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0 The inequality 1
p +

1
q +

1
r > 1

Let Ypqr denote the following undirected “Y -shaped” graph with (p−1)+(q−1)+(r−1)+1 =
p+ q + r − 2 vertices:

The graphs satisfying 1
p

+ 1
q

+ 1
r
> 1 have special names. They are labeled by the letters ADE.

The subscript indicates the number of vertices:

These graphs show up everywhere in mathematics. Their first appearance was in the classi-
fication of continuous transformation groups (now called Lie groups) by Lie, Killing, Cartan
and Weyl. The graphs themselves were invented independently by Coxeter and Dykin, hence
they are somtimes called Coxeter diagrams and sometimes Dynkin diagrams. The ADE label-
ing scheme goes back to Killing in 1887. You might be wondering what happened to BCFGH,
etc. We’ll discuss that later.

1 Graphs with small eigenvalues

1.1 Eigenvalues of graphs

Terry Gannon (in Moonshine Beyond the Monster) suggests that the simplest characterization
of the ADE diagrams has to do with the eigenvalues of their adjacency matrices.
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Given a weighted, directed graph G on vertex set {v1, . . . , vn}, the adjacency matrix is the
n × n matrix AG = (aij) whose ij entry aij is the weight on the edge from vertex vi to
vertex vj. We could also let aij be the number of edges from vi to vj if we are working with
multigraphs. If the graph is undirected then we set aij = aji so the matrix is symmetric.
If the graph is undirected and simple (no multiple edges and no loops) then AG will be a
symmetric 0, 1 matrix with zeroes on the diagonal. For example, consider the graph G with
vertices {a, b, c, d} and edges {{a, b}, {a, c}, {b, c}, {c, d}}:

G = AG =

a b c d

a
b
c
d


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0



With this convention, we note that the ij entry of the kth power AkG equals the number of
paths of length k from vi to vj, i.e., the number of paths1

vi1 — vi2 — · · · — vik ,

with i1 = i and ik = j, where vis — vis+1 is an edge for all s.

Recall that the eigenvalues of a real symmetric matrix are real. Indeed, let A be a real
symmetric matrix and let v 6= 0 be a (possibly complex) eigenvector with (possibly complex)
eigenvalue λ. Let ∗ denote the conjgate transpose operation, so that A∗ = A. Then we have

λ̄‖v‖2 = λ̄v∗v = (λv)∗v = (Av)∗v = v∗A∗v = v∗λv = λv∗v = λ‖v‖2.

Since v 6= 0 implies ‖v‖ 6= 0 we can cancel to obtain λ∗ = λ and hence λ ∈ R. This fact
was first proved by Cauchy in 1829, as part of his extension of Euler’s principal axes theorem
to higher dimensions. Cauchy’s original proof was quite complicated.2 Here is the modern
statement and proof of Cauchy’s result.

Theorem 1.1 (Principal Axes Theorem). Let A be a real and symmetric n×n matrix. Then
A has a basis of real orthonormal eigenvectors u1, . . . ,un ∈ Rn.

Proof. The theorem is equivalent to the statement that there exists a real orthogonal matrix
UTU = I such that UTAU = Λ := diag(λ1, . . . , λn) is diagonal. Indeed, if u1, . . . ,un are the
columns of U then UTU = I is equivalent to the fact that u1, . . . ,un are orthonormal and the
equation UTAU = Λ is equivalent to the statement

AU = UΛ

1If the graph is directed the the entries of of powers of AG count directed paths.
2“Dazzled by the brilliance of the new theory of determinants, mathematicians overlooked simple inner

product considerations”, Hawkins, The Mathematics of Frobenius in Context, page 98.
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(
Au1 · · · Aun

)
=
(
λ1u1 · · · λnun

)
.

We will prove this matrix version of the theorem by induction on the size of A.

The characteristic polynomial of A has a complex root, but we know from the previous
remark that every eigenvalue is real, hence A has a real eigenvalue, say λ1 ∈ R. Let v1 be a
(necessarily real) unit vector satisfying Av1 = λ1v1. Since AT = A we note that A stabilizes
the hyperplane v⊥1 since for any vector x with vT1 x = 0 we have

vT1 (Ax) = vT1 A
Tx = (Av1)Tx = (λ1v1)Tx = λ1v

T
1 x = 0.

Let v2, . . . ,vn be any orthonormal basis of the hyperplane v⊥1 and let V be the matrix with
columns v1, . . . ,vn so that V TV = I. Note that the ij entry of V TAV is vTi Avj = (vTi Avj)

T =
vTj A

Tvi = vTj Avi. Since vT1 Av1 = λ1 and vT1 Avi = 0 for all i ≥ 2 we conclude that

V TAV =


λ1 0 · · · 0

0
...
0

A′


for some real matrix A′, which is symmetric because (V TAV )T = V TATV = V TAV is
symmetric. By induction there exists an (n − 1) × (n − 1) orthogonal matrix V ′ such that
(V ′)TA′V ′ is diagonal. If we define

W :=


1 0 · · · 0

0
...
0

V ′

 ,

then we observe that W TW = I and (VW )T (VW ) = W TV TVW = W TW = I, and

(VW )TA(VW ) = W T


λ1 0 · · · 0

0
...
0

A′

W =


λ1 0 · · · 0

0
...
0

(V ′)TA′V ′


is diagonal. Thus U := WV is the desired orthogonal matrix.

Let AT = A and let UTU = I with UTAU = Λ := diag(λ1, . . . , λn). Then since UT = U−1 we
have for any integer k ≥ 0 that

Ak = (UΛU−1)k = UΛkU−1 = UΛkUT .
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If u1, . . . ,un are the (orthonormal) columns of U then this implies

Ak =
(
u1 · · · un

)λ
k
1

. . .

λkn


uT1

...
uTn

 =
n∑

m=1

λkmumuTm.

And if uTm =
(
u1m · · · unm

)
then the ij entry of Ak is

∑n
m=1 uimujmλ

k
m.

Stanley exploited this result in Chapter 1 of his undergraduate textbook Algebraic Combina-
torics to study walks in graphs. Suppose A = AG is the adjacency matrix of a simple graph
G with eigenvalues λ1, . . . , λn ∈ R. Then for fixed vertices vi and vj there exist constants
c1, . . . , cn ∈ R such that the number walks between vi and vj of length k is c1λ

k
1 + · · ·+ cnλ

k
n.

Indeed, take ci := uimujm from the previous remark. In particular, the growth of walks in G
is controlled by the largest eigenvalue of AG.

It may be interesting to note that the eigenvalues of a bipartite graph are symmetric about
zero.3 Proof: Let G be bipartite on two vertex sets X, Y . If we order the vertices of G so
that X comes before Y then the adjacency matrix has the form

A =

(
0 B

BT 0

)
.

Suppose Av = λv and write vT = (vT1 |vT2 ) in block form. Then block multiplication gives(
λv1

λv2

)
= λv = Av =

(
0 B

BT 0

)(
v1

v2

)
=

(
Bv2

BTv1

)
,

hence Bv2 = λv1 and BTv1 = λv2. On the other hand, if ṽT = (vT1 | − vT2 ) then we have

Aṽ =

(
0 B

BT 0

)(
v1

−v2

)
=

(
−Bv2

BTv1

)
=

(
−λv1

λv2

)
= −λ

(
v1

−v2

)
= −λṽ.

We conclude that if λ is an eigenvalue of A then −λ is also an eigenvalue. Note that every
tree is bipartite, so the eigenvalues of the ADE graphs are real and symmetric about zero.

