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Plan

This talk is based on joint work with Loehr, Rhoades, Warrington and
Williams from approximately 12 years ago. Is that “recent”?

1. Given any x ∈ Q define the Catalan number Cat(x) ∈ Z.

2. Given any x ∈ Q with x > 0 define noncrossing partitions NC(x).

3. Given any x ∈ Q with x > 0 define the associahedron Ass(x).

4. Given any x ∈ Q with x > 0 define parking functions PF(x).
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What is a Catalan Number?

Some Strange Ideas

Given x ∈ Q \
{
−1,− 1

2 , 0
}

there exist unique coprime integers a, b ∈ Z
with 0 < a < |b| or 0 < b < |a| such that

x =
a

b − a
.

(Note that 0 < x ⇐⇒ 0 < a < b.) We will always identify x ↔ (a, b).

Examples: Given 1 ≤ n ∈ N we have
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What is a Catalan Number?

Definition

For each x ∈ Q \
{
−1,− 1

2 , 0
}

we define the Catalan number:

Cat(x) = Cat(a, b) :=
1

a + b

(
a + b

a, b

)
.

Claim: This is an integer. (Proof postponed.)

Example:

Cat

(
5

3

)
= Cat

(
5

8− 5

)
= Cat(5, 8) =

1

13

(
13

5, 8

)
= 99.
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Classical Cases

When b = 1 mod a we have . . .

I Eugène Charles Catalan (1814-1894)

(a, b) = (n, n + 1) gives the good old Catalan number:

Cat(n) = Cat

(
n

(n + 1)− n

)
=

1

2n + 1

(
2n + 1

n

)
.

I Nicolaus Fuss (1755-1826)

(a, b) = (n, kn + 1) gives the Fuss-Catalan number:

Cat

(
n

(kn + 1)− n

)
=

1

(k + 1)n + 1

(
(k + 1)n + 1

n

)
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Symmetry about x = −1/2

Definition

By definition we have Cat(a, b) = Cat(b, a), which implies that

Cat(x) = Cat(a, b) = Cat(b, a) = Cat(−x − 1).

This implies that for x ∈ Q \
{
−1,− 1

2 , 0
}

we have

Cat

(
1

x − 1

)
= Cat

(
x

1− x

)
.

We will call this the derived Catalan number:

Cat′(x) := Cat

(
1

x − 1

)
= Cat

(
x

1− x

)
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Symmetry about x = −1/2

Definition

Given 0 < x (i.e. 0 < a < b) note that we have

Cat′(1/x) = Cat

(
1

(1/x)− 1

)
= Cat

(
x

1− x

)
= Cat′(x).

We call this rational duality:

Cat′(x) = Cat′(1/x).

In terms of coprime 0 < a < b this translates to

Cat′(a, b) = Cat′(b − a, b).

This will appear later as Alexander duality of rational associahedra.
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Euclidean Algorithm

Observation

Given 0 < a < b coprime, we observe that

Cat′(a, b) =
1

b

(
b

a

)
=

{
Cat(a, b − a) for a < (b − a)

Cat(b − a, a) for (b − a) < a

This allows us to define a sequence

Cat(x) 7→ Cat′(x) 7→ Cat′′(x) 7→ · · ·

which is a Categorification of the Euclidean algorithm.
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Euclidean Algorithm

Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

Cat(5, 8) = 99,

Cat′(5, 8) = Cat(3, 5) = 7,

Cat′′(5, 8) = Cat′(3, 5) = Cat(2, 3) = 2,

Cat′′′(5, 8) = Cat′′(3, 5) = Cat′(2, 3) = Cat(1, 2) = 1 (STOP)
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A Strange Idea

Suggestion

Extend the function Cat : Q→ N analytically to the upper half plane.
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The Prototype: Rational Dyck Paths

I Consider the “Dyck paths” in an a× b rectangle.

Example (a, b) = (5, 8)



The Prototype: Rational Dyck Paths

I Again let 0 < x = a/(b − a) with 0 < a < b coprime.

Example (a, b) = (5, 8)



The Prototype: Rational Dyck Paths

I Let D(x) = D(a, b) denote the set of Dyck paths.

Example (a, b) = (5, 8)



The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

|D(x)| = Cat(x) =
1

a + b

(
a + b

a, b

)
.

