Cyclic Sieving of Multisets with Bounded Multiplicity and the Frobenius Coin Problem

Séminaire Lotharingien de Combinatoire 93, Pocinho

Drew Armstrong March 25, 2025

University of Miami www.math.miami.edu/~armstrong

Two interpretations of binomial coefficients:

$$E(n;t) = \prod_{i=1}^{n} (1+t) = \sum_{k \ge 0} {n \choose k} t^{k},$$
$$H(n;t) = \prod_{i=1}^{n} (1+t+t^{2}+\cdots) = \sum_{k \ge 0} {n+k-1 \choose k} t^{k}$$

Two interpretations of binomial coefficients:

$$E(n;t) = \prod_{i=1}^{n} (1+t) = \sum_{k \ge 0} {n \choose k} t^{k},$$
$$H(n;t) = \prod_{i=1}^{n} (1+t+t^{2}+\cdots) = \sum_{k \ge 0} {n+k-1 \choose k} t^{k}$$

We consider the following interpolation:

$$H^{(b)}(n;t) = \prod_{i=1}^{n} (1+t+\cdots+t^{b-1}) = \sum_{k\geq 0} {\binom{n}{k}}^{(b)}_{k} t^{i}$$

Two interpretations of binomial coefficients:

$$E(n;t) = \prod_{i=1}^{n} (1+t) = \sum_{k \ge 0} {n \choose k} t^{k},$$
$$H(n;t) = \prod_{i=1}^{n} (1+t+t^{2}+\cdots) = \sum_{k \ge 0} {n+k-1 \choose k} t^{k}.$$

We consider the following interpolation:

$$H^{(b)}(n;t) = \prod_{i=1}^{n} (1+t+\cdots+t^{b-1}) = \sum_{k\geq 0} \binom{n}{k}^{(b)}_{k} t^{b}$$

Note that $\binom{n}{k}^{(2)} = \binom{n}{k}$ and $\binom{n}{k}^{(b)} = \binom{n+k-1}{k}$ when b > k. We will write

$$\binom{n}{k}^{(\infty)}_{k} = \binom{n+k-1}{k}$$

Example: n = 3 and b = 4. The generating function is

 $H^{(4)}(3;t) = (1 + t + t^2 + t^3)^3$ = 1 + 3t + 6t^2 + 10t^3 + 12t^4 + 12t^5 + 10t^6 + 6t^7 + 3t^8 + t^9.

Example: n = 3 and b = 4. The generating function is

 $H^{(4)}(3;t) = (1+t+t^2+t^3)^3$ = 1+3t+6t^2+10t^3+12t^4+12t^5+10t^6+6t^7+3t^8+t^9.

The coefficients are

k	0	1	2	3	4	5	6	7	8	9
$\binom{3}{k}^{(4)}$	1	3	6	10	12	12	10	6	3	1

Example: n = 3 and b = 4. The generating function is

 $H^{(4)}(3;t) = (1+t+t^2+t^3)^3$ = 1+3t+6t^2+10t^3+12t^4+12t^5+10t^6+6t^7+3t^8+t^9.

The coefficients are

k	0	1	2	3	4	5	6	7	8	9
$\binom{3}{k}^{(4)}$	1	3	6	10	12	12	10	6	3	1

In general we have $\binom{n}{k}^{(b)} = 0$ for (b-1)n > k and

$$\binom{n}{0}^{(b)} + \binom{n}{1}^{(b)} + \dots + \binom{n}{(b-1)n}^{(b)} = b^n$$

Remark: $\binom{n}{k}^{(b)}/b^n$ is the probability of getting a sum of k in n rolls of a fair b-sided die with sides labeled $\{0, 1, \dots, b-1\}$.

Remarks:

- The numbers $\binom{n}{k}^{(b)}$ occur often but they don't have a standard name.
- We roughly follow Euler's (1778) notation: $\left(\frac{n}{k}\right)^{b}$.
- Belbachir and Igueroufa (2020) compiled a historical bibliography.

