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1. Generalized Binomial Coe�icients

Two interpretations of binomial coe�icients:

E(n; t) =
n∏
i=1

(1 + t) =
∑
k≥0

(
n
k

)
tk,

H(n; t) =
n∏
i=1

(1 + t + t2 + · · · ) =
∑
k≥0

(
n+ k − 1

k

)
tk.

We consider the following interpolation:

H(b)(n; t) =
n∏
i=1

(1 + t + · · ·+ tb−1) =
∑
k≥0

(
n
k

)(b)
tk.

Note that
(n
k

)(2)
=
(n
k

)
and

(n
k

)(b)
=
(n+k−1

k

)
when b > k. We will write(

n
k

)(∞)

=

(
n+ k − 1

k

)
.
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1. Generalized Binomial Coe�icients

Example: n = 3 and b = 4. The generating function is

H(4)(3; t) = (1 + t + t2 + t3)3

= 1 + 3 t + 6 t2 + 10 t3 + 12 t4 + 12 t5 + 10 t6 + 6 t7 + 3 t8 + t9.

The coe�icients are

k 0 1 2 3 4 5 6 7 8 9(3
k

)(4) 1 3 6 10 12 12 10 6 3 1

In general we have
(n
k

)(b)
= 0 for (b− 1)n > k and(

n
0

)(b)

+

(
n
1

)(b)

+ · · ·+

(
n

(b− 1)n

)(b)

= bn.

Remark:
(n
k

)(b)
/bn is the probability of getting a sum of k in n rolls of a fair b-sided

die with sides labeled {0, 1, . . . , b− 1}.
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1. Generalized Binomial Coe�icients

Remarks:

• The numbers
(n
k

)(b) occur o�en but they don’t have a standard name.

• We roughly follow Euler’s (1778) notation:
(n
k

)b
.

• Belbachir and Igueroufa (2020) compiled a historical bibliography.



2. Symmetric Functions and q-Analogues

Recall the generating functions for elementary and complete symmetric
polynomials:

E(z1, . . . , zn; t) =
n∏
i=1

(1 + zit) =
∑
k≥0

ek(z1, . . . , zn)tk,

H(z1, . . . , zn; t) =
n∏
i=1

(1 + zit + (zit)2 + · · · ) =
∑
k≥0

hk(z1, . . . , zn)tk.

We consider the following interpolation:

H(b)(z1, . . . , zn; t) =
n∏
i=1

(1 + zit + · · · (zit)b−1) =
∑
k≥0

h(b)k (z1, . . . , zn)tk.

Note that h(2)
k = ek and h(b)k = hk when b > k. We will write h(∞)

k = hk.
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2. Symmetric Functions and q-Analogues

We can view h(b)k (z1, . . . , zn) as a generating function for lattice points in a diagonal
slice of the integer box {0, 1, . . . , b− 1}n:

X := {(x1, . . . , xn) ∈ {0, 1 . . . , b− 1}n : x1 + x2 + · · ·+ xn = k}.

Then we have
h(b)k (z1, . . . , zn) =

∑
x∈X

zx =
∑
x∈X

zx1
1 z

x2
2 · · · z

xn
n .

We can also view these lattice points as k-multisubsets of {1, 2, . . . , n}with
multiplicities bounded above by b:

(x1, x2, . . . , xn) ←→ {1, . . . , 1︸ ︷︷ ︸
x1 times

, 2, . . . , 2︸ ︷︷ ︸
x2 times

. . . , n, . . . , n︸ ︷︷ ︸
xn times

}.

b = 2 : k-subsets of {1, . . . , n} ,
b =∞ : k-multisubsets of {1, . . . , n}.
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2. Symmetric Functions and q-Analogues

Example: n = 3 and k = 3 for various values of b:

030
120 021

210 111 012
300 201 102 003

h(2)
3 (z1, z2, z3) = z1z2z3,

h(3)
3 (z1, z2, z3) = z1z2z3 + z2

1z2 + · · ·+ z2z2
3,

h(4)
3 (z1, z2, z3) = z1z2z3 + z2

1z2 + · · ·+ z2z2
3 + z3

1 + z3
2 + z3

2,

h(5)
3 (z1, z2, z3) = z1z2z3 + z2

1z2 + · · ·+ z2z2
3 + z3

1 + z3
2 + z3

2,

...