I Claimed by Grossman (1950), “Fun with lattice points, part 22”.

I Proved by Bizley (1954), in Journal of the Institute of Actuaries.

I Proof: Break
(
a+b
a,b

)
lattice paths into cyclic orbits of size a + b.

Each orbit contains a unique Dyck path.
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The Prototype: Rational Dyck Paths

Theorem (with N. Loehr and G. Warrington)

I The number of Dyck paths with k vertical runs equals

Nar(x ; k) :=
1

a

(
a

k

)(
b − 1

k − 1

)
.

Call these the Narayana numbers.

I And the number with rj vertical runs of length j equals

Krew(x ; r) :=
1

b

(
b

r0, r1, . . . , ra

)
=

(b − 1)!

r0!r1! · · · ra!
.

Call these the Kreweras numbers.



The Prototype: Rational Dyck Paths

Theorem (with N. Loehr and G. Warrington)

I The number of Dyck paths with k vertical runs equals

Nar(x ; k) :=
1

a

(
a

k

)(
b − 1

k − 1

)
.

Call these the Narayana numbers.

I And the number with rj vertical runs of length j equals

Krew(x ; r) :=
1

b

(
b

r0, r1, . . . , ra

)
=

(b − 1)!

r0!r1! · · · ra!
.

Call these the Kreweras numbers.



The Prototype: Rational Dyck Paths

Theorem (with N. Loehr and G. Warrington)

I The number of Dyck paths with k vertical runs equals

Nar(x ; k) :=
1

a

(
a

k

)(
b − 1

k − 1

)
.

Call these the Narayana numbers.

I And the number with rj vertical runs of length j equals

Krew(x ; r) :=
1

b

(
b

r0, r1, . . . , ra

)
=

(b − 1)!

r0!r1! · · · ra!
.

Call these the Kreweras numbers.



Bizley’s Proof

I will present Bizley’s proof of the theorem.

For example, suppose that (a, b) = (3, 5).



Bizley’s Proof

There are a total of
(
a+b
a,b

)
lattice paths from (0, 0) to (b,−a).



Bizley’s Proof

Some of them are above the diagonal.



Bizley’s Proof

. . . and some of them are not.



Bizley’s Proof

If we double a given path . . .



Bizley’s Proof

. . . then we can rotate it to create more paths.
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. . . then we can rotate it to create more paths.



Bizley’s Proof

. . . then we can rotate it to create more paths.



Bizley’s Proof

Since gcd(a, b) = 1, there are a + b distinct rotations of each path.



Bizley’s Proof

. . . and exactly one of them is above the diagonal.



Bizley’s Proof

Thus we obtain a bijection

(Dyck paths) ←→ (rotation classes of paths)

and it follows that

#(Dyck paths) =

(
a + b

a, b

)
/(a + b).

This completes the proof of Bizley’s Theorem.



Next: Rational NC Partitions



To create a noncrossing partition. . .

I Start with a Dyck path. Here (a, b) = (5, 8).



To create a noncrossing partition. . .

I Label the internal vertices by {1, 2, . . . , a + b − 1}.



To create a noncrossing partition. . .

I Shoot lasers from the bottom left with slope a/b.



To create a noncrossing partition. . .

I Who can see each other?



To create a noncrossing partition. . .

I There you go!



To create a noncrossing partition. . .

I We have created Cat(x) = 1
a

(
a+b
a,b

)
different noncrossing partitions of

the cycle [a + b − 1], and each of them has a blocks.



To rotate a noncrossing partition. . .

I Q: What does “rotation” of the partition correspond to?



To rotate a noncrossing partition. . .

I A: Think of the path as a maximal chain in a poset.



To rotate a noncrossing partition. . .

I Perform “promotion” on the chain.
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To rotate a noncrossing partition. . .

I Perform “promotion” on the chain.



To rotate a noncrossing partition. . .

I Perform “promotion” on the chain.



To rotate a noncrossing partition. . .

I Think of it as a path again.



To rotate a noncrossing partition. . .

I Again the lasers.



To rotate a noncrossing partition. . .

I And there you go!



To rotate a noncrossing partition. . .

I Drew: mention the case (a, b) = (n, (k − 1)n + 1).



