

Corollary 46. The number of bijective functions f : [n]→ [n] is

n!

Proof. By the pigeonhole principle, any injective function f : [n]→ [n] is automatically surjec-
tive, and thus a bijection.

Sometimes the number n(n− 1) · · · (n− k + 1) = n!
(n−k)! is denoted by P (n, k).

Remark 47. It is not a coincidence that

P (n, k) =

(
n

k

)
· k!

In fact, P (n, k) counts the ways to arrange k objects chosen from [n]. (Proof: an ar-
rangement is precisely an injective function f : [k] → [n].) That’s equivalent to first choosing
k objects from [n], and then given any such choice, arrange them, which can be done in k!
ways.

Example 48. In how many ways can I choose a committee of 3 from 10 people? The answer is(
10
3

)
. But if the order is specified, i.e. “in how many ways can I choose a chair, a vicechair and

a treasurer, out of 10 people”) the answer becomes
(
10
3

)
3!, or equivalently, 10 · 9 · 8.

The structure of permutations

Let n be any positive integer. Let [n]
def
= {1, . . . , n}. Let

Sn
def
= {σ : [n] −→ [n] bijective}.

The elements of Sn are called permutations. There are three types of notation to write down
the same permutation:

σ =

(
1 2 3 4 5 6
2 1 3 5 6 4

)
, σ = (12)(456), and σ = (12)(45)(56).

The second notation writes σ as product of disjoint cycles; the third, as product of non-
disjoint swaps. We will explain them in a few minutes. The first notation is called two-line
notation and it is the most intuitive: the rule is, σ maps each elements of the first row into the
element of the second row immediately below. (In this case the first row is ordered, but it does
not matter: What matters is that below each i sits σ(i).) For example, σ(3) = 3. To compose
two functions, we write them on top of one another, remembering that when we write τ ◦ σ(1)
the first permutation to be applied to 1 is σ, so σ should be on top. The two-line notation of
τ ◦ σ is then obtained by looking at only the first and the last row, ignoring all intermediate
ones. For example, if

τ =

(
1 2 3 4 5 6
1 2 4 3 5 6

)
and σ =

(
1 2 3 4 5 6
2 1 3 5 6 4

)
15

then

τ ◦ σ =

 1 2 3 4 5 6
2 1 3 5 6 4
2 1 4 5 6 3.

 and σ ◦ τ =

 1 2 3 4 5 6
1 2 4 3 5 6
2 1 5 3 6 4.

En passant, notice that τ ◦ σ and σ ◦ τ are different, so ◦ is not commutative.

Definition 49. Let k ≤ n be positive integers. A cycle (of length k) in a permutation σ ∈ Sn
is a k-tuple

(a1, a2, . . . , ak),

such that σ(ak) = a1 and σ(ai) = ai+1 for all i ∈ {1, . . . , k − 1}. Cycles of length two are called
swaps (or transpositions).
Any cycle g (of length k) is naturally associated to a permutation γ ∈ Sn, as follows: γ = σ on
the elements of the cycle, and γ = id otherwise.

Example 50. In the permutation

σ =

(
1 2 3 4 5 6
2 1 3 5 6 4

)
,

there is a cycle of length 3, namely, g = (4, 5, 6). Its associated permutation is

γ =

(
1 2 3 4 5 6
1 2 3 5 6 4

)
.

Theorem 51. Every permutation different than the identity can be written as product of disjoint
cycles.

“Proof by example”. We sketch the algorithm with the help of an example. Suppose

σ =

(
1 2 3 4 5 6 7 8 9
3 8 4 6 5 7 9 2 1

)
.

To find the first cycle, we start with 1 and apply iteratively σ, until you get back to 1. In our
case

σ(1) = 3, σ(3) = 4, σ(4) = 6, σ(6) = 7, σ(7) = 9, σ(9) = 1.

So the first cycle is (1, 3, 4, 6, 7, 9). Now let us consider the smallest integer not contained in
this cycle, and start over again, applying iteratively σ until we get back to it. In our case, we
re-start with 2:

σ(2) = 8, σ(8) = 2.

So (2, 8) is the second cycle. By construction, it is disjoint from the first cycle, because σ is
injective. Now we continue inductively, until all numbers have been listed. In our example, the
smallest integer that belongs to neither if the previous cycles is 5. Since σ(5) = 5, our third
cycle has length one. Now all numbers have been listed. Our final result is

σ = (1, 3, 4, 6, 7, 9)(2, 8)(5).

Now, technically what we found is just a list of disjoint cycles. But if we interpreted every
cycle as its associated permutation in Sn, the list can actually be interpreted a product of
permutations. More precisely, if γ, γ1, γ2, γ3 are the permutations of Sn associated respectively
to σ, to (1, 3, 4, 6, 7, 9), to (2, 8), and to (5), then it is clear that

γ = γ1 ◦ γ2 ◦ γ3.

For this reason, we speak of “product of cycles”.

16

Remark 52. By convention, one usually omits writing down the cycles of length one, because
the associated permutation of Sn is the identity. So in the example above, we would simply
write

σ = (1, 3, 4, 6, 7, 9)(2, 8).

Lemma 53. Every cycle of length k ≥ 2 can be written as product of k − 1 non-disjoint swaps.

Proof. We claim that

(a1, a2, . . . , ak) = (a1, a2)(a2, a3) · · · (ak−2, ak−1)(ak−1, ak).

By this we mean that if γ is the permutation of Sn associated to (a1, . . . , ak), and γi is the
permutation of Sn associated to (ai, ai+1), then

γ = γ1 ◦ γ2 ◦ . . . ◦ γk−1.

As a warm up, let us check this first for the element a1. By definition, γ(a1) = a2. On the other
hand, γi swaps a1 with ai+1, so it has no effect on a1 if i ≥ 2. Formally,

γi(a1) =

{
a1 if i ≥ 2
a2 if i = 1.

So
γ1 ◦ γ2 ◦ . . . ◦ γk−1(a1) = γ1 ◦ γ2 ◦ . . . ◦ γk−2(a1) = . . . = γ1(a1) = a2,

as desired. Now let us check the effect on the generic element aj , with j < k. Clearly γ(aj) =
aj+1, with the exception of ak, for which γ(ak) = a1. On the other hand,

γi(aj) =

ai if i ≥ j + 1
aj+1 if i = j
aj−1 if i = j − 1
ai if i ≤ j − 2.

So if j < k, we have

γ1 ◦ . . . ◦ γk−1(aj) = . . . = γ1 ◦ . . . ◦ γj(aj) = γ1 ◦ . . . ◦ γj−1(aj+1 = . . . = γ1(aj+1) = aj+1.

For ak instead we have

γ1 ◦ . . . ◦ γk−1(ak) = γ1 ◦ . . . ◦ γk−2(ak−1) = γ1 ◦ . . . ◦ γk−3(ak−2) = . . . = γ1(a2) = a1.

Corollary 54. Every permutation can be written as product of non-disjoint swaps.

Proof. In case the permutation is the identity, write it as (12)(12). First write the permutation
as product of disjoint cycles, and then break each cycle into swaps.

Example 55. Let us verify that (1, 3, 4, 6, 7, 9) = (1, 3)(3, 4)(4, 6)(6, 7)(7, 9). In fact, the right
hand side is given by the first and the last row of the matrix

σ =

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 9 8 7
1 2 3 4 5 7 9 8 6
1 2 3 6 5 7 9 8 4
1 2 4 6 5 7 9 8 3
3 2 4 6 5 7 9 8 1

and the left hand side is precisely

σ =

(
1 2 3 4 5 6 7 8 9
3 2 4 6 5 7 9 8 1

)
17

1.4 Inversion, even and odd permutations

Definition 56. An inversion in a permutation σ ∈ Sn is a pair of integers (i, j) such that i < j
but σ(i) > σ(j). A permutation is called even if it contains an even number of inversions, and
odd if it contains an odd number of inversions.

Example 57. For n = 3, the identity permutation

e =

(
1 2 3
1 2 3

)
has zero inversions, so it is even. The swaps

γ1 =

(
1 2 3
2 1 3

)
, γ2 =

(
1 2 3
1 3 2

)
, γ3 =

(
1 2 3
3 2 1

)
have one inversion each, so they are odd. Finally, the cycles of length 2

σ1 =

(
1 2 3
2 3 1

)
and σ2 =

(
1 2 3
3 1 2

)
have two inversions each, so they are even.

Lemma 58. Let γ be a swap. If σ is even then γ ◦ σ is odd, and if σ is odd, γ ◦ σ is even.
(In other words, each additional swap changes the parity).

Proof. Let a < b be the two elements of [n] = {1, . . . , n} that are swapped by γ. Let i < j. We
distinguish six cases:

1. if {σ(i), σ(j)} and {a, b} are disjoint, then γ has no effect on σ(i) and σ(j). So

(i, j) is an inversion in σ ⇐⇒ (i, j) is an inversion in γ ◦ σ.

2. if {σ(i), σ(j)} = {a, b}, then γ creates an inversion if there is none, or removes the inversion
if there is one. Hence

(i, j) is an inversion in σ ⇐⇒ (i, j) is NOT an inversion in γ ◦ σ.

3. if σ(i) ∈ {a, b} and a < σ(j) < b, then again γ creates an inversion if there is none (the
case σ(i) = a), or removes the inversion if there is one (the case σ(i) = b). Hence

(i, j) is an inversion in σ ⇐⇒ (i, j) is NOT an inversion in γ ◦ σ.

4. if σ(i) ∈ {a, b}, and σ(j) < a or σ(j) > b, then the swap given by γ does not affect the
order. So

(i, j) is an inversion in σ ⇐⇒ (i, j) is an inversion in γ ◦ σ.

5. if σ(j) ∈ {a, b} and a < σ(i) < b, symmetrically to case (3) we have

(i, j) is an inversion in σ ⇐⇒ (i, j) is NOT an inversion in γ ◦ σ.

6. if σ(j) ∈ {a, b}, and σ(i) < a or σ(i) > b, then the swap given by γ does not affect the
order, and symmetrically to case (4) e have

(i, j) is an inversion in σ ⇐⇒ (i, j) is an inversion in γ ◦ σ.

18

So if we compare the number of inversions of σ versus γ ◦ σ, there is an odd number of changes,
because cases (3) and (5) are equally frequent, and case (2) occurs exactly once.

Theorem 59. Let n ≥ 2 be an integer. Let σ ∈ Sn. The following are equivalent:
(A) σ is even;
(B) σ can be written down as product of an even number of swaps;
(C) σ cannot be written down as product of an odd number of swaps.

Proof. The identity permutation is even, because it has no inversion. Now suppose we have a
decomposition of σ into a product of s swaps. (One possible such decomposition is given by By
Corollary 54.) This means that σ is obtained with s swaps from an even permutation. Lemma
58 tells us that each swap changes the parity. So σ is even if and only if s is even.

Corollary 60. A k-cycle is an even permutation if and only if k is odd.

Proof. A k-cycle is the product of k − 1 swaps, and k is even if and only if k − 1 is odd.

Corollary 61. The set
An

def
= {even permutations}

is a subset of Sn with n!
2 elements.

Proof. Consider the following function between sets

ψ : An −→ (Sn \An)
σ 7−→ σ ◦ (1, 2).

This function is well-defined by Lemma 58. Moreover, it is invertible, the inverse being

φ : (Sn \An) −→ An
τ 7−→ τ ◦ (1, 2).