2. Symmetric Functions and q-Analogues

A natural q-analogue of
(n
k

)(b) is given by the principal specialization of h(b)k :[
n
k

](b)
q

:= h(b)k (1, q, . . . , qn−1) =
∑
x∈X

q0x1+1x2+3x2+···+(n−1)xn .

This generalizes the standard q-binomial coe�icients in the following sense:[
n
k

](2)

q

= qk(k−1)/2

[
n
k

]
q

,

[
n
k

](∞)

q

=

[
n+ k − 1

k

]
q

.

Opinion: This is the reason why sometimes we multiply
[n
k

]
q by qk(k−1)/2 and

sometimes we don’t.
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2. Symmetric Functions and q-Analogues

Example: n = 3 and k = 3 for various values of b:

0 1 2 3 4 5 6

030
120 021

210 111 012
300 201 102 003

[3
3
](2)
q = q3,[3

3
](3)
q = q3 + q1 + 2q2 + 2q4 + q5,[3

3
](∞)

q = q3 + q1 + 2q2 + 2q4 + q5 + 1 + q3 + q6.



2. Symmetric Functions and q-Analogues

Remarks:

• Like the numbers
(n
k

)(b), the polynomials h(b)k (z1, . . . , zn) don’t have a standard
name or notation.

• Doty and Walker (1992) used h′k(n) and called themmodular complete
symmetric polynomials.

• Fu and Mei (2020) used h[b−1]
k and called them truncated complete.

• Grinberg (2022) used G(b, k) and called them Petrie symmetric functions. He
now regrets this name (personal communication).

• Since the definition is simple I believe that the name should be simple. In the
paper I called them b-bounded symmetric polynomials.



2. Symmetric Functions and q-Analogues

Remarks:

• Doty and Walker (1992) mention the following generalization of Newton’s
identities, which they attribute to Macdonald:∗

h(b)k (z1, . . . , zn) = det



p(b)1 p(b)2 · · · · · · p(b)k

−1 p(b)1 p(b)2
...

−2 p(b)1 p(b)2
...

. . . . . . p(b)2

−(k − 1) p(b)1


where

p(b)m =

(1− b)(zm1 + · · ·+ zmn ) b|m,
zm1 + · · ·+ zmn b - m.

∗ They did not express it as a determinant.



2. Symmetric Functions and q-Analogues

Remarks:

• This has an interesting consequence when z1 = · · · = zn = 1:(
n
k

)(b)

=
∑
λ`k

1
zλ

(1− b)lb(λ)nl(λ),

where the sum is over (λ1 ≥ λ2 ≥ · · · ≥ 0) with
∑

i λi = k, and

l(λ) = #{i : λi 6= 0},
lb(λ) = #{i : b|λi},

mj = #{ j : mj = i},

zλ =
∏
i≥1

imimi!.



2. Symmetric Functions and q-Analogues

Remarks:

• In a recent paper (Lattice points and q-Catalan, 2024) I proved that

1
[n+ 1]q

m∑
k=`

qk
[
n
k

](n+1)

q

∈ Z[q]

whenever gcd(n+ 1, `− 1) = gcd(n+ 1,m) = 1, and I conjectured that the
coe�icients are positive. I called these q-Catalan germs.

• I don’t know how this generalizes to b 6= n+ 1.
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3. A Bit of Galois Theory

Our main theorem will compute[
n
k

](b)
q

when q→ roots of unity.

Before stating the theorem, it is worthwhile to mention a very general phenomenon,
which follows from some basic Galois theory. This phenomenon is surely well
known but I have not seen it written down.