1.2 Lagrange and sound waves

Let’s consider the type An chain graphs explicitly. The adjacency matrix is the n× n matrix

A =


0 1

1 0
. . .

. . . . . . 1
1 0

 .

3The converse is also true. That is, if the eigenvalues of AG are symmetric about zero then G is bipartite.
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According to Goodman-Harpe-Jones (in Coxeter Graphs and Towers of Algebras), this matrix
was first explicitly diagonalized by Lagrange (in Researches on the nature and propagation of
sound, 1759). Maybe we’ll discuss the physics later. For now I’ll just show you the eigenvalues
and eigenvectors. I claim that the eigenvectors are

vk :=


sin(θk)
sin(2θk)

...
sin(nθk)

 for k = 1, 2, . . . , n,

where θk := kπ/(n + 1). And the eigenvalues are given by the equations Avk = 2 cos(θk)vk.
To prove this, we simply add two trigonometric identities:

sin(iθk + θk) = sin(iθk) cos(θk) + cos(iθk) sin(θk)
sin(iθk − θk) = sin(iθk) cos(θk)− cos(iθk) sin(θk)

sin((i+ 1)θk) + sin((i− 1)θk) = 2 cos(θk) sin(iθk).

Then everything just works out. Remark: Let λk = 2 cos(θk). Since A is symmetric, we have

λkv
T
k v` = (Avk)

Tv` = vTkA
Tv` = vTkAv` = λ`v

T
k v`.

If k 6= ` then we have λk 6= λ` and hence vTk v` = 0.4 Thus we obtain some interesting
trigonometric identities:

n∑
i=1

sin

(
ikπ

n+ 1

)
sin

(
i`π

n+ 1

)
= 0 for k 6= `.

This is a discrete analogue of the orthogonality of sine waves in Fourier analysis.

1.3 Graphs with small eigenvalues

We showed that the eigenvalues of the type An (chain) graph are

2 cos

(
nπ

n+ 1

)
< 2 cos

(
(n− 1)π

n+ 1

)
< · · · < 2 cos

(
2π

n+ 1

)
< 2 cos

(
π

n+ 1

)
.

The eigenvalues are symmetric about zero because cos(π − θ) = − cos(θ). As n → ∞ the
largest eigenvalue approaches 2 but it never reaches it. In fact, this property chracterizes the
ADE graphs. Given a graph G we define its spectral radius as the maximum of the absolute
values of the eigenvalues of the adjacency matrix:

ρ(G) := max{|λ| : λ is an eigenvalue of AG}.
4The same proof shows that eigenvectors corresponding to distinct eigenvalues of a real symmetric matrix

are orthogonal.
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The following result was published by J. H. Smith (Some properties of the spectrum of a
graph, 1970) but it should really be viewed as a folklore result that is implicit in every ADE
type classification.5

Theorem 1.2. Let G be a simple undirected graph. Then

ρ(G) < 2 ⇐⇒ G is a disjoint union of ADE type graphs.

First note that we can restrict our attention to connected graphs. Indeed, if G = G1 ∪G2 is
a disjoint union of graphs then the adjacency matrix is block-diagonal:

AG =

(
AG1 0

0 AG2

)
.

This implies that the set of eigenvalues of G is the union of the sets of eigenvalues of G1 and
G2, hence the spectral radius ρ(G) is the maximum of the spectral radii ρ(G1) and ρ(G2):

ρ(G) = max{ρ(G1), ρ(G2)}.

The proof of the theorem will follow from a monotonicity property for subgraphs that is part
of the Perron-Frobenius family of theorems for positive matrices. I spent far too many hours
trying to work out a streamlined proof that I can present in class but I finally decided to state
the result without proof. You can find the details in Chapter 6 of Graphs and Matrices by
Bapat, though even he quotes a few facts without proof.

Lemma 1.3 (The Perron-Frobenius Theorem for Graphs). We will say that a vector is
positive when its entries are strictly positive real numbers.

• (The Perron Eigenvector) Let G be a connected graph. The adjacency matrix AG has
has a unique (up to scalars) positive eigenvector. The corresponding eigenvalue is the
spectral radius ρ(G).

• (Strict Monotonicity) Let G be a connected graph and let H be any subgraph. This
means that the adjacency matrix AH is obtained from AG by taking a principal submatrix
(deleting vertices) and shrinking entries (deleting edges). Then we have ρ(H) ≤ ρ(G).
If H 6= G then ρ(H) < ρ(G).

An eigenvector x = (x1, . . . , xn) of the n×n adjacency matrix AG can be viewed as a labeling
of the vertices. The condition AGx = λx is equivalent to the statement that λxi equals the

5I haven’t been able to obtain Smith’s paper. Cameron, Goethals and Seidel (Line Graphs, Root Systems
and Elliptic Geometry, 1975) prove the same result using root systems, which we will discuss later. It is
interesting that they do not mention Smith’s paper; they merely mention that “graphs whose adjacency
matrix has least eigenvalue -2 have gained much attention in these last 15 years”. We recommend the book
Coxeter Graphs and Towers of Algebras (1980) by Goodman, de la Harpe and Jones, for a comprehensive
account of the subject.
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sum of the labels xj over all j such that vi, vj is an edge of G, i.e., the sum of the labels on the
neighbors of vertex vi. As an application, we claim that any cycle graph has spectral radius
2. Indeed, consider the following vertex labeling:

Note that 2 times any vertex label equals the sum of the labels of the neighboring vertices.
Since this gives a positive eigenvector of eigenvalue 2 it follows from the first part of the
lemma that 2 is the spectral radius.

Now we give the proof of Theorem 1.2.

Proof. LetG be a connected graph with spectral radius ρ(G) < 2. Then by strict monotonicity
of spectral radius G cannot contain a cycle because we just saw that a cycle has spectral radius
2. Next we observe that G cannot contain a vertex of degree ≥ 4, otherwise it must contain
the following graph as a subgraph:

But this graph has spectral radius 2 via the displayed vertex labeling. Next we observe that
G has at most one vertex of degree 3. If not then G contains the following subgraph, which
has spectral radius 2 via the displayed vertex labeling:

At this point we have shown that G is a Y -shaped graph of the form Ypqr. The rest of the
proof follows from the fact that the graphs Y333, Y244 and Y236 each has spectral radius 2, as
shown by the following vertex labelings:
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This proof is short but mysterious because it involves the existence of some special graphs with
special vertex labelings that we seem to have pulled from nowhere. We will investigate this
further in the next section. For now, we push the proof a bit further to obtain a classification
of graphs with spectral radius equal to 2.

Theorem 1.4. Let G be a connected simple undirected graph with spectral radius ρ(G) = 2.
Then G is one of the following affine ADE graphs:

Proof. Note that each of the displayed graphs has spectral radius 2 via the displayed vertex
labeling. Conversely, let G be a connected undirected graph with spectral radius ρ(G) = 2. If

G contains a cycle then it must equal a cycle graph A
(1)
n . Otherwise it contains some A

(1)
n as

9



a strict subgraph, and hence has spectral radius > 2 by strict monotonicity. Next we observe
that G has no vertex of degree ≥ 5. Otherwise it contains D

(1)
4 as a strict subgraph, hence

has spectral radius > 2 by strict monotonicity. Similarly, G has at most one vertex of degree
4, otherwise it contains some D

(1)
n as a strict subgraph. And if G has a vertex of degree 4

then we must have G = D
(1)
4 otherwise G contains D

(1)
4 as a strict subgraph. Furthermore,

if G 6= D
(1)
n then it has at most one vertex of degree 3, otherwise it contains some D

(1)
n as

a strict subgraph. We are left with the case of Y -shaped graphs Ypqr, and the proof follows
from the fact that the spectral radius is strictly monotone with the arm lengths.