This proves that An and its complement within Sn have the same number of elements. Hence,
An has n!

2 elements.

Corollary 62. For each n ≥ 3, every permutation σ ∈ An can be written as product of 3-cycles.

Proof. By theorem 59 the permutation σ can be written as product of an even number 2s of
swaps.The trick is to simply to pair them. We claim in fact that the product of any two swaps
is either the identity or a 3-cycle. In fact,

• if a = c and b = d, then (a, b)(a, b) = id;
• if a = c but b 6= d, then (a, b)(a, d) = (adb);
• if a, b, c, d are all distinct, then (a, b)(c, d) = (ab)(ac)(ac)(c, d) = (abc)(cda).

2 Sequences and their difference

Definition 63. A (real-valued) sequence in a set S is a function a : N→ R. We usually denote
by an the element a(n).

A sequence may be defined by a closed formula, like the sequence of cubes qn = n3, or
inductively. For example, the Fibonacci sequence is defined by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for all n ≥ 2.

19

2.1 The k-th difference of a sequence

Definition 64. Let a : N→ R be an arbitrary sequence. The first difference of a is the sequence

(∆a)n
def
= an+1 − an.

For brevity, we simply write ∆an instead of (∆a)n.

Definition 65. Let X = { functions from N to R}. The difference operator is a function
∆ : X −→ X defined by ∆(a) = ∆a. Recursively, we define, ffor all positive integers k,

∆k def
= ∆ ◦∆k−1.

Example 66. The sequence q of cubes is

0, 1, 8, 27, 64, 125, 216, 343, 512, . . .

Its first difference ∆q is
1, 7, 19, 37, 61, 91, 127, 169, . . .

The second difference ∆2q is
6, 12, 18, 24, 30, 36, 42, . . .

The third difference ∆3q is
6, 6, 6, 6, 6, 6, . . .

and the forth difference is zero.

Lemma 67 (“Linearity of ∆k”). For all sequences a, b and for all real numbers r, one has

∆(a+ b) = ∆a+ ∆b and ∆(r · a) = r ·∆a.

The same is true replacing ∆ with ∆k, for any k.

Proof. Element-wise:

∆(a+ b)n = (a+ b)n+1 − (a+ b)n = (an+1 + bn+1)− (an + bn) =
= (an+1 − an) + (bn+1 − bn) = ∆an + ∆bn,

∆(r · a)n = (r · a)n+1 − (r · a)n = r · an+1 − r · an = r ·∆an.

For ∆k the proof is left to you (it’s a simple induction on k).

Theorem 68. If an = nk for some positive integer k, then ∆ka is a constant nonzero sequence,
equal to k! for all n, and thus for all h > k the sequence ∆ha is the zero sequence.

Proof. Set fk(n) = nk. We proceed by induction on k. The case k = 1 is clear:

∆1a
def
= an+1 − an = (n+ 1)1 − n1 = 1 = 1!

Now suppose we proved the statement for k − 1, and let’s show it for k. By the inductive
assumption, we know that

∆k−1(fi) =

{
(k − 1)! if i = k − 1,

0 if i < k − 1.
(3)

20

But then

∆kan = ∆k−1∆an = ∆k−1 ((n+ 1)k − nk
)

= ∆k−1
(∑k−1

i=0

(
k
i

)
ni
)

=
∑k−1

i=0

(
k
i

)
∆k−1(ni) =

(
k
k−1
)
(k − 1)! = k!,

where the first step is by definition of ∆k, the second step is by definition of an, the third step
is by Newton’s formula (plus the cancellation of the term nk), the forth step is by the linearity
of ∆, the fifth step is by Equation 3 above (only one summand survives!, namely, the summand
corresponding to i = k − 1), and the sixth step is a simple computation.

Corollary 69. If an coincides with a degree-k polynomial in the variable n, then ∆ka is constant
nonzero, and thus ∆k+1a is zero.

Proof. By the previous theorem plus the linearity of ∆.

I will now argue that the converse is also true. First we need a fact connecting ∆ka with the
consecutive k + 1 terms an, an+1, . . . , ank

of the sequence.

Theorem 70. For any positive integer k,

∆kan =

k∑
t=0

(−1)t
(
k

t

)
an+k−t.

Proof. By induction. The case k = 1 is easy: it reads ∆an = an+1− an. Suppose the statement
holds for some k; let us prove it for k + 1.

∆k+1an = ∆k(∆an) = ∆kan+1 −∆kan =
∑k

t=0(−1)t
(
k
t

)
an+1+k−t −

∑k
t=0(−1)t

(
k
t

)
an+k−t

= an+1+k + (−1)kan +
∑k

t=1(−1)t
(
k
t

)
an+1+k−t −

∑k−1
t=0 (−1)t

(
k
t

)
an+k−t

= an+1+k + (−1)kan +
∑k

t=1(−1)t
(
k
t

)
an+1+k−t +

∑k−1
t=0 (−1)t+1

(
k
t

)
an+k−t

= an+1+k + (−1)kan +
∑k

t=1(−1)t
(
k
t

)
an+1+k−t +

∑k
u=1(−1)u

(
k

u−1
)
an+k−(u−1)

= an+1+k + (−1)kan +
∑k

t=1(−1)t
(
k
t

)
an+1+k−t +

∑k
t=1(−1)t

(
k
t−1
)
an+1+k−t

= an+1+k + (−1)kan +
∑k

t=1(−1)t
[(
k
t

)
+
(
k
t−1
)]
an+1+k−t

= an+1+k + (−1)kan +
∑k

t=1(−1)t
(
k+1
t

)
an+1+k−t

=
∑k+1

t=0 (−1)t
(
k+1
t

)
an+1+k−t.

Remark 71. The previous formula can be inverted, though we omit the inductive proof because
it’s too complicated: One can prove that

an+k =

k∑
i=0

(
k

i

)
∆ian.

So fundamentally, understanding the first k + 1 terms after an is the same as understanding
subsequent differences. Understanding relations among the terms an, . . . , an+k (e.g. for k = 2
the Fibonacci relation Fn+2 = Fn+1+Fn), is the same as understanding “differential equations”,
i.e. equations involving the original sequence and its first, second, ..., k-th differences. For
example, going back to the Fibonacci sequence: Since ∆Fn = Fn+1 − Fn = Fn−1 and ∆2Fn =
∆ ◦∆Fn = ∆(Fn−1) = Fn−2, the Fibonacci relation gives rise to the differential equation

Fn = ∆Fn + ∆2Fn.

For the next result, we need a classical lemma from calculus.

21

Lemma 72 (Polynomial interpolation). Given k + 1 points

(a0, b0), (a1, b1), . . . , (ak, bk) ∈ R2

such that no two ai’s are the same, there exists a unique polynomial g with coefficients in R and
degree at most k, such that

g(a0) = b0, g(a1) = b1, . . . , g(ak) = bk.

Partial proof. We only show existence, which is all we need for our theorem below. (For more
details, see e.g. Wikipedia, en.wikipedia.org/wiki/Polynomial_interpolation.)
For every j ∈ {1, . . . , n}, let Pj be the product of all (x − ai)’s, except for (x − aj). Being a
product of k binomials of degree 1, this Pj is a polynomial of degree k; we can evaluate it a any
number, so it makes sense to compute Pj(aj), by plugging in aj for x. This Pj(aj) is a nonzero
real number, because by assumption ai 6= aj when i 6= j. So we can define

Lj(x)
def
=

Pj(x)

Pj(aj)
=

(x− a0) · (x− a1) · · · (x− aj−1)(x− aj+1) · · · (x− ak)
(aj − a0) · (aj − a1) · · · (aj − aj−1)(aj − aj+1) · · · (aj − ak)

.

Since the denominator is a (nonzero!) real number, and the numerator is a degree-k polynomial,
also Lj is a degree-k polynomial. Moreover, when we evaluate it at some ai, we get that

Lj(ai) =

{
0 if i 6= j,
1 if i = j.

But then if we define

g(x)
def
= b0 · L0(x) + b1 · L1(x) + . . .+ bk · Lk(x),

this is a sum of degree-k polynomials with the property that g(ai) = bi. A sum of degree-k
polynomials has degree at most k.

Theorem 73. A sequence a is the restriction to the integers of a degree-k polynomial function
⇐⇒ ∆ka is a nonzero constant.

Proof. ‘⇒’ is already done, it’s Corollary 69.
‘⇐’: Let a be a sequence with ∆ka constant but not zero. By polynomial interpolation, there
exists a polynomial g with coefficients in R and degree ≤ k such that

g(0) = a0, g(1) = a1, . . . , g(n) = an.

Now consider the sequence b defined by

bn
def
= g(n)− an.

We know that 0 = b0 = b1 = . . . = bk, by definition of g. On the other hand, since ∆ka is
constant, ∆k+1a is the zero sequence. ∆k+1g(n) is also zero for all n, because of part ‘⇒’ ,
which has already been proved. So by the linearity of ∆

∆k+1bn = ∆k+1g(n)−∆k+1an = 0− 0.

But then if we apply Theorem 70 to the sequence b, we get

0 = ∆k+1bn = bn+k+1 +

k+1∑
t=1

(−1)t
(
k + 1

t

)
bn+1+k−t.

But for all t ≥ 1, obviously 1+k− t ≤ k, so automatically b1+k−t = 0. (Because it’s one element
of the list b0, . . . , bk.)

22

en.wikipedia.org/wiki/Polynomial_interpolation

• for n = 0 we get 0 = ∆k+1b0 = bk+1 +
∑k+1

t=1 (−1)t
(
k+1
t

)
0, so bk+1 = 0;

• for n = 1 we get 0 = ∆k+1b1 = bk+2 +
∑k+1

t=1 (−1)t
(
k+1
t

)
0, so bk+2 = 0;

• and so on.
Thus bn = 0 for all n, which means that the polynomial function g restricted to the integers
coincides with an. But then g cannot have degree ≤ k − 1, otherwise we would have 0 =
∆kg(n) = ∆kan for all n, contradicting the assumption. So the degree of g is exactly k.

2.2 The sequence of partial sums

Like for derivatives and integrals, there is an operator on sequences that is somewhat the “in-
verse” of ∆.

Definition 74. Let a : N→ R be an arbitrary sequence. The sequence of partial sums of a, or
shortly the sum of a, is the sequence

(Σa)n
def
= a0 + . . .+ an.

For brevity, we simply write Σan instead of (Σa)n.

Definition 75. Let X = { functions from N to R}. The sum operator is a function Σ : X −→ X
defined by Σ(a) = Σa. Recursively, we define, for all positive integers k,

Σk def
= Σ ◦ Σk−1.

Example 76. The “initial-zero-then-constantly-one” sequence c is

0, 1, 1, 1, 1, 1, 1, 1, 1, . . .

Its sum Σc is the sequence of natural numbers

0, 1, 2, 3, 4, 5, 6, 7, 8, . . .

The second sum Σ2c is the sequence of triangular numbers tn =
(
n+1
2

)
, namely,

0, 1, 3, 6, 10, 15, 21, 28, 36 . . .

The third sum Σ3c is the sequence of tetrahedral numbers

0, 1, 4, 10, 20, 35, 56, 84, 120 . . .

A closed formula for Σ3c is
(
n+2
3

)
- easy prove by induction. Can you guess a closed formula for

Σ4c? Can you prove it?