2. Symmetric Functions and $q\mbox{-}{\mbox{Analogues}}$

Recall the generating functions for *elementary* and *complete* symmetric polynomials:

$$E(z_1, \ldots, z_n; t) = \prod_{i=1}^n (1 + z_i t) = \sum_{k \ge 0} e_k(z_1, \ldots, z_n) t^k,$$

$$H(z_1, \ldots, z_n; t) = \prod_{i=1}^n (1 + z_i t + (z_i t)^2 + \cdots) = \sum_{k \ge 0} h_k(z_1, \ldots, z_n) t^k.$$

Recall the generating functions for *elementary* and *complete* symmetric polynomials:

$$E(z_1, \ldots, z_n; t) = \prod_{i=1}^n (1 + z_i t) = \sum_{k \ge 0} e_k(z_1, \ldots, z_n) t^k,$$

$$H(z_1, \ldots, z_n; t) = \prod_{i=1}^n (1 + z_i t + (z_i t)^2 + \cdots) = \sum_{k \ge 0} h_k(z_1, \ldots, z_n) t^k.$$

We consider the following interpolation:

$$H^{(b)}(z_1,\ldots,z_n;t) = \prod_{i=1}^n (1+z_it+\cdots(z_it)^{b-1}) = \sum_{k\geq 0} h_k^{(b)}(z_1,\ldots,z_n)t^k.$$

Note that $h_k^{(2)} = e_k$ and $h_k^{(b)} = h_k$ when b > k. We will write $h_k^{(\infty)} = h_k$.

We can view $h_k^{(b)}(z_1, ..., z_n)$ as a generating function for lattice points in a diagonal slice of the integer box $\{0, 1, ..., b - 1\}^n$:

 $X := \{(x_1, \ldots, x_n) \in \{0, 1, \ldots, b-1\}^n : x_1 + x_2 + \cdots + x_n = k\}.$

We can view $h_k^{(b)}(z_1, ..., z_n)$ as a generating function for lattice points in a diagonal slice of the integer box $\{0, 1, ..., b - 1\}^n$:

 $X := \{(x_1, \ldots, x_n) \in \{0, 1, \ldots, b-1\}^n : x_1 + x_2 + \cdots + x_n = k\}.$

Then we have

$$h_k^{(b)}(z_1,\ldots,z_n)=\sum_{\mathbf{x}\in\mathbf{X}}\mathbf{z}^{\mathbf{x}}=\sum_{\mathbf{x}\in\mathbf{X}}z_1^{\mathbf{x}_1}z_2^{\mathbf{x}_2}\cdots z_n^{\mathbf{x}_n}.$$

We can view $h_k^{(b)}(z_1,...,z_n)$ as a generating function for lattice points in a diagonal slice of the integer box $\{0, 1, ..., b - 1\}^n$:

 $X := \{(x_1, \ldots, x_n) \in \{0, 1, \ldots, b-1\}^n : x_1 + x_2 + \cdots + x_n = k\}.$

Then we have

$$h_k^{(b)}(z_1,\ldots,z_n)=\sum_{\mathbf{x}\in X}\mathbf{z}^{\mathbf{x}}=\sum_{\mathbf{x}\in X}z_1^{\mathbf{x}_1}z_2^{\mathbf{x}_2}\cdots z_n^{\mathbf{x}_n}.$$

We can also view these lattice points as *k*-multisubsets of $\{1, 2, ..., n\}$ with multiplicities bounded above by *b*:

$$(x_1, x_2, \dots, x_n) \quad \longleftrightarrow \quad \{\underbrace{1, \dots, 1}_{x_1 \text{ times}}, \underbrace{2, \dots, 2}_{x_2 \text{ times}}, \dots, \underbrace{n, \dots, n}_{x_n \text{ times}}\}.$$

$$b = 2: \quad k\text{-subsets of } \{1, \dots, n\},$$

$$b = \infty: \quad k\text{-multisubsets of } \{1, \dots, n\}.$$

Example: n = 3 and k = 3 for various values of b:

			030			
		120		021		
	210		111		012	
300		201		102		003

 $h_{3}^{(2)}(z_{1}, z_{2}, z_{3}) = z_{1}z_{2}z_{3},$ $h_{3}^{(3)}(z_{1}, z_{2}, z_{3}) = z_{1}z_{2}z_{3} + z_{1}^{2}z_{2} + \dots + z_{2}z_{3}^{2},$ $h_{3}^{(4)}(z_{1}, z_{2}, z_{3}) = z_{1}z_{2}z_{3} + z_{1}^{2}z_{2} + \dots + z_{2}z_{3}^{2} + z_{1}^{3} + z_{2}^{3} + z_{2}^{3},$ $h_{3}^{(5)}(z_{1}, z_{2}, z_{3}) = z_{1}z_{2}z_{3} + z_{1}^{2}z_{2} + \dots + z_{2}z_{3}^{2} + z_{1}^{3} + z_{2}^{3} + z_{2}^{3},$

A natural *q*-analogue of $\binom{n}{k}^{(b)}$ is given by the principal specialization of $h_k^{(b)}$:

$$\begin{bmatrix}n\\k\end{bmatrix}_{q}^{(b)} := h_{k}^{(b)}(1, q, \ldots, q^{n-1}) = \sum_{\mathbf{x} \in X} q^{0x_{1}+1x_{2}+3x_{2}+\cdots+(n-1)x_{n}}.$$

A natural *q*-analogue of $\binom{n}{k}^{(b)}$ is given by the principal specialization of $h_k^{(b)}$:

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q}^{(b)} := h_{k}^{(b)}(1, q, \dots, q^{n-1}) = \sum_{\mathbf{x} \in X} q^{0x_{1}+1x_{2}+3x_{2}+\dots+(n-1)x_{n}}.$$

This generalizes the standard *q*-binomial coefficients in the following sense:

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q}^{(2)} = q^{k(k-1)/2} \begin{bmatrix} n \\ k \end{bmatrix}_{q}$$
$$\begin{bmatrix} n \\ k \end{bmatrix}_{q}^{(\infty)} = \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_{q}$$

Opinion: This is the reason why sometimes we multiply $\begin{bmatrix}n\\k\end{bmatrix}_q$ by $q^{k(k-1)/2}$ and sometimes we don't.

Example: n = 3 and k = 3 for various values of b:

0	1	2	3	4	5	6
4.4	70		030	36		3.70
	XI	120	89	021	ĊŅ	Q
	210		111		012	
300	20	201		102	CO.	003

$$\begin{bmatrix} 3 \\ 3 \end{bmatrix}_{q}^{(2)} = q^{3}, \\ \begin{bmatrix} 3 \\ 3 \end{bmatrix}_{q}^{(3)} = q^{3} + q^{1} + 2q^{2} + 2q^{4} + q^{5}, \\ \begin{bmatrix} 3 \\ 3 \end{bmatrix}_{q}^{(\infty)} = q^{3} + q^{1} + 2q^{2} + 2q^{4} + q^{5} + 1 + q^{3} + q^{6}.$$

Remarks:

- Like the numbers $\binom{n}{k}^{(b)}$, the polynomials $h_k^{(b)}(z_1, \ldots, z_n)$ don't have a standard name or notation.
- Doty and Walker (1992) used h'_k(n) and called them modular complete symmetric polynomials.
- Fu and Mei (2020) used $h_k^{[b-1]}$ and called them *truncated complete*.
- Grinberg (2022) used *G*(*b*, *k*) and called them *Petrie symmetric functions*. He now regrets this name (personal communication).
- Since the definition is simple I believe that the name should be simple. In the paper I called them *b*-bounded symmetric polynomials.