The relation between a “finite type” ADE graph G and its “affine extension” G(1) comes from
the theory of Weyl groups, which we will discuss later.

1.4 Relation to the quantity 1
p + 1

q + 1
r

The previous two classification results can be rephrased in the following compact way.

Theorem 1.5. Let G be a connected, undirected simple graph, and recall that Ypqr denotes
the Y -shaped graph with (p− 1) + (q − 1) + (r − 1) + 1 vertices.

• If ρ(G) < 2 then G = Ypqr with 1
p

+ 1
q

+ 1
r
> 1.

• If ρ(G) = 2 then G = A
(1)
n , D

(1)
n or Ypqr with 1

p
+ 1

q
+ 1

r
= 1.

However, the previous proofs give no indication why this should be the case. In this section
we explain the appearance of the quantity 1

p
+ 1

q
+ 1

r
.

The Chebyshev polynomials of the second kind are defined by the following initial conditions
and three-term recurrence:

U0(x) = 1,

U1(x) = 2x,

Uk+1(x) = 2xUk(x)− Uk−1(x).

These polynomials encode the multiple angle identities for the sine function,

Uk(cos θ) =
sin((k + 1)θ)

sin θ
,

as one can check by induction. Consider the Y -shaped graph Ypqr for any integers p, q, r ≥ 2
and let λ = ρ(Ypqr) > 0 be its spectral radius. From the Perron-Frobenius theorem in
the previous section there exists a unique λ-eigenvector x for the adjacency matrix A with
strictly positive entries. We can think of the entries of x as a vertex labeling. Let x0, . . . , xp−1,
y0, . . . , yq−1 and z0, . . . , zr−1 be the labels along the three arms of the graph, with x0, y0, z0
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labeling the leaves and xp−1 = yq−1 = zr−1 labeling the center vertex. The eigenvector
equation Ax = λx tells us that

x1 = λx0,

xk+1 = λxk − xk−1 for 1 ≤ k ≤ p− 2.

By induction this implies that xk = x0Uk(λ/2) for all 0 ≤ k ≤ p − 1. Similarly, we have
yk = y0Uk(λ/2) for 0 ≤ k ≤ q − 1 and zk = z0Uk(λ/2) for 0 ≤ k ≤ r − 1. Let c := xp−1 =
yq−1 = zr−1 denote the center label, so that

c = x0Up−1(λ/2) = y0Uq−1(λ/2) = z0Ur−1(λ/2).

This determines all vertex labels in terms of the eigenvalue λ and the center label c:

xk = c Uk(λ/2)/Up−1(λ/2),

yk = c Uk(λ/2)/Uq−1(λ/2),

zk = c Uk(λ/2)/Ur−1(λ/2).

We have one more piece of information. The eigenvector equation Ax = λx at the center
vertex tells us that

λc = xp−2 + yq−2 + zr−2.

Note that xp−2/c = xp−2/xp−1 = Up−2(λ/2)/Up−1(λ/2). Similarly, since c = xp−1 = yq−1 =
zr−1 we have yq−2/c = Uq−2(λ/2)/Uq−1(λ/2) and zr−2/c = Ur−2(λ/2)/Ur−1(λ/2). Hence
dividing both sides of the balance equation by c (which is positive by assumption) gives

λ =
Up−2(λ/2)

Up−1(λ/2)
+
Uq−2(λ/2)

Uq−1(λ/2)
+
Ur−2(λ/2)

Ur−1(λ/2)
.

This is an explicit relationship between the Perron-Frobenius eigenvalue λ and the three arm
lengths p, q, r ≥ 2. One can check by induction that Uk(1) = k + 1 for any k ≥ 0. If the
spectral radius is λ = 2 then the previous equation implies that

2 =
p− 1

p
+
q − 1

q
+
r − 1

r

2 = 1− 1

p
+ 1− 1

q
+ 1− 1

r
1

p
+

1

q
+

1

r
= 1.

The solutions of this Diophantine equation correspond to the affine ADE graphs of type E.
In this case, let me also mention that substituting λ = 2 into the equations for the Perron-
Frobenius vertex labels gives xk = c(k + 1)/p, yk = c(k + 1)/q and zk = c(k + 1)/r. Since

11



the Perron-Frobenius eigenvector is only defined up to scaling, we can choose c so that all
Perron-Frobenius labels are positive integers.

Next, suppose that λ < 2. In this case we can write λ = 2 cos θ for some nonzero angle θ,
which is perfectly suited to our Chebyshev formulas because then

Uk(λ/2) = Uk(cos θ) =
sin((k + 1)θ)

sin θ
.

In this case, the balance equation at the central vertex becomes

2 cos θ =
sin((p− 1)θ)

sin(pθ)
+

sin((q − 1)θ)

sin(qθ)
+

sin((r − 1)θ)

sin(rθ)
.

The equation X = x0Up−1(cos θ) = x0 sin(pθ)/ sin θ and the positivity of the labels c, x0

implies that 0 < θ ≤ π/p. Similarly we must have θ ≤ π/q and θ ≤ π/r. One can check
that sin((n+ 1)t)/ sin(nt) is a strictly increasing function of t on (0, π/n], hence the following
function is strictly decreasing on the interval (0, θ]:

F (t) := 2 cos t− sin((p− 1)t)

sin(pt)
− sin((q − 1)t)

sin(qt)
− sin((r − 1)t)

sin(rt)
.

It follows that

lim
t→0+

F (t) > F (θ)

2− p− 1

p
− q − 1

q
− r − 1

r
> 0

−1 +
1

p
+

1

q
+

1

r
> 0

1

p
+

1

q
+

1

r
> 1.

1.5 Marks and Exponents

The subject of ADE classification is full of special integers that satisfy unexpected relation-
ships — a phenomenon called numerology. Some of this numerology is already visible in the
simple case of graphs. We introduce two concepts now. Given a finite type ADE graph (i.e.,
with 1

p
+ 1

q
+ 1

r
> 1) with n vertices, we will prove later that the eigenvalues have the form

2 cos(m1π/h), 2 cos(m2π/h), . . . , 2 cos(mnπ/h),

for some integers 1 ≤ m1 ≤ · · · ≤ mn called the exponents and some integer h called the
Coxeter number of the graph. The spectral radius is 2 cos(π/h) and the smallest exponent is
m1 = 1. Because each ADE graph is bipartite we know that the eigenvalues are symmetric
about zero, from which is follows that mi +mn+1−i = h for all i.
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If G is a finite type ADE graph, let G(1) denote the corresponding affine type ADE graph.
There is a canonical Perron-Frobenius eigenvector for G(1) with positive, coprime integer
entries. (These are the vertex labels in Theorem 1.4.) If G has n vertices then G(1) has n+ 1
labels c0, c1, . . . , cn, which are called the marks (or Kac labels) of the graph. It turns out that
the label 1 always occurs so we can take c0 = 1. It is a surprising fact that

c0 + c1 + · · ·+ cn = h,

where h is the Coxeter number of the finite type graph G.6 Another strange identity relates
the marks to the arm lengths p, q, r of a finite type ADE graph Ypqr:

c2
0 + c2

1 + . . .+ c2
n =

4
1
p

+ 1
q

+ 1
r
− 1

.