Lemma 77 (“Linearity of Σk”). For all sequences a, b and for all real numbers r, one has

Σ(a+ b) = Σa+ Σb and Σ(r · a) = r · Σa.

The same is true replacing Σ with Σk, for any k.

Proof. Element-wise; left to you.

Remark 78. Note that for any natural number n

(∆(Σ(a))n = Σ(an+1)− Σ(an) = (a0 + . . .+ an + an+1)− (a0 + . . .+ an) = an+1,

while

(Σ(∆(a))n = ∆a0 + . . .+ ∆an = (a1 − a0) + (a2 − a1) + . . .+ (an+1 − an) = an+1 − a0.

So strictly speaking, neither ∆Σ nor Σ∆ is the identity. However, almost: ∆Σa is basically the
original sequence, “shifted to the left”; and when applied to sequences that start with a zero,
then also Σ∆ is just a shift to the left. For example, if a = 0, 1, 2, 3 . . ., then Σ∆a = ∆Σa is the
sequence 1, 2, 3, 4 . . .

23

2.3 The geometric sequence and its sum

If “first differences” are a discrete analog of derivatives and “partial sums” of integrals, is there a
discrete analog of the exponential function? The natural guess would be to study the following:

Definition 79. Let v, r be real numbers. The geometric sequence of initial value v and ratio r
is the sequence g = g(v, r) defined by

gn
def
= v · rn.

Note that g0 = v and gn+1

gn
= r, which explains the choice of words “initial value” and “ratio”

for v and r, respectively.

Proposition 80. The first difference of a geometric sequence is again a geometric sequence
(with same ratio). In particular, any polynomial of any degree, when restricted to the integers,
does not coincide with the geometric sequence.

Proof. From the definition,

∆gn = v · rn+1 − v · rn = v(r − 1) · rn.

Iterating,
∆kgn = v(r − 1)k · rn.

Since this is not constant (for any k), the geometric sequence is not polynomial.

What about the sum? We want to understand the value f(n) = v + vr + vr2 + . . . + vrn.
The key is that multiplying this quantity by r, one gets

rf(n) = v + vr + vr2 + . . .+ vrn + vrn+1 = f(n)− v + vrn+1.

This tells us that

f(n) = v
rn+1 − 1

r − 1
.

So the sum of a geometric sequence is not a geometric sequence, although it resembles one.
In fact, (r − 1)f(n) + 1 is a geometric sequence (shifted).

Example 81. The geometric sequence gn = 3n of ratio 3 and initial value 1 is

1, 3, 9, 27, 81, 243 . . .

Its first difference is
2, 6, 18, 54, 162 . . .

which is twice g. If instead we try to sum g, we get the mysterious sequence

1, 4, 13, 40, 121 . . .

But if we double the latter sequence, and add one to it, we get something much less mysterious:

3, 9, 27, 81, 243 . . .

which is the original geometric sequence, shifted by one. (In other words, it’s the sequence 3n+1.)

24

3 Graph Theory

In 1735 Leonhard Euler, the most famous mathematician of his time, was presented a riddle
by the mayor of Danzig. Given the map below of the center of Königsberg (now Kaliningrad,
Russia), is there a path that travels across all seven bridges exactly once?

Leonhard Euler was a pioneer of all the main branches of mathematics at the time. However,
he could not quite tell what kind of math problem this was. It wasn’t algebra or analysis, as
there was no symbol involved. But it wasn’t a geometry problem either, because the shape of
the island was irrelevant. In fact, one could simplify the question just by considering a structure
of dots and arcs connecting them (or as we would say today, “a multigraph consisting of vertices
and edges between them”) and ask: could you walk on all edges once?

In honor of Euler, a path where all edges are traveled across exactly once is called Eulerian.
Euler solved the problem quickly, with a “No, forget about it” answer. In fact, let’s call degree
of a vertex the number of edges touching it. As we walk around with an Eulerian path, every
time we pass a vertex, we use one new edge to get there and one new edge to leave. Hence:

• In a closed Eulerian path (that is, if we come back to where we started), all vertices have
even degree. In fact, the edges touching any given vertex v can be partitioned into two
classes – those used to get there, and those used to leave – of equal size.

• In a non-closed Eulerian path, the starting point and the final point will have odd degree,
whereas all other vertices will have even degree, for the same reason as above.

So if an Eulerian path exists, the total number of odd-degree vertices is either 0 or 2. Since
Königsberg’s map had vertex degrees 3, 3, 3, 5, don’t waste your time looking for Eulerian paths.

Euler presented his solution to the St. Petersburg Academy of Sciences on August 26.
1735. The proceedings, Solutio problematis ad geometriam situs pertinentis, were published in
Comment. Acad. Sci. U. Petrop. 8 (1736), 128–140. This date is considered by many historians
the birthdate of the branch of math called combinatorics. Euler himself was a bit embarassed
in pointing out to a fellow mathematician that the solution, albeit simple, does not fit any of
the conventional branches of mathematics at the time (the “art of counting” is what today we
would call Calculus).

25

3.1 Graphs, multigraphs, and operations

Definition 82. A graph is a pair G = (V,E) of a finite nonempty set V and a set E of two-
element subsets of V , called edges. The elements of V are called vertices and typically labeled
by 1, . . . , n.

We draw a graph by drawing points in correspondence to vertices. Then we draw an arc
between each pair of vertices listed in E. We will come back to this representation later on.

Example 83. The complete graph Kn has n vertices and all
(
n
2

)
edges.

Example 84. For n ≥ 4, the n-cycle Cn has vertex set {1, . . . , n} and edges [1, 2], [2, 3], . . . , [n−
1, n], [n, 1].

Example 85. The graph Ka,1, with a + 1 vertices and a edges, is defined as follows: Given a
set A of a point and an extra point v, draw an edge between any point of A and v.

Implicit in Euler’s work is the following statement:

Lemma 86 (Handshake Lemma). In any graph G with e edges and n vertices, lebaled by
v1, . . . , vn,

n∑
i=1

deg vi = 2e.

In particular, any graph has an even number of odd-degree vertices.

Proof. This is a good moment to introduce double-counting. Let’s form an incidence matrix of
edges and vertices. This is a table that has n rows, in correspondence with the vertices, and e
columns, in correspondence with the edges. At the crossing of row vi and column ej we place
a 1 if ej contains vi, and a 0 otherwise. Now let’s count the total number T of ones in two
ways:

• (by row) each row vi has exactly deg vi ones; so T =
∑

deg vi.
• (by column) each column ej has exactly 2 ones; so T = 2e.

A remark: The definition of graph is great for its simplicity. But it would not capture Königs-
berg’s map, for example, because the latter contained “multiple edges”, with same endpoints.
To fix this, we present a second definition, more difficult to learn but more inclusive.

Definition 87. A multigraph is a triple M = (V,E, h) of
• a finite, nonempty set V , whose elements are called vertices.
• a finite set E disjoint from V , whose elements are called edges;
• a function h : E → F , where F is the set of two-element and one-element subsets of V .

We draw a multigraph by first drawing points in correspondence with vertices. Then,

26

– for each element e of E such that h(e) = {i, j}, we draw an arc between i and j;
– for each element e of E such that h(e) = {i}, we draw a “loop” starting end ending at i.

The function h need not be injective: so multiple edges may be mapped under h to the same
pair {i, j}. There can also be several loops around the same point.

Proposition 88. Graphs are multigraphs without loops or multiple edges.

Proof. “No loops” means, the image of the map h is completely contained in the set 2V of
two-element subset of V . “No multiple edges” means that h is injective. So there is a bijection
between E and its image under h. Using this bijection, we can view E as a subset of 2V .

Definition 89. A (finite) walk (between v0 and vk) in a multigraph G is an alternated sequence

v0, e0, . . . , vk−1, ek−1, vk

of vertices and edges, such that ei = {vi, vi+1} for all i. We are not imposing vi 6= vi+1, so loops
can be part of a walk. The integer k is called length of the walk. The walk is closed if v0 = vk.
A path is a walk where all vertices are distinct. (In particular, a path cannot contain loops.) A
cycle is a closed walk where all vertices, except for v0 and vk, are distinct. According to this
definition, loops and double edges are cycles.

Definition 90. A multigraph is called connected if between any two vertices there is a walk (or
equivalently, a path).
A multigraph is called acyclic if it contains no closed walks (or equivalently, no cycles).

We can now state formally Euler’s solution of the seven-bridge-problem. An Eulerian closed
walk is a closed walk that touches all edges exactly once.

Theorem 91 (Euler 1735, Hierholzer 1873). Let G be a connected multigraph.
(1) G admits a Eulerian closed walk ⇐⇒ all its vertices have even degree.
(2) G admits a Eulerian walk from u to v ⇐⇒ the sum of the degrees of u and v is even, and

all other vertices have even degree.

Proof technique: algorithmic. We only sketch the first part, the second is left to you.
‘⇒’: explained in the previous section.
‘⇐’: Choose an arbitrary starting vertex v1; from it, keep walking on previously untaken edges
until you return to v1. (You cannot get stuck anywhere else, because once you use an edge to
arrive at a vertex w, by the even degree assumption there is also another edge leaving w.) Call
H1 this closed walk; if H1 = G, the claim is clear. Otherwise, there is some vertex v2 in H1

from which untaken edges depart. (Note: There may very well be vertices in G that are not at
all touched by the closed walk H; neglect them for the moment. For sure, by the connectedness
assumption, if there are untaken edges, then some of them touch H.) We then start a second
closed walk from v2, always choosing previously untaken edges, until we return to v2. Then we
merge this second closed walk to H1 to get a larger closed walk H2; if H2 = G, we conclude.
Otherwise we continue.

Remark 92. For graphs, the theorem above is still true if one replaces in (1) “Eulerian closed
walk” with “Eulerian cycle”. For multigraphs however, this is false: if M is the multigraph
consisting of a trangle with an extra loop at each vertex, then each vertex of M has degree 4,
but M contains no Eulerian cycle, because by definition a cycle does not contain loops.

On a multigraph M = (V,E, h) we define the following operations:

27

• the deletion of an edge e is the transition from M to a multigraph (V,E′, h′) where
E′ = E \ {e} and h′ is the restriction of h to E′.

• the deletion of a vertex v is the transition from M to a multigraph (V ′, E′, h′) where
V ′ = V \ {v}, E′ = {e ∈ E such that h(e) ∩ {v} = ∅}, and h′ is the restriction of h to E′.

• the contraction of an edge f is the transition from M to a multigraph (V ′, E′, h′) where
E′ = E \ {f}, V ′ = V \ h(f) ∪ {v}, where v is a “fresh vertex” not in V , and h′ is defined
as follows:

h′(e) = h(e) if h(e) ∩ h(f) = ∅,
h′(e) = {v} if h(e) ⊆ h(f),
h′(e) = {v, w} if h(e) = {v′, w} with v′ ∈ h(f).

(Check that this definition covers all possible cases!).
Intuitively, in a contraction we first delete an edge v1, v2; then we consolidate together the

two vertices, calling v their identification; finally, we make this v the new terminal of all edges
that previously arrived either to v1 or to v2. Note that:
(1) We are not imposing v1 6= v2, so we might also contract a loop. The effect of contracting

a loop is the same as deleting it.
(2) It is possible that a vertex w was connected in G both to v1 and to v2, in which case the

edge contraction produces a double edge.
In particular, contractions are not internal operations with respect to the world of graphs. (Start
from the triangle K3: A single edge contraction creates a double edge, and if we do one more
edge contraction, we obtain a loop.) In contrast, vertex deletions and edge deletions are internal
with respect to the world of graphs, because they do not create loops or double edges.