NC Results



NC Results

Definition

For (a, b) coprime, consider the triangle poset

T (a, b) := {(x , y) ∈ Z2 : y ≤ a, x ≤ b, yb − xa ≥ 0}.

As you see here.



NC Results

Conjecture (with N. Williams)

I Promotion on T (a, b) has order a + b − 1.

I The number of chains invariant under promotiond is the q-Catalan
number evaluated at an (a + b − 1)th root of unity:

1

[a + b]q

[
a + b

a, b

]
q

∣∣∣∣∣
q=e

2πid
a+b−1

Theorem (M. Bodnar and B. Rhoades)

The conjecture is true.
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Rational NC Partition Posets

Observation

Our rational NC partitions don’t form a nice poset. Indeed, they each
have the same number of blocks! (i.e., a)

Question

Can one define a nice poset of rational NC partitions?

Answer

Yes.
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Rational NC Partition Posets

Observation

Our rational NC partitions don’t form a nice poset. Indeed, they each
have the same number of blocks! (i.e., a)

Question

Can one define a nice poset of rational NC partitions?

Answer

Yes.



To de-homogenize a noncrossing partition. . .

I Recall this.



To de-homogenize a noncrossing partition. . .

I Now we label only the horizontal steps.



To de-homogenize a noncrossing partition. . .

I Now we label only the horizontal steps.



To de-homogenize a noncrossing partition. . .

I Now we shoot lasers only from the corners.



To de-homogenize a noncrossing partition. . .

I Now who can see each other?



To de-homogenize a noncrossing partition. . .

I There you go!



NC Poset Results

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Theorem (with B. Rhoades and N. Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
k

)(
b−1
k−1
)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.
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Rational Duality

I Note that x ↔ 1/x is the same as (a < b)↔ (b − a < b).



Cyclic Sieving

Conjecture (with N. Williams)

I The (b − 1)-fold rotation action on NC(b − 1) preserves the
subposets NC(a, b) and NC(b − a, b).

I The number of elements of NC(a, b) invariant under rotation by d
mod b − 1 is the q-Catalan number evaluated at a (b − 1)th root
of unity:

1

[a + b]q

[
a + b

a, b

]
q

∣∣∣∣∣
q=e

2πid
b−1

Theorem (M. Bodnar and B. Rhoades)

The conjecture is true.
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Next: Rational Associahedra



The Classical Associahedron

Definition

Let n ≥ 0 and consider a convex (n + 2)-gon C. Let Ass(n) be the
abstract simplicial complex with

I vertices = chords of C

I faces = noncrossing sets of chords of C

I maximal faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

Ass(n) is a polytope.



The Classical Associahedron

Definition

Let n ≥ 0 and consider a convex (n + 2)-gon C. Let Ass(n) be the
abstract simplicial complex with

I vertices = chords of C

I faces = noncrossing sets of chords of C

I maximal faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

Ass(n) is a polytope.



The Classical Associahedron

Definition

Let n ≥ 0 and consider a convex (n + 2)-gon C. Let Ass(n) be the
abstract simplicial complex with

I vertices = chords of C

I faces = noncrossing sets of chords of C

I maximal faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

Ass(n) is a polytope.



The Classical Associahedron

Definition

Let n ≥ 0 and consider a convex (n + 2)-gon C. Let Ass(n) be the
abstract simplicial complex with

I vertices = chords of C

I faces = noncrossing sets of chords of C

I maximal faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

Ass(n) is a polytope.



The Classical Associahedron

Definition

Let n ≥ 0 and consider a convex (n + 2)-gon C. Let Ass(n) be the
abstract simplicial complex with

I vertices = chords of C

I faces = noncrossing sets of chords of C

I maximal faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

Ass(n) is a polytope.



The Classical Associahedron

Definition

Let n ≥ 0 and consider a convex (n + 2)-gon C. Let Ass(n) be the
abstract simplicial complex with

I vertices = chords of C

I faces = noncrossing sets of chords of C

I maximal faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

Ass(n) is a polytope.



The Classical Associahedron

I Example: Here is Ass(4).



The Classical Associahedron

Theorem (Euler, 1751)

The f -vector and h-vector of Ass(n) are given by the Kirkman numbers

Kirk(n; k) =
1

n

(
n

k

)(
n + k

k − 1

)
and the Narayana numbers

Nar(n; k) =
1

n

(
n

k

)(
n

k − 1

)
.