This identity comes from the McKay correspondence, which we will discuss in the next chapter.
The following table shows the marks and exponents for the finite type ADE graphs.

graph G marks of G(1) exponents of G Coxeter number h

An 1, 1, . . . , 1 1, 2, . . . , n n+ 1
Dn 1, 1, 1, 1, 2, . . . , 2 n− 1, 1, 3, . . . , 2n− 3 2(n− 1)
E6 1, 1, 1, 2, 2, 2, 3 1, 4, 5, 7, 8, 11 12
E7 1, 1, 2, 2, 2, 3, 4 1, 5, 7, 9, 11, 13, 17 18
E8 1, 2, 2, 3, 3, 4, 4, 5, 6 1, 7, 11, 13, 17, 19, 23, 29 30

2 Finite groups of rotations

2.1 Platonic solids

A regular polytope is a convex polytope P ⊆ Rn for which the group of symmetries of P acts
transitively on maximal flags of faces. (See the end of this section for details.) A Platonic
solid is a three dimensional regular polytope. There are only five of these and they were
classified in the final book of Euclid’s Elements. We will see that the Platonic solids are
another example of ADE classification. This is described by the following table, which will
be explained in this chapter.7

type shapeP symmetry group

An one-sided polygon cyclic
Dn two-sided polygon dihedral
E6 tetrahedron T
E7 cube/octahedron O
E8 dodecahedron/icosahedron I

6ChatGPT claims to have a proof of this using continuant identities for Chebyshev polynomials but it
looks complicated. We will see better reasons later.

7The letters T,O, I are called Schönflies notation and are used in chemistry and physics. It turns out that
T ∼= A4, O ∼= S4 and I ∼= A5, where Sn and An are the symmetric and alternating groups.
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We first show that regular polyhedra are related to triples p, q, r ∈ N satisfying 1
p

+ 1
q

+ 1
r
> 1,

which is related to the idea of “positive curvature”. A spherical triangle is a region on
the surface of a sphere bounded by three great circles. Unlike in the Euclidean case, Thomas
Harriot (1603) showed that the area of a spherical triangle is determined by its interior angles.
Consider a triangle on the surface of a sphere with vertices A,B,C and interior angles α, β, γ:

Theorem 2.1 (Harriot’s Theorem). If r is the radius of the sphere and if ∆αβγ is the area
of the triangle with interior angles α, β, γ (measured within the spherical surface) then

∆αβγ = r2(α + β + γ − π).

The quantity α + β + γ − π is called the spherical excess of the triangle and it measures
how far the triangle is from being Euclidean.

Proof. The three great circles bounding the triangle divide the surface of the sphere into
eight triangles, which come in pairs of equal area. Let ∆α, ∆β and ∆γ denote the areas of the
triangles that lie across the sides a, b and c from the angles α, β, γ, respectively. Let S = 4πr2

denote the surface area of the sphere. Since the eight triangles cover the full sphere, we have

2(∆αβγ + ∆α + ∆β + ∆γ) = 4πr2.

On the other hand, the triangles with areas ∆αβγ and ∆α glue together to form a “lune” of
angle α. Since this lune covers α/2π of the whole sphere, it has area

∆αβγ + ∆α =
α

2π
S = 2r2α.

Similarly, we have ∆αβγ + ∆β = 2r2β and ∆αβγ + ∆γ = 2r2γ. Adding these three equations
and multiplying by 2 gives

6∆αβγ + 2∆α + 2∆β + 2∆γ = 4r2(α + β + γ).

14



Then the first equation tells us that

4∆αβγ + 4πr2 = 4∆αβγ + 2(∆αβγ + ∆α + ∆β + ∆γ)

= 6∆αβγ + 2∆α + 2∆β + 2∆γ

= 4r2(α + β + γ),

and the result follows.

What does this have to do with Platonic solids? The barycentric subdivision of a polytope
is defined by placing a vertex at the barycenter of each face of each dimension, and then
connecting a set of vertices by a simplex whenever the corresponding faces form a nested
chain of subsets. (See below for more detail.) The maximal simplices of the barycentric
subdivision correspond to maximal flags of faces. For example, the following figure shows the
barycentric subdivision of the surface of a regular tetrahedron, and its projection onto the
surface of a sphere.

The red triangle has three vertices — one at a vertex of the tetrahedron, one at the midpoint
of an edge, and one at the centroid of a triangle. Around the “vertex vertex” there are 6
triangles, accounting for the fact that this vertex has 3-fold rotational symmetry. Around the
“edge vertex” there are 4 triangles, accounting for the fact that the edge has 2-fold rotational
symmetry, and around the “face vertex” there are again 6 triangles because the triangular
face has 3-fold rotational symmetry. When we blow up the red triangle onto the sphere this
tells us that the interior angles of the red spherical triangle are π/3, π/2 and π/3.

In general, each Platonic solid corresponds to a triple of integers p, q, r where each vertex,
edge and face has p-, q- and r-fold rotational symmetry, respectively. When we blow up a
triangle of the barycentric subdivision onto the surface of the sphere it has interior angles
π/p, π/q and π/r. If the radius of the sphere is R then Harriot’s formula tells us that

area of red triangle > 0

R2

(
π

p
+
π

q
+
π

r
− π

)
> 0

1

p
+

1

q
+

1

r
− 1 > 0
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1

p
+

1

q
+

1

r
> 1.

The regular tetrahedron corresponds to the triple (p, q, r) = (3, 2, 3). The following table
shows the rotational symmetries of the five Platonic solids:

shape (vertex, edge, face) rotations

tetrahedron (3, 2, 3)
cube (3, 2, 4)

octahedron (4, 2, 3)
dodecahedron (3, 2, 5)
icosahedron (5, 2, 3)

Here are pictures of the remaining four Platonic solids and their projections onto a sphere.
Notice that dual pairs share the same projection.

As we mentioned above, the concept of regular polytopes applies in all dimensions, and these
have also been classified. According to Coxeter (Regular Polytopes, 1948) this classification
was independently discovered at least eight times, with the earliest discovery due to Schläfli
in 1852. Here I will sketch the general classification and we will complete the details in a later
chapter. We will approach the classification via groups of symmetries.

A map ϕ : Rn → Rn is called an isometry if it preserves distance:

‖ϕ(x)− ϕ(y)‖ = ‖x− y‖ for all x,y ∈ Rn.

16



Given a polytope P ⊆ Rn,8 we define a symmetry of P to be an isometry of Rn with the
property that ϕ(P ) = P as sets. The collection of symmetries of P forms a group, which we
denote by

Sym(P ) = {isometries ϕ : Rn → Rn such that ϕ(P ) = P}.

Basic convex geometry tells us that Sym(P ) permutes the faces of each dimension. We say
that a face F ⊆ P is stabilized by ϕ if ϕ(F ) = F as sets.9 The group Sym(P ) also acts on
flags of faces of P with fixed dimensions. A maximal flag is a nested chain of faces, with one
of each dimension:

Φ = {F0 ⊆ F1 ⊆ · · · ⊆ Fn},

where dim(Fd) = d and Fn = P .10 Given any ϕ ∈ Sym(G) we define the flag ϕ(Φ) by

ϕ(Φ) = {ϕ(F0) ⊆ ϕ(F1) ⊆ · · · ⊆ ϕ(Fn)}.

We say that P is regular when the group Sym(P ) acts transitively on the set of maximal
flags, which means that for any two maximal flags Φ,Φ′ there exists at least one group
element ϕ ∈ Sym(P ) such that Φ′ = ϕ(Φ). I claim that this group element is unique.