On a final note, given a subset W of the vertices of a multigraph G, we define the induced
subgraph on W to be the result of the deletion from G of all vertices that are not in W .

These operations provide us with a third proof technique: induction.

3.2 Trees

Definition 93. A multigraph is called a tree if it is connected and acyclic.

Note that trees are always graphs, because a loop or a double edge would result in a cycle.
Sometimes a disjoint union of trees (i.e. an acyclic graph) is called a forest in the literature.

Lemma 94. A graph is a tree ⇐⇒ between any two vertices there is exactly one path.
A multigraph is a tree ⇐⇒ it has no loops, and between any two vertices there is exactly one
path.

Proof. We only need to prove the second statement.
“⇐=”. The multigraph is connected and has no loops by assumption. If it contained a cycle
formed by at least two edges, such cycle would give you two paths between any two vertices of
the cycle, against the assumption.
“=⇒”. By definition of connected, between any two points of the graph there is at least one
path. Were there two, this would result in a cycle.

Lemma 95. Deleting any edge from a tree, one gets a “disconnected” (=not connected) graph.
Instead, adding any edge (not already present) to a tree, one gets a graph that contains cycles.

Proof. Let T be a tree. Suppose by contradiction that deleting the edge {i, j} yields a connected
graph. Then in such graph there is a path from i to j. Which means that in T there is a path
P from i to j that does not use the edge {i, j}. But then P , together with {i, j}, yields a cycle
in T , a contradiction. The second claim is similar and left to the reader.

28

So in a tree the number of edges has reached a delicate balance: One more, and you would
lose the acyclicity property; one less, and you would lose connectedness. We’ll compute this
number explicitly in Proposition 99. First, we need a way to define induction.

Definition 96. In a graph, the vertices of degree one are called leaves.

Proposition 97. Any tree with maximum vertex degree D has at least D leaves. In particular,
every tree with at least one edge has at least two leaves.

Proof. First let us verify that the first statement implies the second one. Indeed, apart from
the one-edge tree (for which the second statement can be checked manually: both endpoints
are leaves), every tree with two or more edges has vertices of degree ≥ 2, and thus from the
first statement we get that there are at least D ≥ 2 leaves. Let us prove the first statement. If
D = 0, there is nothing to show. If D > 0, let v be a vertex of degree D. Let e be any edge
departing from v. We claim that some path starting with v, e, will end in a leaf. Since
there are D edges leaving v, this implies the conclusion: The D leaves we find are obviously
different, because inside a tree, there cannot be cycles. But how to prove the claim? The idea
is to use an algorithm. Suppose you are a pilgrim, start at vertex v, and march across e. Let v1
be the first vertex that you encounter, i.e. the other endpoint of e. Is v1 a leaf? If so, stop: you
have achieved our goal. If not, then there is an edge e1 different from e that leaves v1. Take it:
this will lead you to a vertex v2. Is v2 a leaf? If so, stop; if not, keep going. And so on, always
choosing edges untraveled by. Since at every step you meet a new vertex (because of the lack of
cycles), and since there are finitely many vertices, at some point the algorithm stops.

Proposition 98. The deletion of a leaf from a tree, yields a tree.
Contracting any edge of a tree, yields a tree.

Proof. Let G be the graph obtained from a tree T by deleting a leaf `. If G contained a cycle,
so would T , a contradiction. So we only need to show that G is connected. But between any
two vertices in T different from `, the (unique) path connecting them does not pass through `,
because it is a “dead end”: otherwise the edge containing ` would have to be traveled twice,
which is against the definition of path. So the same path exists in G.
The second claim is similar, and left as exercise.

Now you can have fun proving things about trees by induction! You can either contract an
edge, or delete a leaf.

Proposition 99. (A) Every tree with n vertices has exactly n− 1 edges.
(B) Every connected multigraph with n vertices and exactly n− 1 edges, is a tree.
(C) Every acyclic multigraph with n vertices and exactly n− 1 edges, is a tree.

Proof. Part (A) is true for a single point. If n ≥ 2, then deleting a leaf results in a tree with
n− 1 vertices, and thus n− 2 edges by inductive assumption.
Part (B): Let G be a connected graph with n vertices and n−1 edges. By contradiction, suppose
G contains a cycle or a loop. Let’s delete an edge from this cycle – or, respectively, let us delete
the loop. The resulting connected graph G′ has n− 2 edges. If G′ is a tree, stop, otherwise keep
going (find a cycle or loop, choose any edge in it, and delete it). Eventually you’ll have to stop,
obtaining a tree with n vertices and ≤ n− 2 edges: A contradiction with part (A).
Part (C): left to you as exercise. Hint: when a graph G is not connected, we can pick two
vertices that are not joined by any path in G, and “add’ to G the edge {i, j}. This won’t create
any new cycle...

29

A subtree that touches all vertices sits inside any connected graph:

Definition 100. Let G = (V,E) be a connected multigraph. A spanning tree for G is a tree
(V,E′), with E′ ⊆ E.

Lemma 101. Every connected multigraph has spanning trees.

Proof by induction. Let G be a connected multigraph. Either G is acyclic, or not. If G is acyclic,
then G is its own spanning tree, and there is nothing to show. If instead G contains a cycle or
a loop, choose an edge e from the cycle and delete it. The resulting graph G′ is still connected,
because we deleted an edge from a cycle, so any path through e can be “rerouted” using the rest
of the cycle. Hence, by inductive assumption, G′ has a spanning tree T ′. The same T ′ works for
G too.

3.3 Bipartite graphs

Trees and forests do not contain any cycle. Next, we study the broader class of graphs that do
not contain any cycle of odd length.

Definition 102. A bipartite multigraph with parts X and Y is a multigraph whose vertex set
can be partitioned into two disjoint sets X and Y , such that every edge of the multigraph has
one endpoint in X and one endpoint in Y .

In particular, bipartite multigraphs have no loops, which are cycles of length 1. According
to our definition, the graph consisting of a single vertex and no edge is bipartite. Also any
edge-less graph is bipartite, so bipartite multigraphs need not be connected.

Lemma 103. A graph is bipartite if and only if all its connected components are bipartite.

Proof. If Gi is bipartite with parts Xi and Yi, for i = 1, 2, then it is easy to see that G1 ∪G2 is
bipartite with parts X1 ∪X2 and Y1 ∪ Y2. Conversely: Suppose that G1 ∪G2 is bipartite with
parts X and Y , with each Gi connected, and no edge going from G1 to G2. Let Xi and Yi be
the vertices of X belonging to Gi, for i = 1, 2. Then every edge of Gi must have one endpoint
in Xi and one in Yi; hence, Gi is bipartite.

Proposition 104. Let G be a multigraph. The following are equivalent:
(1) G is bipartite;
(2) G does not contain any odd cycle;
(3) G does not admit any closed walk of odd length.

Proof. (3) ⇒ (2) is trivial.
(1) ⇒ (3): Let G be bipartite with parts X and Y . Since there are no loops, a walk of length
k starting at a vertex of X will lead to a vertex in X if k is even, and to a vertex in Y if k is
odd. So all closed walks have even length.
(2) ⇒ (1): By the previous Lemma, it suffices to prove the claim for each connected component
of the multigraph; in other words, we may assume that the multigraph G is connected. By
assumption G has no loops, which are closed walks of length one. Choose a spanning tree T
for G (cf. Lemma 101). Choose a root, i.e. a preferred vertex r in G. By Lemma 94, every
other vertex w of G has a unique path in T connecting it to v. The length of this path, i.e. the
“distance between v and w along T”, may be odd or even. Divide the vertices w of G into two
sets X and Y , according to whether their distance from v along T is odd or even. We claim
that G is bipartite with parts X and Y . In fact, clearly in T there is no edge from X to X

30

(or from Y to Y). What about in G? Were there an edge [x, x′] in G going from X to X, this
edge (not in T , by what we said above) would form a closed walk C together with the unique
odd-length paths from x to v and from x′ to v in T . So the total number of edges of C is the
sum of two odd numbers, plus one: so C is an odd closed walk. We are not sure if C is a cycle
or not, because possibly we “backtracked” on some of the edges of T ; but then C minus we edge
we traveled twice on, yields the desired odd cycle C ′. Similarly, were there an edge [y, y′] in G
connecting two vertices of Y , this would produce a closed walk C with a number of edges that
is the sum of two even numbers, plus one: so from this C we could extract an odd cycle C ′, a
contradiction.

Corollary 105. All trees and all even cycles are bipartite.
In contrast, Kn is not bipartite for n ≥ 3.

There is however a way to introduce a graph with “the most edges possible”, within the
bipartite class:

Definition 106. The complete bipartite graph Ka,b is the bipartite graph with parts X =
{1, . . . , a} and Y = {a+ 1, . . . , a+ b}, and one edge [x, y] for every vertex x ∈ X and for every
vertex y ∈ Y .

We have already encountered Ka,1, which is the b = 1 case of Ka,b, in Example 85. Clearly
Ka,b has exactly ab edges. So on 2n vertices, the complete graph has

(
2n
2

)
= 2n2 − n edges,

whereas a bipartite graph can have at most n2 edges, a maximum achieved by Kn,n.

4 Graph drawings, polytopes and planar graphs

Definition 107. Let d ≥ 2. A line drawing in Rd of a graph G = (V,E) on n vertices is
an injective map ϕ from V to Rd, which allows to represent each edge [i, j] of G by means of
a straight segment that joins ϕ(i) and ϕ(j), with the property that any two segments either
intersect at an endpoint of both, or do not intersect at all.

Definition 108. Let d ≥ 2. A (broken-line) drawing in Rd of a graph G is a representation by
means of broken-line segments, with the property that no two broken-lines may intersect at any
point in the relative interior of any of them. (By “relative interior” of a broken-line joining ϕ(i)
and ϕ(j) we mean any point other than ϕ(i) or ϕ(j).) A drawing in Rd of a graph G = (V,E)
on n vertices is not fully determined by the choice of n points in Rd; for any edge [i, j], we also
have to choose a finite sequence of points, starting at ϕ(i) and ending at ϕ(j). Details are boring
and left to the reader.

It turns out that we might restrict the definitions above to d ∈ {2, 3}, because of the following
result:

Proposition 109. Any graph has a line drawing in R3, and thus in any Rd with d ≥ 3.

Proof. The key idea is randomness. Let us choose n points in R3 that are affinely independent,
i.e. no four of which are on the same plane. (Note that this condition is satisfied with probabil-
ity 1 if the points are picked randomly from the unit cube.) Then any two disjoint edges [i, j]
and [h, k] of G will be represented by two segments that are skew to one another; and skew lines
do not intersect.

A much more delicate question is which graphs admit a line or broken-line drawing in R2.
To answer this question, we need some “discrete geometry”.

31

Definition 110. A multigraph is planar if it has a broken-line drawing in the plane so that
any two broken-lines intersect only at their endpoints, or do not intersect at all. Such a drawing
breaks the plane into a finite number of connected components called regions.

We will see later that the definition simplifies a bit for graphs.

4.1 A crash course on polytopes, linear optimization

A particular case of planar graphs are the graphs of 3-dimensional polytopes, like cubes, pyra-
mids, and so on. Let me explain a bit better what a polytope is, and then we’ll come back to
planar graphs.