Observation
Let f(z1, . . . , zn) ∈ Z[z1, . . . , zn] be symmetric polynomial in n variables and let ω
be a primitive dth root of unity for some d.
(a) If d|n then f(1, ω, . . . , ωn−1) = f(ω, . . . , ωn) is an integer.∗

(b) If d|(n− 1) then f(1, ω, . . . , ωn−1) is an integer.
(c) If d|(n+ 1) then f(ω, . . . , ωn) is an integer.

∗ If deg(f) = k and d - k then this integer is zero.
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3. A Bit of Galois Theory

Proof Sketch: (1) Let ω be a primitive dth root of unity and consider the field
extension Q(ω)/Q. The Galois group is

Gal(Q(ω)/Q) = {ϕr : gcd(r, d) = 1},

whereϕr : Q(ω)→ Q(ω) is defined byϕr(ω) := ωr . If α ∈ Z[ω] satisfies
ϕr(α) = α for all gcd(r, d) = 1 then Galois theory tells us that α ∈ Z.

(2) Consider the sequence ω := (ω, . . . , ωd−1). If gcd(r, d) = 1 thenϕr permutes
the sequence ω, hence it permutes sequences of the following four types:

(1,ω, . . . ,ω, 1),
(ω, 1, . . . ,ω, 1),
(1,ω, 1,ω, . . . ,ω, 1),
(ω, 1,ω, 1, . . . , 1,ω). �



3. A Bit of Galois Theory

Corollary
Let ω be a primitive dth root of unity.

(a) If d|n then∗ [
n
k

](b)
ω

= h(b)k (1, ω, . . . , ωn−1) = h(b)k (ω, . . . , ωn) ∈ Z.

(b) If d|(n− 1) then [
n
k

](b)
ω

= h(b)k (1, ω, . . . , ωn−1) ∈ Z.

(c) If d|(n+ 1) then
ωk
[
n
k

](b)
ω

= h(b)k (ω, . . . , ωn) ∈ Z.

∗ If d - k then this integer is zero.

Our main theorem will compute these integers.



4. The Main Theorem and Cyclic Sieving

Main Theorem (in three parts)
Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(a) If d|n then
∑
k

[
n
k

](b)
ω

= (1 + td + · · ·+ (td)b−1)n/d, i.e.,

[
n
k

](b)
ω

=

(
n/d
k/d

)(b)

≥ 0.

(b) If d|(n− 1) then

∑
k

[
n
k

](b)
ω

= (1 + t + · · ·+ tb−1)(1 + td + · · ·+ (td)b−1)(n−1)/d, i.e.,

[
n
k

](b)
ω

=
∑
`

(
(n− 1)/d
(k − `)/d

)(b)

≥ 0.
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4. The Main Theorem and Cyclic Sieving

Main Theorem (in three parts)
Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(c) If d|(n+ 1) then

∑
k

ωk
[
n
k

](b)
ω

=
(1 + td + · · ·+ (td)b−1)(n+1)/d

1 + t + · · ·+ tb−1 ∈ Z[t].

These coe�icients are sometimes negative and are more di�icult to describe. We
will give an explicit formula below in terms of the Frobenius Coin Problem.

Remark: My paper also gives explicit generating functions for (a),(b),(c) when
gcd(b, d) 6= 1, which are more complicated.
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4. The Main Theorem and Cyclic Sieving

Parts (a) and (b) have a nice combinatorial interpretation, in terms of cyclic sieving
(Reiner-Stanton-White, 2004). Again, consider the set of points in a diagonal slice of
the integer box {0, 1, . . . , b− 1}n:

X = {(x1, . . . , xn) ∈ {0, 1, . . . , b− 1}n : x1 + x2 + · · ·+ xn = k}.

This set is closed under permutations. Consider the following two permutations:

ρ · (x1, . . . , xn) := (x2, . . . , xn, x1),

τ · (x1, . . . , xn) := (x2, . . . , xn−1, x1, xn).

Note that 〈ρ〉 ∼= Z/nZ and 〈τ〉 ∼= Z/(n− 1)Z. Recall that we can identify X with
k-subsets and k-multisubsets of {1, . . . , n}when b = 2 and b =∞.