2. Symmetric Functions and $q\operatorname{-Analogues}$

Remarks:

• Doty and Walker (1992) mention the following generalization of Newton's identities, which they attribute to Macdonald:*

$$h_{k}^{(b)}(z_{1},...,z_{n}) = \det \begin{pmatrix} p_{1}^{(b)} & p_{2}^{(b)} & \cdots & p_{k}^{(b)} \\ -1 & p_{1}^{(b)} & p_{2}^{(b)} & \vdots \\ & -2 & p_{1}^{(b)} & p_{2}^{(b)} & \vdots \\ & & \ddots & \ddots & p_{2}^{(b)} \\ & & & -(k-1) & p_{1}^{(b)} \end{pmatrix}$$

where

$$p_m^{(b)} = \begin{cases} (1-b)(z_1^m + \dots + z_n^m) & b|m, \\ z_1^m + \dots + z_n^m & b \nmid m. \end{cases}$$

* They did not express it as a determinant.

2. Symmetric Functions and $q\mbox{-}{\mbox{Analogues}}$

Remarks:

• This has an interesting consequence when $z_1 = \cdots = z_n = 1$:

$$\binom{n}{k}^{(b)} = \sum_{\lambda \vdash k} \frac{1}{z_{\lambda}} (1-b)^{l_b(\lambda)} n^{l(\lambda)},$$

where the sum is over $(\lambda_1 \ge \lambda_2 \ge \cdots \ge 0)$ with $\sum_i \lambda_i = k$, and

$$l(\lambda) = \#\{i : \lambda_i \neq 0\},\$$

$$l_b(\lambda) = \#\{i : b|\lambda_i\},\$$

$$m_j = \#\{j : m_j = i\},\$$

$$z_\lambda = \prod_{i \ge 1} i^{m_i} m_i!.$$

Remarks:

• In a recent paper (Lattice points and q-Catalan, 2024) I proved that

$$\frac{1}{[n+1]_q}\sum_{k=\ell}^m q^k {n \brack k}_q^{(n+1)} \in \mathbb{Z}[q]$$

whenever $gcd(n + 1, \ell - 1) = gcd(n + 1, m) = 1$, and I conjectured that the coefficients are positive. I called these *q*-Catalan germs.

Remarks:

• In a recent paper (Lattice points and q-Catalan, 2024) I proved that

$$\frac{1}{[n+1]_q}\sum_{k=\ell}^m q^k {n \brack k}_q^{(n+1)} \in \mathbb{Z}[q]$$

whenever $gcd(n + 1, \ell - 1) = gcd(n + 1, m) = 1$, and I conjectured that the coefficients are positive. I called these *q*-Catalan germs.

• I don't know how this generalizes to $b \neq n + 1$.

3. A Bit of Galois Theory

3. A Bit of Galois Theory

Our main theorem will compute

$$\begin{bmatrix} n \\ k \end{bmatrix}_q^{(b)}$$
 when $q \rightarrow$ roots of unity.

Before stating the theorem, it is worthwhile to mention a very general phenomenon, which follows from some basic Galois theory. This phenomenon is surely well known but I have not seen it written down.

3. A Bit of Galois Theory

Our main theorem will compute

$$\begin{bmatrix} n \\ k \end{bmatrix}_q^{(b)}$$
 when $q \rightarrow$ roots of unity.

Before stating the theorem, it is worthwhile to mention a very general phenomenon, which follows from some basic Galois theory. This phenomenon is surely well known but I have not seen it written down.

Observation

Let $f(z_1, ..., z_n) \in \mathbb{Z}[z_1, ..., z_n]$ be symmetric polynomial in *n* variables and let ω be a primitive *d*th root of unity for some *d*.

- (a) If d|n then $f(1, \omega, \dots, \omega^{n-1}) = f(\omega, \dots, \omega^n)$ is an integer.*
- (b) If d|(n-1) then $f(1, \omega, \dots, \omega^{n-1})$ is an integer.
- (c) If d|(n+1) then $f(\omega, \ldots, \omega^n)$ is an integer.

* If deg(f) = k and $d \nmid k$ then this integer is zero.