Polytopes

Definition 111. A subset A ⊆ Rd is convex if for any two points x, y of A, the entire segment
from x to y is in A.

Lemma 112. The intersection of convex sets is convex. Also, Rd, as subset of itself, is convex.

Proof. Exercise.

Lemma 113. Given a set S inside Rd, there exists a smallest convex subsets containing all of
them (called “convex hull of S”).

Proof. By the previous lemma, certainly there is a convex subset contaning S, namely, the whole
Rd. But that typically is not be the smallest. To find the smallest, just take the intersection of all
convex sets that contain S. This set still contains S, and is convex by the previous Lemma.

Definition 114. A polytope is the convex hull of some finite set in Rd.

Definition 115. Let P be a polytope in Rd. A face of P is any subset F ⊂ Rd of the form

F = {x ∈ P such that c · x = c0},

where c · x ≤ c0 is an inequality satisfied by all x in P .
We also say that the linear inequality c · x ≤ c0 supports the face F of P .

In other words, “faces” are where linear functions are maximized within P . Faces may have
different dimensions: For example, P is a face of itself, by taking c = 0 and c0 = 0. But also
the empty set is a face of any polytope P , by taking c = 0 and c0 = 1.

Definition 116. The faces of dimension 0, 1 and dimP −1 are called vertices, edges, and facets,
respectively.

If S is a finite set, the vertices are in general a subset of S, as the next Proposition explains:

Definition 117. Given finitely many points x1, . . . ,xn in A, a convex combination (of points
in A) is a point

x =
n∑
i=1

λixi, where
n∑
i=1

λi = 1 and λi ≥ 0 for all i.

Lemma 118. The convex hull of A is the set of all possible convex combination of points in A.

Proof. Exercise. Hint: call X the set on the right and show (1) that X is convex, (2) that any
a ∈ A belongs to X, and (3) that any element of X belongs to any convex set containing A.

32

Proposition 119. Let P be a polytope in Rd. Let v ∈ P . The following are equivalent:
(i) v is a vertex of P ;
(ii) v is not in the convex hull of P \ {v};
(iii) the only vector w for which both v + w and v −w are in P , is w = 0.
(iv) There are d constraints a>j x ≤ bj valid for P which are tight at v (that is, a>j v = bj for

all 1 ≤ j ≤ d) and the vectors a1, . . . ,ad are linearly independent.

Proof. (i) ⇒ (ii): By contradiction, v =
∑
λixi, with xi ∈ P different from v, with λi ≥ 0 for

all i, and with
∑

i λi = 1. By the assumption, {v} = H ∩P , where H is some hyperplane of the
form c>x = c0, and such that c>xi < c0 for all i, because v is the only vertex in H ∩ P . But
then we reach the contradiction

c0 = c>v = c>(
∑

λixi) =
∑

λic
>xi <

∑
λic0 = c0.

(ii) ⇒ (iii): Write v = 1
2(v + w) + 1

2(v −w).
(iii) ⇒ (iv): By contradiction, let a>j x ≤ bj be any constraint valid for P that is not tight at v.

That means that for some small vector w, both a>j (v + w) ≤ bj and a>j (v −w) ≤ bj . Hence,
both v + w and v −w are in P .
(iv) ⇒ (i): Define a hyperplane by

H
def
= {x such that

d∑
j=1

a>j x =
d∑
j=1

bj}.

Then every x in P satisfies a>j x ≤ bj for all j, so in particular it satisfies
∑d

j=1 a>j x ≤
∑d

j=1 bj .
Moreover, if x is any element in P ∩H, then all d constraints are tight at x; but since a rank-d
system of linear equations in Rd has only one solution, we conclude that x = v.

Corollary 120. A polytope is the convex hull of its vertices (and of no proper subset thereof).

Proof. Let A be a finite set. Let V be the list of vertices of the polytope P
def
= conv(A). Let

V ′ = V ∪A. Since A ⊆ V ′ ⊆ P , clearly

P = conv(A) ⊆ conv(V ′) ⊆ conv(P) = P,

which implies P = conv(V ′). Now all points not in V can be written as combination of points
in V , so P = conv(V).

Polytopes and planar graphs

How are polytopes connected to planar graphs? Well, the intuition is that if you put your nose
very close to one of the facets of a 3D-polytope, what you’ll see is a planar drawing (drawn
actually with straight edges!, not broken-lines) of its graph. The number of regions will be
exactly the number of facets.

In fact, one can prove the following beautiful theorem (a proof can be found in Ziegler,
Lectures on Polytopes, Springer).

Definition 121. A graph with at least d + 1 vertices is called is d-connected if you cannot
disconnect it by deleting less than d vertices (no matter how you choose them).

For example, 1-connected is the same as connected. Cycles are 2-connected. The graph of a
cube is 3-connected.

33

Theorem 122 (Steinitz). G is the graph of a 3-dimensional polytope ⇐⇒ G is planar and
3-connected.

Of course, not all planar graphs arise from 3-dimensional polytopes. For example, a tree
is not the graph of any 3-dimensional polytope. (Trees have leaves, whereas all vertices in a
3-dimensional polytope have degree ≥ 3...) We will prove only the ⇒ direction of Steinitz’ the-
orem, which has the advantage that it generalizes to higher dimensions. The converse direction,
going back to ideas of James Clerk Maxwell and Luigi Cremona, is perhaps more important for
applications, but specific for dimension 3.

Linear Optimization in five minutes

What is linear optimization about? Let f(x1, . . . , xd) = xd be the “height” function from Rd
to R. Given a region P ⊂ Rd, suppose we want to find the highest point, max{f(x) : x ∈ P}. If
P is a polytope, two dreams come true:

1. max{ f(x) for x ∈ P } = max{ f(v) for v vertex of P };

2. because of convexity, any local max is also a global max.

Näıf Simplex Method : Start at any vertex; move to an adjacent vertex that is higher (under
f); keep climbing!, until you get stuck. But when you get stuck, it means you are at a local
maximum: so you are at a global maximum, that is, you are at the very top.

OPEN: (weak Hirsch Conjecture) Any two vertices of any polytope with n facets are at
most 2n edges apart. (worst-case running time for Simplex Method). We know this is true
for some polytopes.

Theorem 123 (Balinski). The graph of every d-dimensional polytope is d-connected.

34

Sketch of proof. Choose the k ≤ d−1 vertices that you’re losing (green), and another designated
survivor x (red). These k + 1 ≤ d vertices will all belong, within Rd, to some hyperplane. Up
to performing a rotation/translation of coordinates, we can imagine that this hyperplane is
horizontal. In fact, let’s say it’s the hyperplane z = 0. The hyperplane chops the polytope into
two polytopes, both containing x. Apply the simplex method to both polytopes.

From every vertex v of the top polytope, the simplex method gives you a climbing path to
the top vertex T . Because this path is climbing, it won’t go down to the floor level z = 0, and
so in particular it won’t touch the green vertices. Hence, this path will survive the deletion of
the green vertices. Symmetrically from the bottom: from any vertex w of the bottom polytope
we can descend to the bottom vertex B with a path that does not touch the green vertices
(and thus survives their deletion). And now you understand the importance of the designated
survivor! The vertex x belongs to both the top and the bottom polytope, and so from x you can
climb to T and also descend to B, and both these paths will survive the deletion of the green
vertices.

Unfortunately, Balinski’s theorem is the only result we know for graphs of d-polytopes, d ≥ 4.

4.2 Euler’s theorem

A subset B ⊂ R2 is called bounded if lies in a sufficiently large rectangular box. Because of the
existence of Peano’s curves, i.e. continuous functions c : [0, 1] −→ [0, 1]× [0, 1] that are surjective
(i.e. their trajectory fills the square!, like a Roomba robot sweeps the room), the next theorem
is non-trivial.

Lemma 124 (Jordan’s theorem, 1887). Let c be an injective continuous map from the unit
circle to R2. (The image of c in this case is what is called “a simple closed curve”.) Then the
complement of the image of c consists of exactly two connected components, one bounded and
one unbounded.

Theorem 125 (EULER’S FORMULA: Descartes* 1630, Legendre* 1794; von Staudt 1847).
Given a planar connected graph with v vertices, e edges, and r regions,

v − e+ r = 2.

Many proofs of the Theorem above appeared throughout the centuries. I recommend brows-
ing https://www.ics.uci.edu/~eppstein/junkyard/euler/interdig.html for a history. A
crucial fact to keep in mind is that the first, fully correct proofs (Descartes 1630, Legendre 1794)
did not need Jordan’s theorem, but work only for planar graphs that come from 3D-polytopes.
That’s why we marked them with an asterisk. In 1847 von Staudt gave the first proof valid
for all planar graphs. Von Staudt’s proof (as well as basically all subsequent proofs valid for
all planar graphs, including Möbius’s 1863 “proof by deluge”) relies on Jordan’s curve theorem,
which was proven by Jordan in 1887; so today we would say that von Staudt and Möbius’ proofs
“became complete” only in 1887. (To be completely fair to von Staudt, if you start with a
planar drawings with straight edges, then von Staudt’s proof and the proof by induction on r
rely only on Jordan’s theorem for polygonal curves. This is a much simpler theorem, which can
be considered an exercise and was certainly known before Jordan’s work; a proof is in Tverberg,
“A proof of the Jordan curve theorem”, 1979. .)

Proof by induction on v. Since what we have in mind is an edge contraction, we are forced
to prove a stronger statement. In fact, after an edge contraction, we could get double edges, or
in other words, a multigraph that is not a graph; so the inductive assumption would not apply.

35

https://www.ics.uci.edu/~eppstein/junkyard/euler/interdig.html

To fix this, we try to prove by induction that Euler’s formula holds for all planar, connected
multigraphs.

So let’s prove it! Let G be a planar connected multigraph with v vertices, e edges, and r
regions. We prove by induction on v that v − e + r = 2. If v = 1, then G consists of e nested
loops. Applying Jordan’s curve theorem iteratively, from the outer to the inner loop, one can
prove that r = e + 1. (For this, first you have to prove that given two distinct simple closed
curves γ1, γ2, the union of their images tiles the space into four connected components, some
of which could ne empty: inside both, outside both, inside one but outside the other. Then
observe that for nested simple closed curves, exactly one of these four regions is empty.) So
v − e+ r = 1− e+ (e+ 1) = 2. Good!

Now the induction step. If v ≥ 2, contract an edge that joins two distinct vertices of G. This
yields a connected graph G′ with one less vertex, one less edge, and same number of regions. In
other words, if G′ has v′ vertices, e′ edges, and r′ regions, we have that v′ = v − 1, e′ = e − 1,
r′ = r. But since by inductive assumption v′ − e′ + r′ = 2, we get

v − e+ r = (v′ + 1)− (e′ + 1) + r′ = v′ − e′ + r′ = 2.

Proof by induction on e. Left as exercise. (Do the e = 1 case, distinguishing the v = 0 and
the v = 1 case. As for the induction step, look at the proof by induction on v.)

Proof by induction on r. The key is to show that r = 1 ⇐⇒ the graph G contains no cycle.
The direction “⇒” is an application of Jordan’s curve theorem, because a cycle would create
two connected components, and any further cycle drawn on top of it would only increase the
number of connected components. As for “⇐”, every graph (connected or not) is bounded,
because it contains finitely many edges, and every edge is bounded by Weierstrass’ theorem (it
is the image of a continuous function γ : [0, 1]→ R2). So if an edge of the graph belongs to two
regions, at least one of the two regions is bounded. The boundary of this bounded region must
be a subset of the graph. Hence, if r ≥ 2, the graph contains a cycle.