To prove this we will use the barycentric subdivision of P , defined as follows. To each face
F ⊆ P we associate its barycenter (center of mass) xF ∈ Rn. Then to each flag of faces we
associate the convex hull of its barycenters:

Φ = {Fd1 ⊆ · · · ⊆ Fdk}  ∆Φ := conv{xFi1
, . . . ,xFid

}.

One can show that the barycenters of a flag are affinely independent, so if Φ is a chain with
k+ 1 faces then ∆Φ is a simplex of dimension k. The collection of simplices corresponding to
flags of faces of P is a simplicial complex called the barycentric subdivision:

∆(P ) = {simplices ∆Φ where Φ is a flag of faces of P}.

The figures above display the barycentric subdivisions of the Platonic solids. If a face F ⊆ P
is stabilized by some isometry ϕ then its barycenter must be fixed by ϕ:

ϕ(F ) = F =⇒ ϕ(xF ) = xF .

Indeed suppose that F has m vertices v1, . . . ,vm. It follows from convex geometry that ϕ
permutes these vertices. Furthermore, we will prove in the next section (see the Isometry

8A polytope can defined as an intersection of finitely many closed half spaces, or, equivalently, as the
convex hull of a finite set of points. A face of a polytope the intersection of the polytope with some closed
half space. In this course will will accept basic facts of convex geometry without proof.

9This is different from the idea of being fixed by ϕ which means that ϕ(x) = x for all x ∈ F .
10Some sources also define F−1 = ∅ because the empty set satisfies the definition of a “face”, i.e., the

intersection of P with some half space.
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Theorem) that every isometry is an affine linear map. Since the barycenter is the average of
the vertices and since affine linear maps preserve affine combinations, we have

ϕ(xF ) = ϕ

(
1

m

m∑
i=1

vi

)
=

1

m

m∑
i=1

ϕ(vi) =
1

m

m∑
i=1

vi = xF .

If a maximal flag Φ = {F0 ⊆ · · · ⊆ Fn} is stabilized by some isometry ϕ then it follows that ϕ
fixes the barycenters x0, . . . ,xn. But an affine linear map ϕ : Rn → Rn that fixes n+1 affinely
independent points must be the identity map. Finally, suppose we have ϕ(Φ) = γ(Φ) for some
maximal flag Φ and symmetries ϕ, γ ∈ Sym(P ). By the previous remarks this implies that
ϕ = γ because

ϕ(Φ) = γ(Φ) =⇒ γ−1ϕ(Φ) = Φ =⇒ γ−1ϕ = id =⇒ ϕ = γ.

Thus we have proved the following result.

Theorem 2.2. Let P ⊆ Rn be a regular polytope. By definition this means that Sym(P )
acts transitively on the set of maximal faces of the barycentric subdivision ∆(P ). In fact, this
action is simplify transitive and by choosing a fixed maximal face ∆0 ∈ ∆(P ) we obtain a
bijection between group elements and maximal faces:

{elements of Sym(P )} ←→ {maximal faces of ∆(P )}
ϕ ←→ ϕ(∆0).

In the pictures of Platonic solids above, the maximal faces are the black and white triangles
and the fixed face ∆0 is the red triangle. Every isometry either preserves orientation or
reverses orientation.11 The collection of orientation preserving isometries is a subgroup of
index 2, which denote by Sym+(P ) ⊆ Sym(P ). The elements of Sym+(P ) correspond to the
black triangles. In this chapter we are only interested in the group Sym+(P ). In a future
chapter we will show that the full symmetry group Sym(P ) is a Coxeter group and we will
use the classification of Coxeter groups to derive the classification of regular polytopes. Here
is the classification:

Coxeter group regular polytope

An hypersimplex
Bn/Cn hypercube/hyperoctahedron
F4 24-cell
H3 dodecahedron/icosahedron
H4 120-cell / 600-cell
I2(m) regular m-gon

11The Isometry Theorem in the next section shows that every isometry has the form ϕ(x) = Ax + t for
some real orthogonal matrix ATA = I and vector t. We note that ϕ is orientation preserving or reversing
precisely when det(A) equals +1 or −1, respectively.
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I won’t explain the details now but I note that the subscript indicates the dimension of the
polytope. Thus the Platonic solids correspond to the Coxeter groups of types A3, B3/C3 and
H3. This might seem strange because I already said that they correspond to types E6, E7, E8.
This is because the Platonic solids participate in two different ADE type classifications.12

As an amusing consequence of the previous remarks, let G = Sym+(P ) be the group of
orientation preserving symmetries of a Platonic solid corresponding to parameters p, q, r ≥ 1
with 1

p
+ 1

q
+ 1

r
> 1. Consider the projection of the barycentric subdivision onto a sphere

of radius R. By regularity this divides the surface of the sphere into congruent spherical
triangles with interior angles π/p, π/q, π/r and by Harriot’s Theorem each triangle has area
R2(π/p+π/q+π/r−π). The black triangles correspond to G and there is a bijection between
black and white triangles (the two cosets of G have the same size), hence the total number
of triangles is 2 ·#G. Since the whole sphere has surface area 4πR2 we obtain

2 ·#G ·R2(π/p+ π/q + π/r − π) = 4πR2

#G =
2

1
p

+ 1
q

+ 1
r
− 1

.

2.2 Isometries are generated by reflections

In this section we give a modern analytic treatment of the concept of “symmetry”. By a
“symmetry” of an object X ⊆ Rn we mean an “isometry” of Rn that preserves X setwise.
To be precise, we consider n-dimensional Euclidean space Rn with respect the standard dot
product 〈x,y〉 = xTy. This allows us to define distances by ‖x − y‖2 = 〈x − y,x − y〉. We
say that a map ϕ : Rn → Rn is an isometry when

‖ϕ(x)− ϕ(y)‖ = ‖x− y‖ for all x,y ∈ Rn.

Of course the notion of isometry can also be defined in synthetic geometry, without reference
to coordinates and inner products. The following fundamental theorem is the connection
between synthetic Euclidean geometry and analytic Euclidean geometry.13

Theorem 2.3 (The Isometry Theorem). If ϕ : Rn → Rn is an isometry then there exists a
real orthogonal matrix ATA = I and a vector t ∈ Rn such that ϕ(x) = Ax + t for all x ∈ Rn.

12This might be confusing at the moment but I didn’t want to hide it from you, since this was a natural
moment to mention the classification of regular polytopes.

13This is similar to the Fundamental Theorem of Projective Geometry, which says that the group of bijec-
tive collineations (maps sending lines to lines) of RPn is isomorphic to PGLn+1(R) acting on homogeneous
coordinates. The restriction of this result to affine space Rn ⊆ RPn is says that any bijective collineation
ϕ : Rn → Rn has the form ϕ(x) = Ax + t for some invertible matrix A ∈ GLn(R) and vector t ∈ Rn. Thus
the symmetries of Euclidean geometry form a subgroup of the symmetries of projective geometry. It was Felix
Klein who advocated the study of geometry in terms of groups of symmetries.
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Proof. Let ϕ : Rn → Rn be an isometry and define f(x) := ϕ(x) − ϕ(0) so that f(0) = 0.
We will show that f(x) = Ax for some real orthogonal matrix ATA = I. If we also define
t := ϕ(0) then it will follow that ϕ(x) = f(x) + ϕ(0) = Ax + t.