Proof Sketch: (1) Let ω be a primitive *d*th root of unity and consider the field extension $\mathbb{Q}(\omega)/\mathbb{Q}$. The Galois group is

$$\operatorname{Gal}(\mathbb{Q}(\omega)/\mathbb{Q}) = \{\varphi_r : \operatorname{gcd}(r,d) = 1\},\$$

where $\varphi_r : \mathbb{Q}(\omega) \to \mathbb{Q}(\omega)$ is defined by $\varphi_r(\omega) := \omega^r$. If $\alpha \in \mathbb{Z}[\omega]$ satisfies $\varphi_r(\alpha) = \alpha$ for all gcd(r, d) = 1 then Galois theory tells us that $\alpha \in \mathbb{Z}$.

(2) Consider the sequence $\omega := (\omega, ..., \omega^{d-1})$. If gcd(r, d) = 1 then φ_r permutes the sequence ω , hence it permutes sequences of the following four types:

$$egin{aligned} &(1,\omega,\ldots,\omega,1),\ &(\omega,1,\ldots,\omega,1),\ &(1,\omega,1,\omega,\ldots,\omega,1),\ &(\omega,1,\omega,1,\ldots,1,\omega). \end{aligned}$$

Corollary

Let ω be a primitive *d*th root of unity.

(a) If
$$\frac{d|n}{k}$$
 then*
$$\begin{bmatrix}n\\k\end{bmatrix}_{\omega}^{(b)} = h_k^{(b)}(1,\omega,\ldots,\omega^{n-1}) = h_k^{(b)}(\omega,\ldots,\omega^n) \in \mathbb{Z}.$$

(b) If
$$d|(n-1)$$
 then $\begin{bmatrix}n\\k\end{bmatrix}_{\omega}^{(b)} = h_k^{(b)}(1,\omega,\ldots,\omega^{n-1}) \in \mathbb{Z}$
(c) If $d|(n+1)$ then $\omega^k \begin{bmatrix}n\\k\end{bmatrix}_{\omega}^{(b)} = h_k^{(b)}(\omega,\ldots,\omega^n) \in \mathbb{Z}.$

* If $d \nmid k$ then this integer is zero.

Our main theorem will compute these integers.

Let ω be a primitive *d*th root of unity with gcd(*b*, *d*) = 1.

Let ω be a primitive *d*th root of unity with gcd(*b*, *d*) = 1.

(a) If
$$d|n$$
 then $\sum_{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = (1 + t^{d} + \dots + (t^{d})^{b-1})^{n/d}$, i.e., $\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \begin{pmatrix} n/d \\ k/d \end{pmatrix}^{(b)} \ge 0.$

Let ω be a primitive *d*th root of unity with gcd(*b*, *d*) = 1.

(a) If
$$d|n$$
 then $\sum_{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = (1 + t^{d} + \dots + (t^{d})^{b-1})^{n/d}$, i.e.,
 $\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \binom{n/d}{k/d}^{(b)} \ge 0.$

(b) If d|(n-1) then

$$\sum_{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = (1 + t + \dots + t^{b-1})(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n-1)/d}, \text{ i.e.,}$$
$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \sum_{\ell} \left(\binom{(n-1)/d}{(k-\ell)/d} \right)^{(b)} \ge 0.$$

Let ω be a primitive *d*th root of unity with gcd(b, d) = 1.

(c) If d|(n + 1) then

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

These coefficients are sometimes negative and are more difficult to describe. We will give an explicit formula below in terms of the Frobenius Coin Problem.

Let ω be a primitive *d*th root of unity with gcd(b, d) = 1.

(c) If d|(n + 1) then

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

These coefficients are sometimes negative and are more difficult to describe. We will give an explicit formula below in terms of the Frobenius Coin Problem.

Remark: My paper also gives explicit generating functions for (a),(b),(c) when $gcd(b, d) \neq 1$, which are more complicated.