Now we are ready to set up the induction. If r = 1, then G contains no cycle by the claim
above. So G is a tree, and e = v − 1 by Proposition 99. If r ≥ 2, then again by the claim above
G contains a cycle. Let e be any edge in such cycle. Then the deletion of e yields a graph G′

that is connected (because any path through e can be “rerouted” using the rest of the cycle)
and planar. Deleting e puts two regions in communication: as a result, G′ has one less region
than G. Since G′ has v′ = v vertices, e′ = e− 1 edges and r′ = r − 1 regions, by induction

v − e+ r = v′ − (e′ + 1) + (r′ + 1) = v′ − e′ + r′ = 2.

Proof by intertwining trees (von Staudt,1847). Draw the dual graph G∗ of G defined as
follows: draw a vertex in the middle of each region of G, and then connect the vertices from
two adjacent regions of G by a curve e∗ that crosses their shared edge e. By the Jordan curve
theorem, any cycle in G disconnects G∗. Now pick a spanning tree T for G, and consider the
subgraph (G−T)∗ of G∗ formed by the dual edges of the complement of T . A cycle in (G−T)∗

would disconnect T ; so since T is connected, (G−T)∗ is acyclic. The other way around, since T
is acyclic, (G− T)∗ is connected. (All these implications make use of Jordan’s curve theorem.)
Conclusion: (G− T)∗ is a tree, so by construction, it is a spanning tree of G∗. By Proposition
99, T has v − 1 edges and (G − T)∗ has r − 1 edges. But every edge of G is either in T , or
it is crossed by exactly one edge of (G − T)∗. Hence, the number of edges of G is exactly
e = (v − 1) + (r − 1).

36

Figure 1: The spanning tree T (in blue) for G (in blue or green) determines a subgraph (G − T)∗ (in black,
dashed) of G∗ (in black or grey, dashed) that is also a spanning tree. (Colorized figure from Eppstein’s website,
https://www.ics.uci.edu/~eppstein/junkyard/euler/interdig.html).

Proof by deluge (Möbius, 1863). Imagine the graph as drawn on the z = 0 plane of R3.
Now lift each vertex vertically upwards, so it reaches a height that is a randomly chosen number
in the interval (0, 1). Then deform each edge continuously in the following way: pull the center
of the edge further upwards, as when picking up the handle of a suitcase, so that in the end the
center of the edge reaches a height that is a randomly chosen number in the interval (1, 2). The
endpoints of the edge don’t move in the process, so their height is lower, it’s still a number in
(0, 1). Finally, deform each bounded region in a similar fashion: choose a point in the middle
and bump it upwards, until it reaches a height that is a randomly chosen number in the interval
(2, 3). Again, this is only a central bump: the region stays a continuous surface, and its boundary
edges have not been touched.

Note that the result in the and is a surface with v + r + e critical points: v local minima at
the vertices, e saddles at the chosen points of edges, and r local maxima at the chosen points of
regions. View the surface as a territory somewhere on Earth. Now a deluge arrives. Ultimately,
the deluge completely submerges even the highest peak. So the water level gets from z = 0 (first
drops) to z = 3 (end of the deluge), say.

Let’s take a closer look at what happens as the water level goes up. Initially, from z = 0 to
z = 1, the rain will form one lake per each local minimum. In the next phase, from z = 0 to
z = 1, the water will pass saddles. Two things can happen as the water level passes a saddle
(depending on whether the two lakes on the sides were already communicating):
(a) either an island is formed because a lake doubles back on itself (like in Mont St. Michel with

high tide; to claim an island is formed, we are implicitly using Jordan’s curve theorem),
(b) or two different lakes merge.

Let us divide the edges in ‘edges of type (a)’ and ‘edges of type (b)’ accordingly. Let ea and eb
be their number, respectively. Clearly, since all edges are of one of these two types,

ea + eb = e. (4)

Finally, in the third phase, from z = 2 to z = 3, for each peak passed a landmass will be
eliminated.

Let us count the number of land masses: initially there is one, then we add one landmass
in the second phase for each edge of type (a), and then we lose one landmass for each peak.

37

https://www.ics.uci.edu/~eppstein/junkyard/euler/interdig.html

Eventually, it’s all under water, so 0 landmasses. Thus

1 + ea − r = 0. (5)

Let us now count the number of lakes: initially we add v lakes in correspondence with the
vertices. Then we decrease the number of lakes by one for each edge of type (b). In the third
phase there is no change in the number of lakes. Eventually, it’s all just one lake. Thus

0 + v − eb = 1. (6)

Combining Equations 4, 5 and 6, we get

1 = 1− 0 = (0 + v − eb)− (1 + ea − r) = v − (ea + eb) + r − 1 = v − e+ r − 1.

Lost-and-found proof by Descartes, 1630. This proof only works for graphs of 3-polytopes,
which are only some of the connected planar graphs. Choose a facet H and take a straight-line
planar drawing of the polytope (graph) by going very close to H. Let us double-count the sum
X of all angles in the drawing, including the inner angles of H. Since the sum of all angles in a
k-gon is (k − 2)π, and since each edge contributes to 2 faces, we have

∑
k≥3

∑
G k-gon k = 2e.

Note also that
∑

k≥3
∑

G k-gon 2 = 2f . So counting with respect to facets

X =
∑
k≥3

∑
G k-gon

(k − 2)π = π

∑
k≥3

∑
G k-gon

k −
∑
k≥3

∑
G k-gon

2

 = π(2e− 2f) = 2π(e− f).

Now we count the same angle sum X with respect to the vertices. Each interior vertex is
surrounded by triangles, so it contributes to X a total of 2π. Each vertex wH on the outside
face H contributes instead twice the angle at wH . If H is a convex polygon with h vertices and
h edges, the sum of the angles of H is (h − 2)π (prove it by induction!, you know the h = 3
case...) So we obtain

X =
∑

v vertex

∑
α angle at v α

=
∑

v /∈ H
∑

α angle at v α +
∑

v ∈ H
∑

α angle at v α

=
∑

v/∈H 2π + 2(h− 2)π
= 2π(v − h) + 2π(h− 2) = 2π(v − 2).

Thus, 2π(e− f) = X = 2π(v − 2)π: dividing by 2π, we get e− f = v − 2.

The last part of this chapter is dedicated to show that some graphs are not planar.

Proposition 126. Let G be a planar graph with at least three edges. Then

e ≤ 3v − 6.

More generally, if every region of G has at least m edges, then

e ≤ m

m− 2
v − 2m

m− 2
.

Proof. Note that the second statement implies the first one by setting m = 3: In fact, the
assumption “G has at least 3 edges” guarantees that every region of G has at least 3 edges.
So let’s prove the second statement. First let us show it for connected graphs. The idea is
double-counting: create an incidence matrix of edges and regions. Let’s index rows by regions,
and columns by edges. At the intersection of the column that corresponds to the edge ej and of
the row that corresponds to region ri, we place a 1 in case ej belongs to ri, and a 0 otherwise.
We count the total number T of ones in two ways:

38

• (by row) Every region of G has at least m edges, so T ≥ rm.
• (by column) Every edge is in either 1 or 2 regions, so T ≤ 2e.

In conclusion,
rm ≤ 2e.

But since G is a planar graph, and we are assuming it’s connected, we can apply Euler’s theorem:
v − e+ r = 2, or r = 2− v + e. Plugging in,

2m− vm+ em ≤ 2e,

or shortly, (m − 2)e ≤ vm − 2m. Dividing by m − 2, which is positive, we obtain the desired
inequality

e ≤ m

m− 2
v − 2m

m− 2
.

Now suppose that G is not connected. Given i, j in G not connected by a path, we can add the
edge i, j; and up to moving/rotating/rescaling the connected components, we can assume that
such edge does not intersect other existing edges. So from G we obtain a new planar graph G1

with v1 = v vertices, e1 = e+ 1 edges, and r1 = r regions. If G′ is connected, we stop; otherwise
we iterate. Eventually, we will reach a connected planar graph G′, with v′ = v vertices, e′ > e
edges, and r′ = r regions. To this G′ we can apply the present Proposition, which we already
proved in the connected case. So we know that

e′ ≤ m

m− 2
v − 2m

m− 2
.

But since e < e′, we derive that

e <
m

m− 2
v − 2m

m− 2
.

Corollary 127. In a planar graph, there is at least one vertex of degree ≤ 5.
If in addition every region of G has at least 4 edges, then some vertex has degree ≤ 3.
If in addition every region of G has at least 6 edges, then some vertex has degree ≤ 2.

Proof. The first claim is clearly true for planar graphs with one or two edges: in that case, there
is even one vertex of degree 1. So suppose the graph G has at least 3 edges. Let’s compute the
average vertex degree, using the Handshake Lemma.

average degree =

∑
vi∈V deg vi

v
=

2e

v
.

But by the previous Proposition,

2e

v
≤ 6v − 12

v
= 6− 12

v
< 6.

And when an average of integers is strictly less than 6, one of those integers has to be strictly
less than 6, so at most 5. More generally, if every region of G has at least m edges, then by the
previous Proposition the average degree is

2e

v
≤ 2m

m− 2
− 2m

(m− 2)v
<

2m

m− 2
.

For m = 4, we have 2m
m−2 = 4, so we conclude that there is a vertex of degree ≤ 3. For m = 6,

we have 2m
m−2 = 3, so we conclude that there is a vertex of degree ≤ 2.

39

Corollary 128. Kn is planar if and only if n ≤ 4.

Proof. K1, K2 and K3 are obviously planar. K4 is the graph of the tetrahedron, a 3-dimensional
polytope; so it is planar. To complete the proof, it suffices to show that K5 is not planar, because
K5 is a subgraph of Kn for n ≥ 5. (So if Kn coud be drawn in the plane without self-intersections,
so could K5.) But K5 has 5 vertices and

(
5
2

)
edges, too many to satisfy e ≤ 3v − 6.

Corollary 129. Ka,b is planar if and only if one of a and b is ≤ 2.

Proof. When a ≤ 2, planarity is clear: draw all points of B on the line y = 0 of the plane, and
place the points of A in the set {(0, 1), (0,−1)}. When b ≤ 2, switch labels of A and B, and do
as above. When a ≥ 3 or b ≥ 3, clearly K3,3 is a subgraph of Ka,b, so if we prove that K3,3 is
not planar, we are done. Now, K3,3 has 3 + 3 = 6 vertices and 3 · 3 = 9 edges, so it does satisfy
e ≤ 3v − 6. However, the crucial observation to conclude is that K3,3 contains no triangle: the
smallest region is a square. So by 126, applied to m = 4, it should also satisfy

e ≤ 4

4− 2
v − 2 · 4

4− 2
,

or e ≤ 2v − 4. But it doesn’t: 9 > 12− 4.

5 Networks

Many real-life situations require to streamline “stuff” between two nodes of a graph. “Stuff”
could be data to stream through a communication network, liquids to convey through pipelines,
electricity to bring over via cables, good to be transported via train tracks, passengers to car-
share around through the city streets, and so on. All these problems have two aspects in common
that the notion of “graph” does not quite capture:

1. There is often a preferred, or even a unique direction in which edges can be traveled across.
For example, streets can be one-way. Clean water comes from the city reservoirs to our
faucet, but not the other way around: The water pipes are always one-way.