The Classical Associahedron

I Example: Here are the f -vector and h-vector of Ass(4) .

1
1 6

1 7 6
1 8 13 1

1 9 21 14



The Rational Associahedron

Idea

Given 0 < x = a/(b − a) with 0 < a < b coprime, we will define a
simplicial complex

Ass(x) = Ass(a, b)

whose maximal faces correspond to certain special dissections (“rational
triangulations”) of a convex (b + 1)-gon.



The Rational Associahedron

Idea

Given 0 < x = a/(b − a) with 0 < a < b coprime, we will define a
simplicial complex

Ass(x) = Ass(a, b)

whose maximal faces correspond to certain special dissections (“rational
triangulations”) of a convex (b + 1)-gon.



To define a “rational triangulation” . . .

I Start with a Dyck path. Here (a, b) = (5, 8).



To define a “rational triangulation” . . .

I Label the columns by {1, 2, . . . , b + 1}.



To define a “rational triangulation” . . .

I Shoot lasers from the bottom left with slope a/b.



To define a “rational triangulation” . . .

I Lift the lasers up.



To define a “rational triangulation” . . .

I There you go!



To define a “rational triangulation” . . .

I We have constructed Cat(a, b) many “rational triangulations” of a
convex (b + 1)-gon, and each of them has a− 1 chords.



The Rational Associahedron

Definition

Given 0 < x = a/(b − a), let Ass(x) = Ass(a, b) be the abstract
simplicial complex whose maximal faces are the “rational triangulations”.

Geometric Realization

Note that Ass(a, b) is a pure (a− 1)-dimensional subcomplex of the
(b − 1)-dimensional polytope Ass(b − 1).
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Given 0 < x = a/(b − a), let Ass(x) = Ass(a, b) be the abstract
simplicial complex whose maximal faces are the “rational triangulations”.

Geometric Realization

Note that Ass(a, b) is a pure (a− 1)-dimensional subcomplex of the
(b − 1)-dimensional polytope Ass(b − 1).



Associahedron Results

Theorems (with B. Rhoades and N. Williams)

I Ass(n, n + 1) is the classical associahedron Ass(n).

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) maximal faces and Euler characteristic Cat′(x).

I Ass(x) is shellable and hence homotopy equivalent to a wedge of
Cat′(x) many (a− 1)-dimensional spheres.

I Ass(x) has h-vector Nar(x ; k) = 1
a

(
a
k

)(
b−1
k−1
)
.

I Hence its f -vector is given by the rational Kirkman numbers:

Kirk(x ; k) :=
1

a

(
a

k

)(
b + k − 1

k − 1

)
.



Associahedron Results

Theorems (with B. Rhoades and N. Williams)

I Ass(n, n + 1) is the classical associahedron Ass(n).

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) maximal faces and Euler characteristic Cat′(x).

I Ass(x) is shellable and hence homotopy equivalent to a wedge of
Cat′(x) many (a− 1)-dimensional spheres.

I Ass(x) has h-vector Nar(x ; k) = 1
a

(
a
k

)(
b−1
k−1
)
.

I Hence its f -vector is given by the rational Kirkman numbers:

Kirk(x ; k) :=
1

a

(
a

k

)(
b + k − 1

k − 1

)
.



Associahedron Results

Theorems (with B. Rhoades and N. Williams)

I Ass(n, n + 1) is the classical associahedron Ass(n).

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) maximal faces and Euler characteristic Cat′(x).

I Ass(x) is shellable and hence homotopy equivalent to a wedge of
Cat′(x) many (a− 1)-dimensional spheres.

I Ass(x) has h-vector Nar(x ; k) = 1
a

(
a
k

)(
b−1
k−1
)
.

I Hence its f -vector is given by the rational Kirkman numbers:

Kirk(x ; k) :=
1

a

(
a

k

)(
b + k − 1

k − 1

)
.



Associahedron Results

Theorems (with B. Rhoades and N. Williams)

I Ass(n, n + 1) is the classical associahedron Ass(n).

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) maximal faces and Euler characteristic Cat′(x).