4. The Main Theorem and Cyclic Sieving

Corollary of Main Theorem
Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(a) If d|n then we have [
n
k

](b)
ω

= #{x ∈ X : ρn/d(x) = x}.

(b) If d|(n− 1) then we have[
n
k

](b)
ω

= #{x ∈ X : τ (n−1)/d(x) = x}.

I find the condition gcd(b, d) = 1 surprising!
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4. The Main Theorem and Cyclic Sieving

Remarks:

• This result generalizes the prototypical examples of cyclic sieving (Theorem 1.1
in RSW) for k-subsets (when b = 2) and k-multisubsets (when b =∞).

• I find it surprising that it was not already known to the experts.

• Our Main Theorem (a),(b) generalizes Prop 4.2 in RSW, which appears there as a
random collection of identities.

• Main Theorem (c) has no analogue in RSW.

• It may be interesting to look at the integers f(ω, . . . , ωn) ∈ Z when d|(n+ 1)
for other classes of symmetric polynomials.



5. The Frobenius Coin Problem

Let ω be a primitive dth root of unity with d|(n+ 1) and gcd(b, d) = 1. Recall that

∑
k

ωk
[
n
k

](b)
ω

tk = (1 + td + · · ·+ (td)b−1)(n+1)/d

1 + t + · · ·+ tb−1 ∈ Z[t].

The integers ωk
[n
k

](b)
ω

are not directly related to cyclic sieving.

Using the notation [n]t = 1 + t + · · ·+ tn−1 we can write this as

∑
k

ωk
[
n
k

](b)
ω

tk =
[b]td
[b]t

[b](n+1)/d−1
td .

We want to study the coe�icients of the polynomial

[b]td
[b]t
∈ Z[t].

It turns out these coe�icients are related to the Frobenius Coin Problem.
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5. The Frobenius Coin Problem

Given integers gcd(b, d) = 1, consider the function νb,d : N→ N,

νb,d(n) := #{(k, `) ∈ N2 : bk + d` = n}.

The set of non-representable numbers is finite, called the Sylvester set:

Sb,d = {n ∈ N : νb,d(n) = 0}.

For example, S3,5 = {1, 2, 4, 7}. Sylvester (1882) proved that

#Sb,d = (b− 1)(d − 1)/2 and max(Sb,d) = bd − b− d.

Let us define the Sylvester polynomial

Sb,d(t) :=
∑
s∈Sb,d

ts.

For example, S3,5(t) = t + t2 + t4 + t7.



5. The Frobenius Coin Problem

Given integers gcd(b, d) = 1, consider the function νb,d : N→ N,

νb,d(n) := #{(k, `) ∈ N2 : bk + d` = n}.

The set of non-representable numbers is finite, called the Sylvester set:

Sb,d = {n ∈ N : νb,d(n) = 0}.

For example, S3,5 = {1, 2, 4, 7}. Sylvester (1882) proved that

#Sb,d = (b− 1)(d − 1)/2 and max(Sb,d) = bd − b− d.

Let us define the Sylvester polynomial

Sb,d(t) :=
∑
s∈Sb,d

ts.

For example, S3,5(t) = t + t2 + t4 + t7.



5. The Frobenius Coin Problem

Given integers gcd(b, d) = 1, consider the function νb,d : N→ N,

νb,d(n) := #{(k, `) ∈ N2 : bk + d` = n}.

The set of non-representable numbers is finite, called the Sylvester set:

Sb,d = {n ∈ N : νb,d(n) = 0}.

For example, S3,5 = {1, 2, 4, 7}. Sylvester (1882) proved that

#Sb,d = (b− 1)(d − 1)/2 and max(Sb,d) = bd − b− d.

Let us define the Sylvester polynomial

Sb,d(t) :=
∑
s∈Sb,d

ts.

For example, S3,5(t) = t + t2 + t4 + t7.



5. The Frobenius Coin Problem

Brown and Shiue (1993) attribute the following result to Ozluk.