2. Every edge has a maximum capacity. A pipe has finite diameter, so it can’t transport
infinite amounts of water. Same for train tracks, electricity cables, or internet connections.

We want to incorporate this into our model of “graph”. To this end, we modify the definition
as follows:

Definition 130. A network is a triple N = (V,E, c) of
• a finite, nonempty set V whose elements are called vertices;
• a nonempty subset E ⊂ V × V , whose elements are called directed edges;
• a function c : V × V → Q≥0, called capacity, that is zero on non-edges.

We also assume that E “avoids the diagonal”, i.e. contains no element of the type (v, v), with
v ∈ V .

We draw a network by first drawing points in correspondence with vertices. Then for each
element (i, j) of E, we draw an arrow from i to j. Because we imposed E to avoid the diagonal,
our networks have no loops. Finally, we write the integer c(e) on top of the edge e.

Remark 131. You may wonder why we defined the capacity also on non-edges, and then set it
to zero. The reason will become clear in a few minutes, as we will write down Kirchhoff’s law
(Remark 136). You may also wonder why we imposed the capacity to be a rational number.

40

Well, it would be perfectly equivalent to require c : E → N, since one may rescale. However,
there is a surprising difference between rational-capacity networks and real-capacity networks:
If we allow edge capacities to be real numbers, then the algorithm we present in the next section
(called Ford–Fulkerson’s algorithm) might not converge.

Definition 132. With respect to a vertex v, the edges containing v can be partitioned into
outgoing edges, i.e. those of the type (v, w), for some w ∈ V ; and incoming edges, i.e. those of
the type (w, v), for some w ∈ V .

Definition 133. The vertices of a network can be of four types:
• isolated vertices are those without incoming or outgoing edges;
• sources are those with outgoing edges, but without incoming edges;
• sinks are those with incoming edges, but without outgoing edges;
• intermediates are those with both incoming and outgoing edges.

For example, a cycle with all edges oriented clockwise is a network with no source and no
sink: all vertices are intermediates. If instead we consider the network (1, 2), (1, 4), (3, 4), it has
two sources, two sinks, and no intermediates.

Definition 134. An (s,t)-network is a network that has exactly one source, labeled by s, and
exactly one sink, labeled by t.

So the (s,t)-flow network is the easiest instance of a transportation problem: There’s some
good stocked at s, and we want to transport it across the network to t, keeping in mind that
each edge has a limited maximum capacity, and that nobody steals across the pipeline.

Definition 135. A flow in an (s,t)-network is an assignment of a non-negative rational number
f(u, v) to every pair of vertices (u, v), such that

• (“capacity constraint”) f(u, v) ≤ c(u, v) for every (u, v);
• (“Kirchhoff’s law”) at every intermediate vertex v, the sum of flows of incoming edges

equals the sum of flows of outgoing edges.
The value (or cost) of the flow is the total amount of flow exiting the source.

Remark 136. Because we defined the capacity of non-edges to be zero, by the capacity con-
straint we have f(u, v) = 0 for every (u, v) /∈ E. This allows us to write down Kirchhoff’s law
in a concise form:

for every intermediate i,
∑
v∈V

f(v, i) =
∑
v∈V

f(i, v). (7)

And similarly, the value of the flow can be concisely written as

val(f) =
∑
v∈V

f(s, v).

So here’s what we want to study:

Maximum flow problem: Given an (s, t)-network, find a flow of maximum value.

You may wonder why we are studying the total amount of flow exiting the source, and not
the total amount of flow entering the sink, which seems interesting as well. The next Theorem
will clarify that the two quantities are equal, precisely because nobody steals across the pipeline.

41

Definition 137 (Cut). A cut in an (s, t)-network is a partition of the vertex set into two sets,
A and V \A, such that the source s is in A and the sink t is in V \A.
The capacity of the cut is the quantity

c(A)
def
=

∑
a∈A,b/∈A

c(a, b).

The net flow out of the cut is the quantity

f(A)
def
=

∑
a∈A,b/∈A

f(a, b)−
∑

b/∈A,a∈A

f(b, a).

Note that the definition of cut we gave is not symmetric, i.e. A and V − A cannot be
exchanged, because only one of them contains the source. So it makes sense to identify the cut
with the subset A of vertices that contains the source. Note also that for the capacity of the cut,
we are only considering edges directed from A to V −A; we don’t care about edges traveling in
the opposite direction. But we do count them in the net flow out of the cut.

Theorem 138. Let N be an (s, t)-network. The flow out of the cut f(A) depends only on the
network N , but not on the cut A. One has

f(A) = val(f)
def
=
∑
w∈V

f(s, w).

Proof. First, two forewords. The (s, t)-network contains only one source, which is in A, and one
sink, which is not in A. Hence any a ∈ A different than s is either isolated or intermediate. In
both cases, using either that the flow is zero on non-edges, or Kirchhoff’s law, we obtain∑

v∈V
f(a, v)−

∑
v∈V

f(v, a) = 0 for any a ∈ A− {s}. (8)

The second foreword is that ∑
a∈A

∑
v∈A

f(a, v) =
∑
a∈A

∑
v∈A

f(v, a). (9)

This is the consequence of a mere reindexing trick: In fact, the same equality holds for any set
A and any function f : A×A→ R.

We’re done with the foreword. Now consider the quantity∑
a∈A

∑
v∈V

[f(a, v)− f(v, a)] .

We’ll evaluate it in two ways:

• By breaking “a ∈ A” into the cases “a ∈ A − {s}” and “a = s”. Using 8 at the step
marked with an exclamation mark, and the fact that there is no edge (v, s), we get∑

a∈A

∑
v∈V

[f(a, v)− f(v, a)] =
∑

a∈A−{s}

∑
v∈V

[f(a, v)− f(v, a)] +
∑
v∈V

[f(s, v)− f(v, s)] =

!
= 0 +

∑
v∈V

[f(s, v)− f(v, s)] =
∑
v∈V

[f(s, v)− 0] = val(f).

(10)

42

• By breaking “v ∈ V ” into the cases “v ∈ A” and “v /∈ A”. Using 9 at the step marked
with an exclamation mark, we obtain∑

a∈A

∑
v∈V

[f(a, v)− f(v, a)] =
∑
a∈A

∑
v∈A

[f(a, v)− f(v, a)] +
∑
a∈A

∑
v/∈A

[f(a, v)− f(v, a)] =

!
= 0 +

∑
a∈A

∑
v/∈A

[f(a, v)− f(v, a)] =

=
∑

a∈A,v/∈A

f(a, v)−
∑

a∈A,v/∈A

f(v, a)
def
= f(A).

(11)

Corollary 139. Let N be an (s, t)-network. For any flow f , and for any cut A,

val(f) ≤ c(A).

Proof. By Theorem 138, val(f) = f(A). Using the capacity constraint at the step marked with
an exclamation mark, we get

f(A)
def
=

∑
a∈A,b/∈A

f(a, b)−
∑

b/∈A,a∈A

f(b, a) ≤
∑

a∈A,b/∈A

f(a, b)
!
≤

∑
a∈A,b/∈A

c(a, b)
def
= c(A).

Unlike f(A), the quantity c(A) depends on the cut A chosen. Remember that we want to
find the maximum flow. To get the best possible upper bound for the flow, we need to find cuts
of smallest capacity. The next section contains a miraculous theorem, namely, that the maximu
of val(f) over all possible flows always equals the minimum of c(A) over all possible cuts.

5.1 Max-flow-min-cut and Ford-Fulkerson’s algorithm

Given a flow in a network, we’d like to know if the flow can be improved. For this, it’s important
to look at every pair of vertices u, v, and understand if “we can ship more from u to v”. The
obvious way to look for improvement, is to check if c(u, v)− f(u, v) > 0. If so, then in principle
we could push more material from u to v through the edge (u, v). But this is not the only way!
There’s another way we can improve things, namely, to check if by any chance f(v, u) > 0. That
is, if the current flow is sending material backwards from v to u. Then we could “improve”
simply by reducing the backward flow. (It’s a bit like in business: To pay someone, you should
figure out ways to wire him money!, but there’s also another strategy: if by any chance he owes
you money, you could ‘virtually’ send him money by condoning part of his debt.)

Definition 140 (Residual capacity). Let f be a flow in an (s, t)-network N = (V,E, c). The
residual network is an (s, t)-network Rf = (V,E, cf) on the same vertices and edges of N , and
with same source and sink, but with residual capacity

cf (u, v)
def
= c(u, v)− f(u, v) + f(v, u).

Note that cf and Rf depend on f .

Remark 141. For any pair (u, v) of vertices, cf (u, v) is a rational number ≥ 0, because (c(u, v)−
f(u, v)) ≥ 0 and f(v, u) ≥ 0. Moreover, cf (u, v) is 0 if and only if both c(u, v) = f(u, v) and
f(v, u) = 0.

Definition 142 (Augmenting path). Let f be a flow in an (s, t)-network N = (V,E, c). An
augmenting path is a path in the residual network Rf where all edges have positive residual
capacity.

43

Theorem 143 (Max-Flow-Min-Cut). For a fixed flow f in an (s, t)-network N = (V,E, c), the
following are equivalent:
(1) The flow has maximum value.
(2) There is no augmenting path from s to t.
(3) There is a cut A such that val(f) = c(A).

Proof. (3) ⇒ (1) You can’t top that!, since for any other flow g we have val(g) ≤ c(A) by
Corollary 139.

(1)⇒ (2) Were there an augmenting path, you could improve the flow further! (In detail: if m
is the smallest residual capacity among the edges involved in the augmenting path, send
the quantity m from s to t! You’ll have increased the flow value by m.)

(2) ⇒ (3) The right idea is to define A as the vertices you can reach from s with an
augmenting path. By definition s ∈ A. By the assumption (2), we know that t /∈ A. So
A is a well-defined cut. Now consider an edge a, b such that a ∈ A and b /∈ A. The residual
capacity of (a, b) must be zero, otherwise the augmenting path from s to a (which exists
because a ∈ A) could be extended one step further, yielding a path from s to b (which
cannot exist because b /∈ A). So

0 = cf (a, b)
def
= (c(a, b)− f(a, b)) + f(b, a).

By Remark 141, this means that c(a, b) = f(a, b) and f(b, a) = 0. But since this holds for
every (a, b) across the cut, using Theorem 138 we get

val(f) = f(A)
def
=
∑

a∈A,b/∈A

f(a, b)−
∑

b/∈A,a∈A

f(b, a) =
∑

a∈A,b/∈A

f(a, b) =
∑

a∈A,b/∈A

c(a, b)
def
= c(A).

The previous theorem is due to Lester Randolph Ford Jr. (1927–2017) and Delbert Ray
Fulkerson (1924–1976). They also answered the natural, follow-up question: So how do we find
the best flow? To see this, first let us introduce a natural operation within flows.