We note that f is an isometry since for any x,y ∈ Rn we have

‖f(x)− f(y)‖ = ‖ϕ(x)− ϕ(0)− (ϕ(y)− ϕ(0))‖ = ‖ϕ(x)− ϕ(y)‖ = ‖x− y‖.

This implies that ‖f(x)‖ = ‖x‖ for all x ∈ Rn because

‖f(x)‖ = ‖f(x)− 0‖ = ‖f(x)− f(0)‖ = ‖x− 0‖ = ‖x‖.

Now from the polarization identity we observe that f preserves inner products:

〈f(x), f(y)〉 = (‖f(x)‖2 + ‖f(y)‖2 − ‖f(x)− f(y)‖2)/2

= (‖x‖2 + ‖x‖2 − ‖x− y‖2)/2

= 〈x,y〉.

Substituting standard basis vectors for x and y shows that 〈f(ei), f(ej)〉 = 〈ei, ej〉 = δij,
hence the set {f(e1), . . . , f(en)} ⊆ Rn is orthonormal; in particular, it is a basis of Rn.

Next we show that f : Rn → Rn must be a linear map. For any vectors x,y ∈ Rn and
standard basis vector ei ∈ Rn we have

〈f(x + y), f(ei)〉 = 〈x + y, ei〉
= 〈x,y〉+ 〈y, ei〉
= 〈f(x), f(y)〉+ 〈f(y), f(ei)〉
= 〈f(x) + f(y), f(ei)〉,

and hence 〈f(x+y)−f(x)−f(y), f(ei)〉 = 0. Since the vectors {f(e1), . . . , f(en)} are a basis
for Rn, it follows from non-degeneracy of the inner product that f(x+y)−f(x)−f(y) = 0 and
hence f(x+y) = f(x)+f(y) for all x,y ∈ Rn. By induction this implies that f(nx) = nf(x)
for all integers n ∈ Z. Then for all rational numbers m/n ∈ Q we have

nf((m/n)x) = f(n(m/n)x) = f(mx) = mf(x) =⇒ f((m/n)x) = (m/n)f(x).

Since the rational numbers are dense in R and since isometries are continuous (almost by
definition), it follows that f(αx) = αf(x) for all real α. We have shown that f is linear and
hence f(x) = Ax for some real matrix A. Finally, since f preserves inner products we have

xTATAy = 〈Ax, Ay〉 = 〈x,y〉,

which shows that the i, j entry of the matrix ATA is eTi A
TAej = 〈ei, ej〉 = δij.
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Thus we can express any isometry of Rn in terms of orthogonal matrices. Going further, we
will show that any isometry is a composition of orthogonal reflections. Given a unit vector
u ∈ Rn we recall that the orthogonal reflection across the hyperplane u⊥ ⊆ Rn is given by
the reflection matrix14

Fu = I − 2uuT .

(We use the letter F for reFlection or Flip. We save the letter R for Rotations in the next
section.) To verify this, we note that

Fuu = (I − 2uuT )u = u− 2u(uTu) = u− 2u(1) = u− 2u = −u,

and for any vector v perpendicular to u we note that

Fuv = (I − 2uuT )v = v − 2u(uTv) = v − 2u(0) = v.

More generally, for any unit vector u ∈ Rn and real number r ∈ R we let Fu,r denote the
reflection across the affine hyperplane {x ∈ Rn : uTx = r}, so that Fu,0 is a linear function
with matrix Fu. We note that Fu,r is an affine linear function:

Fu,r(x) = Fux + 2ru = (I − 2uuT )x + 2ru = x− 2(uTx− r)u.

Indeed, for any point x satisfying uTx = r we verify that

Fu,r(x) = x− 2(r − r)u = x.

In particular we have Fu,r(ru) = ru. We also note that Fu,r swaps the points 0 and 2ru.
The following result is named after Cartan and Dieudonné who proved a much more general
version over arbitrary fields. The case of Euclidean isometries was likely known earlier.

Theorem 2.4 (The Cartan-Dieudonné Theorem). Every isometry of Rn can be expressed as
a composition of k reflections, where k ≤ n + 1. We can assume that all but one of these
reflections is linear.

Proof. Consider any isometry ϕ : Rn → Rn. If u := ϕ(0)/‖ϕ(0)‖ and r := ‖ϕ(0)‖/2 then we
note that the affine reflection Fu,r swaps the points 0 and ϕ(0). Thus the isometry f := Fu,r◦ϕ
fixes the origin. By the previous theorem this means that f(x) = Ax for some real orthogonal
matrix ATA = I. Since ϕ = Fu,r ◦ f we are reduced to proving that any orthogonal matrix A
can be expressed as a product of at most n reflection matrices.

Let e1, . . . , en be the standard basis of Rn and consider the unit vector u1 := (Ae1−e1)/‖Ae1−
e1‖. We observe that the reflection matrix Fu1 swaps Ae1 and e1 hence the matrix A1 := Fu1A
fixes e1. Since AT1A1 = I this implies that

A1e1 = e1

14In computational linear algebra these are called Householder matrices.
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AT1A1e1 = AT1 e1

e1 = AT1 e1.

Then A1 stabilizes the orthogonal complement e⊥1 because if eT1 x = 0 then we have

eT1 (A1x) = (AT1 e1)Tx = eT1 x = 0.

Next we define u2 := (A1e2 − e2)/‖A1e2 − e2‖ and A2 := Fu2A1, so that A2 fixes e2. We
observe that A2 also fixes e1 because A2e1 = Fu2A1e1 = Fu2e1 and u2 is perpendicular to e1.
Thus by a similar argument to the previous, we see that A2 stabilizes the space spanned by
e3, . . . , en. If we recursively define ui := (Ai−1ei − ei)/‖Ai−1ei − ei‖ and Ai := Fui

Ai−1 then
it follows that An fixes the basis e1, . . . , en and hence An = I. In summary, we have

Fun · · ·Fu1A = I

A = Fu1 · · ·Fun ,

hence A is a product of at most n reflection matrices. (It is possible that some ui is the zero
vector so Fui

is the identity matrix.)

We remark that the same algorithm can be applied to an arbitrary matrix A, resulting in
a factorization A = Fu1 · · ·FunR where R is just upper triangular. Taking Q = Fu1 · · ·Fun

gives the QR-factorization of A. This algorithm was described by Householder in the short
paper Unitary Triangularization of a Nonsymmetric Matrix (1958), which is why reflection
matrices are called “Householder matrices” in numerical linear algebra.

We also remark that the factorization of an orthogonal matrix into reflections is not unique. In
fact, there are infinitely many different factorizations for each matrix. Say that a factorization
of A is minimal when it uses the minimal possible number of reflections. Brady and Watt (A
partial order on the orthogonal group, 2001) proved that this number is the dimension of the
“moved space” im (A− I) and they gave a bijection between minimal factorization of A into
reflections and maximal flags of subspaces of im (A− I).

2.3 Euler’s rotation theorem

Next we apply the results of the previous section to the study of rotations. Consider the
orthogonal group:

O(n) = {real n× n matrices A satisfying ATA = I}.

By the Isometry Theorem this group is isomorphic to the group of isometries of Rn preserving
the origin (or any fixed point). The determinant of an orthogonal matrix is +1 or −1 because

1 = det(I) = det(ATA) = det(AT )det(A) = det(A)det(A) = det(A)2.
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We say that the isometry A is orientation preserving when det(A) = 1 and orientation
reversing when det(A) = −1. The orientation preserving isometries form a subgroup, called
the special orthogonal group:

SO(n) = {A ∈ O(n) : det(A) = 1}.