I Ass(x) is shellable and hence homotopy equivalent to a wedge of
Cat′(x) many (a− 1)-dimensional spheres.

I Ass(x) has h-vector Nar(x ; k) = 1
a

(
a
k

)(
b−1
k−1
)
.

I Hence its f -vector is given by the rational Kirkman numbers:

Kirk(x ; k) :=
1

a

(
a

k

)(
b + k − 1

k − 1

)
.



Associahedron Results

Theorems (with B. Rhoades and N. Williams)

I Ass(n, n + 1) is the classical associahedron Ass(n).

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) maximal faces and Euler characteristic Cat′(x).

I Ass(x) is shellable and hence homotopy equivalent to a wedge of
Cat′(x) many (a− 1)-dimensional spheres.

I Ass(x) has h-vector Nar(x ; k) = 1
a

(
a
k

)(
b−1
k−1
)
.

I Hence its f -vector is given by the rational Kirkman numbers:

Kirk(x ; k) :=
1

a

(
a

k

)(
b + k − 1

k − 1

)
.



Associahedron Results

Theorems (with B. Rhoades and N. Williams)

I Ass(n, n + 1) is the classical associahedron Ass(n).

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) maximal faces and Euler characteristic Cat′(x).

I Ass(x) is shellable and hence homotopy equivalent to a wedge of
Cat′(x) many (a− 1)-dimensional spheres.

I Ass(x) has h-vector Nar(x ; k) = 1
a

(
a
k

)(
b−1
k−1
)
.

I Hence its f -vector is given by the rational Kirkman numbers:

Kirk(x ; k) :=
1

a

(
a

k

)(
b + k − 1

k − 1

)
.



Associahedron Results

Theorems (with B. Rhoades and N. Williams)
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Rational Duality?

Observation

Given 0 < x = a/(b − a) with 0 < a < b coprime, note that
Ass(x) = Ass(a, b) and Ass(1/x) = Ass(b − a, b) are both subcomplexes
of the polytope Ass(b − 1) = Ass(b − 1, b).

Question

How do Ass(x) and Ass(1/x) fit together?



Rational Duality?

Observation

Given 0 < x = a/(b − a) with 0 < a < b coprime, note that
Ass(x) = Ass(a, b) and Ass(1/x) = Ass(b − a, b) are both subcomplexes
of the polytope Ass(b − 1) = Ass(b − 1, b).

Question

How do Ass(x) and Ass(1/x) fit together?



Rational Duality?

I Example: Here are subcomplexes Ass(2, 5) and Ass(3, 5) in Ass(4).



Rational Duality?

Observation

Note that Ass(b − 1) has this many vertices:(
b + 1

2

)
− (b + 1) =

(b + 1)b

2
− 2(b + 1)

2
=

(b − 2)(b + 1)

2
.

The subcomplexes Ass(a, b) and Ass(b − a, b) bipartition the vertices:

(a− 1)(b + 1)

2
+

(b − a− 1)(b + 1)

2
=

(b − 2)(b + 1)

2
.



Rational Duality = Alexander Duality

Conjecture (with B. Rhoades and N. Williams)

We know that Ass(a, b) and Ass(b − a, b) have the same number of
homotopy spheres (of complementary dimensions) because

Cat′(a, b) = Cat′(b − a, b).

We conjecture that the homotopy spheres are “intertwined” in a nice
way. Formally, we conjecture that Ass(a, b) and Ass(b − a, b) are
Alexander dual as subcomplexes of Ass(b − 1).

Theorem (B. Rhoades)

The conjecture is true.
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Euclidean Algorithm?

Definition

Given 0 < a < b coprime, if we define

Ass′(a, b) :=

{
Ass(a, b − a) for a < (b − a)

Ass(b − a, a) for (b − a) < a

then

# homotopy spheres Ass(a, b) = # maximal faces Ass′(a, b).

Question

What does the following mean?

Ass(a, b) 7→ Ass′(a, b) 7→ Ass′′(a, b) 7→ · · · 7→ a point
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Next: Rational Parking Functions



The Rational Parking Space

Definition

I Label the up-steps by {1, 2, . . . , a}, increasing up columns.

I Call this a parking function.

I Let PF(x) = PF(a, b) denote the set of parking functions.

I Classical form (z1, z2, . . . , za) has label zi in column i .