Definition 144. A flow in an (s, t)-network is “simplified’ if for any two vertices u, v, one of
f(u, v) and f(v, u) is zero. We can “simplify” any flow in the following way: while there are
two vertices u, v such that f(u, v) and f(v, u) are both positive, create a new function f ′ that is
identical to f on all other pair of vertices, but such that

f ′(u, v)
def
=

{
f(u, v)− f(v, u) if f(u, v) > f(v, u)
0 if f(u, v) ≤ f(v, u)

f ′(v, u)
def
=

{
0 if f(u, v) > f(v, u)
f(v, u)− f(u, v) if f(u, v) ≤ f(v, u)

Clearly one of f ′(u, v) and f ′(v, u) is zero. Let us verify that f ′ is again a flow:
(1) Capacity constraint holds because with respect to f , we reduced the flow on both (u, v)

and (v, u) (and left untouched the flow on all other edges). So f ′(u, v) ≤ f(u, v) ≤ c(u, v),
and same for (v, u).

(2) Kirchhoff law holds because

• if f(u, v) > f(v, u), then f ′(u, v)−f ′(v, u)
def
= (f(u, v)− f(v, u))−0 = f(u, v)−f(v, u).

• if f(u, v) ≤ f(v, u), then f ′(u, v)−f ′(v, u)
def
= 0−(f(v, u)− f(u, v)) = f(u, v)−f(v, u).

So either way, f ′(u, v)− f ′(v, u) = f(u, v)− f(v, u).

44

Ford–Fulkerson Algorithm (1954).

INPUT: Network N = (V,E, c).
Initialize f(u, v) := 0 for all (u, v).

1. Compute the residual capacity cf .

2. While there is an augmenting path ℘ from s to t:

(i) let m be the minimum of the residual capacities of the edges along that path.
(ii) Augment the flow at all edges in that path by m units; that is, define

f ′(u, v)
def
=

{
f(u, v) +m if (u, v) ∈ ℘
f(u, v) otherwise.

(iii) Then, “simplify” this f ′. If f ′′ is the resulting flow, replace f with f ′′ and go back
to step 1.

3. Output f .

Remark 145. At the moment it is not clear whether this “procedure” eventually stops: A
priori, it might keep running forever. However, for the moment notice that if this procedure
stops, then we are in a situation where there is no augmenting path — so by Theorem 143 the
output flow is certainly the optimal one (and equal to the smallest cut capacity).

Indeed, we will now show that the procedure above stops after a finite number of steps. For
this it is crucial that the capacities are elements of Q. Should you want to consider real-valued
capacities, for whatever reason, then Theorem 143 would still hold!, but the Ford–Fulkerson
procedure might keep running forever, and it might not converge to the maximum flow.

Recall that a function is integral if its image is contained in N.

Theorem 146. If the capacity is integral, then at each iteration of Ford–Fulkerson’s algorithm
the flow f is also integral. In particular, the Ford–Fulkerson’s algorithm terminates after at most
c({s}) steps, returning an optimal flow that is integral.

Proof. Initially f(u, v) = 0 for all (u, v), so in the first “while” cycle the residual capacity is equal
to the capacity, so it is integral. Thus m will be an integer. Thus the flow f ′ will be integral.
Finally, “simplifying” an integral flow still gives an integral flow (because the difference of two
integers is still an integer), so f ′′ is also integral. Now at every iteration of the Ford–Fulkerson’s
algorithm, the flow improves by at least 1. Since we start with a flow of value 0 and the value
of the value cannot exceed c({s}) (by Corollary 139, applied to A

def
= {s}), the total number of

iterations is at most c({s}). So the algorithm eventually stops, outputting an integral flow.

Corollary 147. Ford–Fulkerson terminates after finitely many steps.

Proof. Remember that we define capacities to be functions from V × V to Q≥0. Our problem
is clearly scale-invariant, i.e. we could change measure unit for the capacities, without changing
the problem: the solution would be proportional. So since our capacities are a finite number of
fractions, we can always rescale everything (i.e. multiply by the least common multiple M of
all denominators) and assume that all capacities are non-negative integers. Applying the
theorem, we see that Ford–Fulkerson then converges, after at most M · c({s}) steps.

Ford–Fulkerson is an example of greedy algorithm: As soon as you see an augmenting
path from s to t, you take it!, using it for increasing your flow. Concretely, remember that an
augmenting path is a path consisting of:

45

• non-full forward edges (i.e., edges (u, v) such that c(u, v)− f(u, v) > 0) or
• non-empty backward edges (i.e., edges (v, u) such that f(v, u) > 0) or
• both!

Remark 148. Recall that val(f) ≤ c(A) for any cut A, by Corollary 139. So if by any chance,
at any stage of the algorithm, you see a cut whose capacity equals the value of the flow you are
considering, then you might as well stop, because clearly there’s no way to beat that flow.

5.2 Consequences on Marriage

Max-flow-min-cut is a wonderful tool to prove other theorems! Let us start with an observation.
Suppose we have a network where the capacity of every edge is 1, and the capacity of
every non-edge is 0. Then by Theorem 146 the flow of maximum value is also integral. But for
any edge (u, v), the constraints {

0 ≤ f(u, v) ≤ c(u, v) = 1
f(u, v) ∈ Z

imply that f(u, v) is either 0 or 1. So essentially, a flow can either use an edge, or not. Then in
a network where the capacity of all edges is 1 a flow is merely a subset of the (directed) edges,
walking on which you can get from s to t. And if val f = t, this means that our flow inside G
consists of t edge-disjoint-paths from s to t.

In this setup, what does cut capacity mean? By definition,

c(A)
def
=

∑
a∈A,b/∈A

c(a, b) =
∑

a∈A,b/∈A

1,

so c(A) just counts the number of edges that go out of the cut. So Theorem 143 says something
we didn’t know, about a maximum number of edge-disjoint path from s to t being equal to the
smallest number of edges whose deletion destroys any path from s to t.

The next trick we are going to learn is, what if we assign capacity L to some edges,
where L is a very large integer. Suppose you want to find a cut of capacity k, with k small.
Then the edges of capacity L cannot be cut. In other words, if a cut A contains an endpoint
of one of these “superedges”, then A is forced to contain also the other endpoint. This has
interesting applications.

Theorem 149 (Menger, 1927). Let G be a connected graph, with two distinct vertices s, t.
• The maximum number of edge-disjoint s− t paths equals the minimum cardinality of a set

of edges whose deletion destroys any path from s to t.
• The maximum number of vertex-disjoint s − t paths equals the minimum cardinality of a

set of vertices whose deletion destroys any path from s to t.

Proof. The first statement is basically proven above; the details are left to you. We will focus
on the second statement, which is harder to prove. The crucial idea is the following trick.

Let us transform every vertex v of G into a pair of vertices (vin, vout). Set c(vin, vout) = 1
and c(vout, vin) = 1. Let L be a very large number (for example, larger than twice the number
of vertices of G). Every edge {u, v} in G is transformed into two directed edges: one edge from
uout to vin, to which we assign capacity L, and another symmetric edge from vout to uin, to
which we also assign capacity L. This way from G we have obtained an (sout, tin)-network NG,
of integral capacity. Now we apply max-flow-min cut. Finding a flow of value k in NG is the
same as finding k vertex-disjoint paths inside G. Moreover, since k < L, a cut of capacity k can
only be crossed by edges of the type (vin, vout). So finding a cut of capacity k in NG is the same
as finding a set of k vertices in G whose deletion destroys any path from s to t.

46

Corollary 150. Let G be a graph with n ≥ d+ 1 vertices.
G is d-connected ⇐⇒ between any 2 non-adjacent vertices there are ≥ d vertex-disjoint paths.

Next comes another famous theorem in graph theory, proved by Philip Hall in 1935. It can
be described as follows.

Suppose the population of a small, rural town consists of the same number n of men and
women. Suppose in this town everybody belongs to just one of these two genders, everybody
is heterosexual, and every marriage results in happiness. (Yes, even in 1935 England this was
completely not realistic, but they liked to pretend it was.) In this town, each woman keeps a
secret list of the men in town, any one of which she would happily marry; and any man would
be happy to marry a woman who wants to marry him. Consider whether it is possible to pair
up the men and the women (in marriage!, of course) so that every person is happy.

Theorem 151 (Hall’s Marriage theorem). It is possible to pair up everybody happily in this
town of freaks, if and only if for every subset S of the women, the total amount of guys written
in their lists is at least |S|.

Proof. The direction⇒ of this theorem is rather obvious. Namely, suppose not: suppose there’s
for example 7 women, say, that have indicated in their lists at most 6 guys altogether. Then
there is no chance to subdivide the 6 guys among them: At least one woman will remain without
partner (and thus, according to the 1935 axioms, apparently unhappy and inconsolable).

So let’s focus on the direction ⇐. We are going to create a network with vertex set

V = {s} ∪W ∪M ∪ {t},

where the points in W represents women and the points in M , men. We are assuming |W | =
|M | = n, so |V | = 2n+ 2.

• First thing, for every w ∈W , we draw a directed edge (s, w). Let’s give it capacity 1.
• Next, we draw a directed edge (w,m) whenever a guy m is in the wishlist of the woman
w. Let’s give it capacity L, where L is a very large number – for example, L = 2n.

• Finally, for every m ∈M , draw a directed edge (m, t) and give it capacity 1.
Okay, so now we are in business. Integral capacities, so the maximal flow is integral. What we
want to prove is that there is a flow of value n = |W| = |M|. In fact, this means finding n
edge-disjoint paths from s to t, or equivalently, n disjoint woman-man edges, which would give
the desired matching and restore British decency.

So suppose by contradiction that the maximal flow has value k, for some k < n. By max-
flow-min-cut, this means that there is a cut A of capacity k. Since L is larger than k, you cannot
break the women’s preferences: all the edges going across the cut A must be of type (s, w) or
(m, t). And since the capacities of these edges is 1, a cut A of size k means that

• you are cutting i edges of type (s, w), which means, “i women are not in A”;
• you are cutting j edges of type (m, t), which means, “j men are not in V −A” (or better,

“j men are in A”);
• and i+ j = k.

So summing up,
|W ∩ (V −A)|+ |M ∩A| = k. (12)

On the other hand, obviously

|W ∩ (V −A)|+ |W ∩A| = |W | = n (13)

and since we are assuming k < n, by comparing Equations 12 and 13 we conclude

|M ∩A| < |W ∩A|. (14)

47

Now for S ⊂ W , let `(S) be the list of men present in the preferences of the women in S
altogether. By assumption, |S| ≤ |`(S)|. Applying this to S = W ∩A, we conclude

|M ∩A| < |W ∩A| ≤ |`(W ∩A)|.

But this is a contradiction: in fact, since no edge (w,m) goes across the cut, `(W ∩A) ⊂M ∩A.
And it cannot be thatM ∩A has smaller cardinality than a subset of himself.

If you wish, look up the definition of “matching” and “vertex cover”, and try to prove the
following theorem by yourself:

Theorem 152 (König–Egervary). If G is a bipartite graph, the cardinality of a maximum
matching in G equals the cardinality of a minimum vertex cover in G.

48

	Functions, inductions, and algorithms
	Functions
	Induction and factorization
	The fundamental theorem of arithmetics
	Algorithms

	Counting
	Additive and multiplicative principles
	Binomials
	Permutations and k-permutations
	Inversion, even and odd permutations

	Sequences and their difference
	The k-th difference of a sequence
	The sequence of partial sums
	The geometric sequence and its sum

	Graph Theory
	Graphs, multigraphs, and operations
	Trees
	Bipartite graphs

	Graph drawings, polytopes and planar graphs
	A crash course on polytopes, linear optimization
	Euler's theorem

	Networks
	Max-flow-min-cut and Ford-Fulkerson's algorithm
	Consequences on Marriage