Parts (a) and (b) have a nice combinatorial interpretation, in terms of cyclic sieving (Reiner-Stanton-White, 2004). Again, consider the set of points in a diagonal slice of the integer box $\{0, 1, ..., b - 1\}^n$:

$$X = \{(x_1, \ldots, x_n) \in \{0, 1, \ldots, b-1\}^n : x_1 + x_2 + \cdots + x_n = k\}.$$

This set is closed under permutations. Consider the following two permutations:

$$\rho \cdot (\mathbf{x}_1, \ldots, \mathbf{x}_n) := (\mathbf{x}_2, \ldots, \mathbf{x}_n, \mathbf{x}_1),$$

$$\tau \cdot (\mathbf{x}_1, \ldots, \mathbf{x}_n) := (\mathbf{x}_2, \ldots, \mathbf{x}_{n-1}, \mathbf{x}_1, \mathbf{x}_n)$$

Note that $\langle \rho \rangle \cong \mathbb{Z}/n\mathbb{Z}$ and $\langle \tau \rangle \cong \mathbb{Z}/(n-1)\mathbb{Z}$. Recall that we can identify X with *k*-subsets and *k*-multisubsets of $\{1, \ldots, n\}$ when b = 2 and $b = \infty$.

Corollary of Main Theorem

Let ω be a primitive *d*th root of unity with gcd(*b*, *d*) = 1.

Corollary of Main Theorem

Let ω be a primitive *d*th root of unity with gcd(b, d) = 1.

(a) If *d n* then we have

$$\begin{bmatrix} n\\ k \end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \rho^{n/d}(\mathbf{x}) = \mathbf{x}\}.$$

Corollary of Main Theorem

Let ω be a primitive *d*th root of unity with gcd(*b*, *d*) = 1.

(a) If *d n* then we have

$$\begin{bmatrix}n\\k\end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \rho^{n/d}(\mathbf{x}) = \mathbf{x}\}.$$

(b) If d|(n-1) then we have

$$\begin{bmatrix} n\\ k \end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \tau^{(n-1)/d}(\mathbf{x}) = \mathbf{x}\}.$$

Corollary of Main Theorem

Let ω be a primitive *d*th root of unity with gcd(b, d) = 1.

(a) If *d n* then we have

$$\begin{bmatrix}n\\k\end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \rho^{n/d}(\mathbf{x}) = \mathbf{x}\}.$$

(b) If d|(n-1) then we have

$$\begin{bmatrix}n\\k\end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \tau^{(n-1)/d}(\mathbf{x}) = \mathbf{x}\}.$$

I find the condition gcd(b, d) = 1 surprising!

Remarks:

- This result generalizes the prototypical examples of cyclic sieving (Theorem 1.1 in RSW) for *k*-subsets (when b = 2) and *k*-multisubsets (when $b = \infty$).
- I find it surprising that it was not already known to the experts.
- Our Main Theorem (a),(b) generalizes Prop 4.2 in RSW, which appears there as a random collection of identities.
- Main Theorem (c) has no analogue in RSW.
- It may be interesting to look at the integers $f(\omega, ..., \omega^n) \in \mathbb{Z}$ when d|(n+1) for other classes of symmetric polynomials.

Let ω be a primitive *d*th root of unity with d|(n + 1) and gcd(b, d) = 1. Recall that

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} t^{k} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

The integers $\omega^k \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)}$ are not directly related to cyclic sieving.

Let ω be a primitive *d*th root of unity with d|(n + 1) and gcd(b, d) = 1. Recall that

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} t^{k} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

The integers $\omega^k {n \brack k}_{\omega}^{(n)}$ are not directly related to cyclic sieving. Using the notation $[n]_t = 1 + t + \dots + t^{n-1}$ we can write this as

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} t^{k} = \frac{[b]_{t^{d}}}{[b]_{t}} [b]_{t^{d}}^{(n+1)/d-1}$$

Let ω be a primitive *d*th root of unity with d|(n + 1) and gcd(b, d) = 1. Recall that

$$\sum_{k} \omega^{k} {n \brack k}_{\omega}^{(b)} t^{k} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