Theorem (Ozluk)
If gcd(b, d) = 1 then we have [b]td/[b]t = 1 + (t − 1)Sb,d(t), i.e.,

Sb,d(t) =
tbd − 1

(1− tb)(1− td) +
1

1− t .

Corollary
If ω is a primitive dth root of unity with d|(n+ 1), it follows that

ωk
[
n
k

](b)
ω

=
(
(n+1)/d−1

k/d

)(b)
+
∑

s∈Sb,d

(
(n+1)/d−1
(k−1−s)/d

)(b) −∑s∈Sb,d

(
(n+1)/d−1
(k−s)/d

)(b)
.

It is not clear from this formula when ωk
[n
k

](b)
ω

is positive or negative.
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5. The Frobenius Coin Problem

Here is a cute formula, which allows us to be much more precise.

Theorem
Let gcd(b, d) = 1. For any r ∈ N, let 0 ≤ βr < b and 0 ≤ δr < d satisfy

βr ≡ rd−1 mod b and δr ≡ rb−1 mod d.

Then
[b]td
[b]t

=
[d]tb
[d]t

= [β1]td [δ1]tb − t[b− β1]td [d − δ1]tb .

Corollary
Let gcd(b, d) = 1. If ω is a primitive dth root of unity and d|(n+ 1) then

ωk
[
n
k

](b)
ω

is

≥ 0 when δk < δ1,

≤ 0 when δk ≥ δ1.
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5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.

14 19 24 . . . . . . . .

7 12 17 . . . . . . . .

0 5 10 15 20 25 30 35 . . .

3 8 13 18 23 28 . . .

1 6 11 16 21 . . .

4 9 14 19 24 .

2 7 12 17 .

0 5 10 .

Example: Let (b, d) = (7, 5). Draw an infinite array starting at 0, adding 5 for each
right step and subtracting 7 for each down step.



5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.

14 19 24 . . . . . . . .

7 12 17 . . . . . . . .

0 5 10 15 20 25 30 35 . . .

3 8 13 18 23 28 . . .

1 6 11 16 21 . . .

4 9 14 19 24 .

2 7 12 17 .

0 5 10 .

Example: Let (b, d) = (7, 5). Draw an infinite array starting at 0, adding 5 for each
right step and subtracting 7 for each down step.



5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.

14 19 24 . . . . . . . .

7 12 17 . . . . . . . .

0 5 10 15 20 25 30 35 . . .
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4 9 14 19 24 .

2 7 12 17 .

0 5 10 .

Example: Let (b, d) = (7, 5). Draw an infinite array starting at 0, adding 5 for each
right step and subtracting 7 for each down step.

The Sylvester set forms a triangle:

S7,5 = {1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23}.



5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.
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3 8 13 18 23 28 . . .

1 6 11 16 21 . . .
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2 7 12 17 .

0 5 10 .

In this case we have (β1, δ1) = (3, 3), which tells us that the label 1 occurs in
position (β1, δ1 − d) = (3,−2).



5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.

14 19 24 . . . . . . . .

7 12 17 . . . . . . . .

0 5 10 15 20 25 30 35 . . .

3 8 13 18 23 28 . . .

1 6 11 16 21 . . .

4 9 14 19 24 .

2 7 12 17 .

0 5 10 .

The cute formula describes two rectangles with bottom corners at 0 and 1.

[b]td/[b]t = [β1]td [δ1]tb − t[b− β1]td [d − δ1]tb
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1 6 11 16 21 . . .
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The cute formula describes two rectangles with bottom corners at 0 and 1:

[7]t5/[7]t = [3]t5 [3]t7 − t[4]t5 [2]t7
= 1 + t5 + t7 + t10 + t12 + t14 + t17 + t19 + t24

− (t + t6 + t8 + t11 + t13 + t16 + t18 + t23).

And this leads to a precise description of ωk
[n
k

](7)
ω

when ω5 = 1.
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Obrigado!

Thanks to DeepSeek for suggesting the azulejos background image.