Since the determinant of a reflection matrix is −1, the Cartan-Dieudonné Theorem gives us
another point of view on these groups:

O(n) = {products of reflection matrices}
SO(n) = {products of even numbers of reflection matrices}.

I claim we can rephrase the second statement as

SO(n) = {products of rotation matrices}.

The concept of a “rotation” is a bit more subtle than the concept of a “reflection”. The data
of a rotation is an angle and an oriented 2-plane.15

Definition 2.5. Given an ordered pair of orthonormal vectors u,v ∈ Rn and an angle θ ∈ R
we define the matrix Ru,v(θ) by{

Ru,v(θ)u = cos θu + sin θv,
Ru,v(θ)v = − sin θu + cos θv,

and Ru,v(θ)w = w for all vectors satisfying uTw = 0 and vTw = 0. If w1, . . . ,wn−2 is
any orthonormal basis for the orthogonal complement of the plane Ru + Rv and U is the
orthogonal matrix with columns u,v,w1, . . . ,wn−2 then we have

Ru,v(θ) = U

 cos θ − sin θ
sin θ cos θ

I

UT .

It follows from this that Ru,v(θ) is an orthogonal matrix with determinant +1 and trace
2 cos θ + n− 2. The following beautiful expression called the Euler-Rodrigues formula:

Ru,v(θ) = I + sin θ(vuT − uvT ) + (cos θ − 1)(uuT + vvT ).

It can be proved by observing that the matrix on the right hand side agrees with Ru,v(θ) on
the basis u,v,w1, . . . ,wn−2. Unfortunately I don’t know an intuitive elementary derivation
of this formula.16 This is why I say that rotations are more subtle than reflections.

15Some authors call this a “simple rotation” and use the word “rotation” for any element of SO(n).
16A higher level derivation views the matrix K := vuT − uvT as an “infinitesimal rotation”. Then it uses

the formula −K2 = uuT + vvT to show that Ru,v(θ) is the matrix exponential exp(θK).
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Here is the key result relating rotations and reflections.

Proposition 2.6. A matrix R is a rotation matrix if and only if it is a product of two
reflection matrices. Furthermore, the angle of the rotation is twice the angle between the
reflecting hyperplanes.

Proof. Recall the definition of the reflection matrix Fu = I−2uuT for a unit vector u. Given
an ordered pair of vectors u,v satisfying uTu = vTv = 1 and uTv = vTu = 0 and an
angle θ we note that cos(θ/2)u + sin(θ/2)v is also unit vector. Then one can show using the
Euler-Rodrigues formula and brute force17 that

Ru,v(θ) = FwFu, where w = cos(θ/2)u + sin(θ/2)v.

Thus any rotation is a product of two reflections. Conversely, given any two unit vectors u,w
with uTw = cos(θ/2), there exists a unique unit vector v satisfying w = cos(θ/2)u+sin(θ/2)v
and uTv = 0, and we conclude that the product FwFu equals the rotation Ru,v(θ).

Since the group O(n) consists of matrices that can be expressed as a product of k reflection
matrices with k ≤ n, and the subgroup SO(n) consists of matrices that can be expressed as
a product of an even number of reflection matrices, we obtain the following corollary.

Corollary 2.7. Every matrix A ∈ SO(n) is product of k rotation matrices, with k ≤ bn/2c.

The n = 3 case is a result of Euler from 1776.

Theorem 2.8 (Euler’s Rotation Theorem). Every orientation preserving isometry of R3 that
fixes the origin is a rotation.

Proof. The Isometry Theorem says that isometries fixing the origin are the same as orthogonal
matrices, hence the group of orientation preserving isometries fixing the origin is SO(3). The
previous result then tells us that every element of SO(3) can be expressed as a product of 0
or 1 rotation matrices.

There are certainly easier ways to prove Euler’s theorem but we took this opportunity to
develop the general version in n-dimensional space because we will use it later. A corollary
of Euler’s theorem is that the product of two rotations in R3 is again a rotation, which is
certainly not visually obvious. I end this section by giving a nice visual explanation that I
learned from John Stillwell’s The Four Pillars of Geometry (2005, Section 7.5).

We will change the notation slightly to fit the three dimensional geometry. Given any vector
u ∈ R3 and angle θ let Rv(θ) denote the rotation of R3 counterclockwise by angle θ ∈ R
around the oriented line Rv. Given any two vectors u,v ∈ R3 let Fuv denote the orthogonal
reflection across the plane Ru+Rv. Now let u,v,w ∈ R3 be any three vectors and let θ/2 be

17Again, I don’t know a really intuitive proof of this formula.
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the dihedral angle between the planes Ru+Rv and Rv+Rw, measured at v. Then it follows
from Proposition 2.6 the composition of Fvw followed by Fvu equals the rotation Rv(θ):

FuvFvw = Rv(θ)

We will use this to compute the product of any two rotations. Consider any vectors u,v and
angles α, β ∈ [0, 2π) so that α/2, β/2 ∈ [0, π). Consider the points where the rays R>0u and
R>0v intersect the unit sphere. (The radius of the sphere is not important.) Then there exists
a unique third point on the sphere defined by some vector w, and a unique angle γ ∈ [0, π)
such that the spherical triangle with these three vertices has internal angles α/2, β/2, γ/2:

Now we consider the reflections Fuv, Fvw, Fwu across the three sides of the triangle. According
to the previous remark, we have

Ru(α) = FwuFuv,

Rv(β) = FuvFvw,

Rw(γ) = FvwFwu.

Since every reflection is equal to its own inverse, this gives

Ru(α)Rv(β) = FwuFuvFuvFvw

= FwuFvw

= (FvwFwu)−1

= Rw(γ)−1
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= Rw(−γ).

Hence the composition of the counterclockwise rotations Ru(α) and Rv(β) is the counter-
clockwise rotation around the vector w by the angle γ.

2.4 Finite groups of rotations

Finally, we show that the finite subgroups of SO(3) — the finite groups of rotations of R3 —
have an ADE type classification. Recall the orbit-stabilizer theorem. If a finite group G acts
on a set X then for each x ∈ X we define the orbit G(x) = {g(x) : g ∈ G} ⊆ X and the
stabilizer Gx = {g ∈ X : g(x) = x} ⊆ G, which is a subgroup of G. If x, y ∈ X are in the
same G-orbit then their stabilizers are conjugate subgroups. Indeed, suppose y = g(x). Then
we have Gy = gGxg

−1 because

h ∈ Gy ⇔ h(y) = y ⇔ h(g(x) = g(x)⇔ g−1hg(x) = x⇔ g−1hg ∈ Gx ⇔ h ∈ gGxg
−1.

In particular, this implies that for any elements x, y ∈ X in the same G-orbit we have
#Gx = #Gy. For each x ∈ X one can check that the map g(x) 7→ gGx is a well-defined
bijection between the orbit G(x) and left cosets of the stabilizer G/Gx:

G(x) ←→ G/Gx

g(x) ←→ gGx.

It follows from Lagrange’s theorem that #G(x) = #G/#Gx.

Now let G ⊆ SO(3) be any non-trivial finite subgroup of SO(3). We consider the action of G
on the points of the unit sphere S2 ⊆ R3. Recall from Euler’s Rotation Theorem that every
non-identity element g ∈ G is a rotation, hence it fixes exactly two points of S2, which we call
the poles of g. Let P ⊆ S2 denote the set of poles of all non-identity elements of G, which is
a finite set. For each pole p we note that the stabilizer Gp is a cyclic group. Suppose that G
divides the set of poles into m orbits and choose one pole p1, . . . ,pm from each orbit, so that

P = G(p1) tG(p2) t · · · tG(pm).