The integers $\omega^k {n \brack k}_{\omega}^{(b)}$ are not directly related to cyclic sieving. Using the notation $[n]_t = 1 + t + \dots + t^{n-1}$ we can write this as

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} t^{k} = \frac{[b]_{t^{d}}}{[b]_{t}} [b]_{t^{d}}^{(n+1)/d-1}.$$

We want to study the coefficients of the polynomial

$$\frac{[b]_{t^d}}{[b]_t} \in \mathbb{Z}[t].$$

It turns out these coefficients are related to the Frobenius Coin Problem.

Given integers gcd(b, d) = 1, consider the function $\nu_{b,d} : \mathbb{N} \to \mathbb{N}$,

$$u_{b,d}(n) := \#\{(k,\ell) \in \mathbb{N}^2 : bk + d\ell = n\}.$$

Given integers gcd(b, d) = 1, consider the function $\nu_{b,d} : \mathbb{N} \to \mathbb{N}$,

$$\nu_{b,d}(n) := \#\{(k,\ell) \in \mathbb{N}^2 : bk + d\ell = n\}.$$

The set of non-representable numbers is finite, called the Sylvester set:

 $S_{b,d} = \{n \in \mathbb{N} : \nu_{b,d}(n) = 0\}.$

For example, $S_{3,5} = \{1, 2, 4, 7\}$. Sylvester (1882) proved that

 $\#S_{b,d} = (b-1)(d-1)/2$ and $\max(S_{b,d}) = bd - b - d$.

Given integers gcd(b, d) = 1, consider the function $\nu_{b,d} : \mathbb{N} \to \mathbb{N}$,

$$\nu_{b,d}(n) := \#\{(k,\ell) \in \mathbb{N}^2 : bk + d\ell = n\}.$$

The set of non-representable numbers is finite, called the Sylvester set:

 $S_{b,d} = \{n \in \mathbb{N} : \nu_{b,d}(n) = 0\}.$

For example, $S_{3,5} = \{1, 2, 4, 7\}$. Sylvester (1882) proved that

 $\#S_{b,d} = (b-1)(d-1)/2$ and $\max(S_{b,d}) = bd - b - d$.

Let us define the Sylvester polynomial

$$S_{b,d}(t) := \sum_{s \in S_{b,d}} t^s.$$

For example, $S_{3,5}(t) = t + t^2 + t^4 + t^7$.

Brown and Shiue (1993) attribute the following result to Ozluk.

Theorem (Ozluk)

If gcd(b, d) = 1 then we have $[b]_{t^d}/[b]_t = 1 + (t - 1)S_{b,d}(t)$, i.e.,

$$S_{b,d}(t) = \frac{t^{bd}-1}{(1-t^b)(1-t^d)} + \frac{1}{1-t}.$$

Brown and Shiue (1993) attribute the following result to Ozluk.

Theorem (Ozluk)

If gcd(b, d) = 1 then we have $[b]_{t^d}/[b]_t = 1 + (t - 1)S_{b,d}(t)$, i.e.,

$$S_{b,d}(t) = rac{t^{bd}-1}{(1-t^b)(1-t^d)} + rac{1}{1-t}.$$

Corollary

If ω is a primitive *d*th root of unity with d|(n+1), it follows that

$$\omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \binom{(n+1)/d-1}{k/d}^{(b)} + \sum_{s \in S_{b,d}} \binom{(n+1)/d-1}{(k-1-s)/d}^{(b)} - \sum_{s \in S_{b,d}} \binom{(n+1)/d-1}{(k-s)/d}^{(b)}$$

It is not clear from this formula when $\omega^{k} {n \brack k} {0}^{(b)}_{\omega}$ is positive or negative.

Here is a cute formula, which allows us to be much more precise.