I Example: (3, 1, 4, 4, 1)
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I The symmetric group Sa acts on classical forms.
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I By abuse, let PF(x) = PF(a, b) denote this representation of Sa.

I Call it the rational parking space.



The Rational Parking Space

Definition

I The symmetric group Sa acts on classical forms.

I Example: (3, 1, 4, 4, 1) versus (3, 1, 1, 4, 4)

I By abuse, let PF(x) = PF(a, b) denote this representation of Sa.

I Call it the rational parking space.



The Rational Parking Space

Definition

I The symmetric group Sa acts on classical forms.

I Example: (3, 1, 4, 4, 1) versus (3, 1, 1, 4, 4)

I By abuse, let PF(x) = PF(a, b) denote this representation of Sa.

I Call it the rational parking space.



The Rational Parking Space

Definition

I The symmetric group Sa acts on classical forms.

I Example: (3, 1, 4, 4, 1) versus (3, 1, 1, 4, 4)

I By abuse, let PF(x) = PF(a, b) denote this representation of Sa.

I Call it the rational parking space.



The Rational Parking Space

Definition

I The symmetric group Sa acts on classical forms.

I Example: (3, 1, 4, 4, 1) versus (3, 1, 1, 4, 4)

I By abuse, let PF(x) = PF(a, b) denote this representation of Sa.

I Call it the rational parking space.



The Rational Parking Space

Theorems (with N. Loehr and G. Warrington)

I The dimension of PF(a, b) is ba−1.

I The complete homogeneous expansion is

PF(a, b) =
∑
r`a

1

b

(
b

r0, r1, . . . , ra

)
hr,

where the sum is over r = 0r01r1 · · · ara ` a with
∑

i ri = b.

I Note that this is the same as

PF(a, b) =
∑
r`a

1

b
mr(1b)hr.
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Parking Results

Theorems (with N. Loehr and G. Warrington)

Then using the Cauchy product identity we get. . .

I The power sum expansion is

PF(a, b) =
∑
r`a

b`(r)−1
pr
zr

i.e. the # of parking functions fixed by σ ∈ Sa is b#cycles(σ)−1.

I The Schur expansion is

PF(a, b) =
∑
r`a

1

b
sr(1b) sr.
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Parking Results

Observation/Definition

The multiplicities of the hook Schur functions s[k + 1, 1a−k−1] in
PF(a, b) are given by the rational Schröder numbers:

Schrö(a, b; k) :=
1

b
s[k+1,1a−k−1](1b) =

1

b

(
a− 1

k

)(
b + k

a

)
.

Special Cases:

I Trivial character: Schrö(a, b; a− 1) = Cat(a, b).

I Smallest k that occurs is k = max{0, a− b}, in which case

Schrö(a, b; k) = Cat′(a, b).

I Hence Schrö(x ; k) interpolates between Cat(x) and Cat′(x).
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I Trivial character: Schrö(a, b; a− 1) = Cat(a, b).

I Smallest k that occurs is k = max{0, a− b}, in which case
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I Hence Schrö(x ; k) interpolates between Cat(x) and Cat′(x).



What does switching a↔ b mean?

Problem

Given a, b coprime we have an Sa-module PF(a, b) of dimension ba−1

and an Sb-module PF(b, a) of dimension ab−1.

I What is the relationship between PF(a, b) and PF(b, a)?

I Note that hook multiplicities are the same:

Schrö(a, b; k) = Schrö(b, a; k + b − a).

I See: E. Gorsky, “Arc spaces and DAHA representations”, (2011)
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Summary of Catalan Numerology

I The Kirkman/Narayana/Schröder numbers are equivalent. They
contain information about rank. (1 < k < a− 1)

Kirk(x ; k) = 1
a

(
a
k

)(
b+k−1
k−1

)
Nar(x ; k) = 1

a

(
a
k

)(
b−1
k−1
)

Schrö(x ; k) = 1
b

(
a−1
k

)(
b+k
a

)


f -vector

h-vector

“dual” f -vector

I The Kreweras numbers are more refined. They contain parabolic
information. (r ` a)

Krew(x ; r) =
1

b

(
b

r0, r1, . . . , ra

)
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Vielen Dank!

I saw Isabelle Huppert on the Strudlhof steps!