Theorem

Let gcd(b, d) = 1. For any $r \in \mathbb{N}$, let $0 \le \beta_r < b$ and $0 \le \delta_r < d$ satisfy

$$\beta_r \equiv rd^{-1} \mod b$$
 and $\delta_r \equiv rb^{-1} \mod d$.

Then

$$\frac{[b]_{t^d}}{[b]_t} = \frac{[d]_{t^b}}{[d]_t} = [\beta_1]_{t^d} [\delta_1]_{t^b} - t[b - \beta_1]_{t^d} [d - \delta_1]_{t^b}.$$

Here is a cute formula, which allows us to be much more precise.

Theorem

Let gcd(b, d) = 1. For any $r \in \mathbb{N}$, let $0 \le \beta_r < b$ and $0 \le \delta_r < d$ satisfy

$$\beta_r \equiv rd^{-1} \mod b$$
 and $\delta_r \equiv rb^{-1} \mod d$.

Then

$$\frac{[b]_{t^d}}{[b]_t} = \frac{[d]_{t^b}}{[d]_t} = [\beta_1]_{t^d} [\delta_1]_{t^b} - t[b - \beta_1]_{t^d} [d - \delta_1]_{t^b}.$$

Corollary

Let gcd(b, d) = 1. If ω is a primitive *d*th root of unity and d|(n + 1) then

$$\omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} \text{ is } \begin{cases} \geq 0 & \text{ when } \delta_{k} < \delta_{1}, \\ \leq 0 & \text{ when } \delta_{k} \geq \delta_{1}. \end{cases}$$

I really like this theorem because it has a geometric interpretation.

Example: Let (b, d) = (7, 5). Draw an infinite array starting at 0, adding 5 for each right step and subtracting 7 for each down step.

Example: Let (b, d) = (7, 5). Draw an infinite array starting at 0, adding 5 for each right step and subtracting 7 for each down step.

The Sylvester set forms a triangle:

 $S_{7,5} = \{1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23\}.$

14	19	24				53		122	1.3	0
7	12	17	2.6	3.	3.5	102	2.6		3	7.
0	5	10	15	20	25	30	35	10.	h. 1	3
		3	8	13	18	23	28	\$	45	2.
			1	6	11	16	21	N.C		y.
					4	9	14	19	24	3
						2	7	12	17	ž
							0	5	10	2

In this case we have $(\beta_1, \delta_1) = (3, 3)$, which tells us that the label 1 occurs in position $(\beta_1, \delta_1 - d) = (3, -2)$.

The cute formula describes two rectangles with bottom corners at 0 and 1.

 $[b]_{t^{d}}/[b]_{t} = [\beta_{1}]_{t^{d}}[\delta_{1}]_{t^{b}} - t[b - \beta_{1}]_{t^{d}}[d - \delta_{1}]_{t^{b}}$

The cute formula describes two rectangles with bottom corners at 0 and 1:

$$\begin{split} [7]_{t^5}/[7]_t &= [3]_{t^5}[3]_{t^7} - t[4]_{t^5}[2]_{t^7} \\ &= 1 + t^5 + t^7 + t^{10} + t^{12} + t^{14} + t^{17} + t^{19} + t^{24} \\ &- (t + t^6 + t^8 + t^{11} + t^{13} + t^{16} + t^{18} + t^{23}). \end{split}$$

The cute formula describes two rectangles with bottom corners at 0 and 1:

 $\begin{aligned} [7]_{t^5} / [7]_t &= [3]_{t^5} [3]_{t^7} - t[4]_{t^5} [2]_{t^7} \\ &= 1 + t^5 + t^7 + t^{10} + t^{12} + t^{14} + t^{17} + t^{19} + t^{24} \\ &- (t + t^6 + t^8 + t^{11} + t^{13} + t^{16} + t^{18} + t^{23}). \end{aligned}$

And this leads to a precise description of $\omega^k {n \brack k} {0 \atop \omega}^{(7)}$ when $\omega^5 = 1$.

Obrigado!

Thanks to DeepSeek for suggesting the azulejos background image.