In this case I claim that

2(#G− 1) =
m∑
i=1

#G(pi)(#Gpi
− 1).

To see this we count the following set of pairs in two different ways:

{(g,p) : g ∈ G \{id},p ∈ P, g(p) = p}.

On the one hand, for each of the #G− 1 non-identity elements g ∈ G there are exactly two
poles, hence the number of pairs is 2(#G − 1). On the other hand, for any pole p in the
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orbit G(pi), the set of non-identity group elements satisfying g(p) = p ist just the stabilizer
Gp \{id}. But since p ∈ G(pi) we have #Gp = #Gpi

. Hence the number of pairs is∑
p∈P

(#Gp − 1) =
m∑
i=1

∑
p∈G(pi)

(#Gpi
− 1) =

m∑
i=1

#G(pi)(#Gpi
− 1)

Now we apply the orbit stabilizer theorem, which says that #G(pi) ·#Gpi
= #G, to get

2(#G− 1) =
m∑
i=1

#G(pi)(#Gpi
− 1)

=
m∑
i=1

(#G(pi)#Gpi
−#G(pi))

=
m∑
i=1

(#G−#G/#Gpi
)

= #G
m∑
i=1

(1− 1/#Gpi
)

= #G(m−
m∑
i=1

1/#Gpi
),

and hence

2− 2

#G
=

m∑
i=1

(
1− 1

#Gpi

)
.

The case m = 1 is impossible since then we would have

1 ≤ 2− 2

#G
= 1− 1

#Gp1

< 1.

I claim that m ≥ 4 is also impossible. To see this we note that #Gpi
≥ 2 for all i, since by

definition we assume that each pole is fixed by at least one non-identity element. This implies
that (1− 1/#Gpi

) ≥ 1/2 for all i and hence

2− 2

#G
≥ m

2
.

But if m ≥ 4 then we obtain the contradiction

2 >

(
2− 2

#G

)
≥ m

2
≥ 4

2
≥ 2.

Hence we are left with the cases m = 2 and m = 3. In the case of two orbits we have

2− 2

#G
=

(
1− 1

#Gp1

)
+

(
1− 1

#Gp2

)
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2

#G
=

1

#Gp1

+
1

#Gp2

.

Since #Gp1 ≤ #G and #Gp1 ≤ #G this implies that G = Gp1 = Gp2 . Each of the two orbits
contains exactly one pole: G(p1) = {p1} and G(p2) = {p2}. (See the picture at the end of
this section.) In the case of three orbits we have

2− 2

#G
=

(
1− 1

#Gp1

)
+

(
1− 1

#Gp2

)
+

(
1− 1

#Gp3

)
1 +

2

#G
=

1

#Gp1

+
1

#Gp2

+
1

#Gp3

.

If we write p = #Gp1 , q = #Gp2 and r = #Gp3 then we are back to our favorite inequality:

1

p
+

1

q
+

1

r
= 1 +

2

#G
> 1.

Since p, q, r ≥ 2 the only possibilities are

{p, q, r} = {2, 2, ∗}, {2, 3, 3}, {2, 3, 4} and {2, 3, 5}.

A tedious case by case analysis shows that these groups must be the dihedral groups and
the three polyhedral groups.18 Here we regard the dihedral group as the group of rotational
symmetries of a two-dimensional regular polygon embedded in R3. The usual two-dimensional
reflection symmetries of the polygon are realized by 180◦ rotations in R3.

3 McKay correspondence

So far we have seen two examples of ADE type classification:

• Connected simple graphs with spectral radius less than 2.

• Finite groups of rotations of R3.

In each case we reduced the problem to the classification of integers p, q, r satisfying 1
p
+ 1
q
+ 1
r
>

1. This might seem like a mere coincidence but in the late 1970s John McKay found a deeper
relationship between subgroups of SO(3) and the Dykin diagrams of types ADE. This “McKay
correspondence” is the topic of this chapter. Before we begin I will state the theorem without
yet defining all of the terms:

18Of course we know that the polyhedral groups exist and have the correct orbit structure. The tedious part
is to show that any two groups with the correct orbit structure are isomorphic. This is analogous to a logical
gap in Euclid’s Elements. Euclid proved, for example, that a regular dodecahedron exists, i.e., a polyhedron
having 12 regular pentagonal faces. But he did not prove that any two polyhedra having 12 regular pentagonal
faces must be congruent. This gap was later filled by Cauchy’s rigidity theorem.
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Given a finite “polyhedral group” G ⊆ SO(3) there exists a “binary polyhedral
group” G∗ ∈ SU(2) with a two-to-one homomorphism G∗ → G, such that the
character table of G∗ is equal to the matrix of eigenvectors of the corresponding
affine Dynkin diagram.

3.1 The spin groups

We can view the group SO(n) as a compact and connected submanifold of the n2-dimensional
Euclidean space of real n × n matrices. In class I demonstrated the “belt trick”, which
illustrates that the fundamental group of SO(3) contains an element of order two. In fact,
one can prove that π1(SO(n)) = Z/2Z for all n. It follows that the unique simply connected
covering space (i.e., the universal covering space) has degree 2. Moreover, the group structure
of SO(n) has a unique lift making this covering space into a group and the covering map into
a group homomorphism. We call this the spin group and the spin homomorphism:

σ : Spin(n)→ SO(n).

These groups were first constructed by Cartan in 1913 using the Clifford algebra Cln which is
defined as the (non-commutative) real algebra generated by n+1 abstract symbols 1, e1, . . . , en
satisfying the relations e2

i = −1, 1ei = ei1 and eiej = −ejei.
19 Using these relations one can

show that Cln has dimension 2n as a real vector space, with basis of monomials

ei1ei2 · · · eik for 1 ≤ i1 < · · · < ik ≤ n and 0 ≤ k ≤ n.

(We interpret the empty product as the symbol 1). Let Clkn be the subspace generated by
monomials of degree k, so that dim Clkn =

(
n
k

)
and Cln = ⊕nk=0Clkn. If x ∈ Clkn and y ∈ Cl`n

are homogeneous elements of degrees k and ` then the product xy need not be homogeneous,
but we do have xy ∈ ⊕k+`

i=0 Clin. It is useful to identify the symbol 1 with the real number 1
and the symbols e1, . . . , en with the standard basis of Rn, so that Cl0n = R and Cl1n = Rn.20

The Clifford product of any two vectors u,v ∈ Rn = Cl1n is

uv = −uTv +
∑
i<j

(uivj − ujvi)eiej,

which implies that v2 := vv = −‖v‖2 ∈ Cl0n = R for all v ∈ Rn. In particular, we have
u2 = −1 and hence u−1 = −u for any unit vector u ∈ R3. The most important property of
Clifford algebras is that we can use them to represent reflections and rotations of Rn. Given
any u,x = Cl1nRn one can check that the Clifford product uxu is in Cl1n and is the orthogonal

19We refer to Baker’s Matrix Groups: An Introduction to Lie Group Theory, Chapter 5, for the basic theory
of Clifford algebras and Spin groups.

20More generally we can identify Clkn with the exterior power Λk(Rn) and the monomial ei1ei2 · · · eik with
the wedge product ei1 ∧ ei2 ∧ · · · ∧ eik .
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reflection of x across the hyperplane u⊥. We define the pinor group as the set of Clifford
products of unit vectors:21

Pin(n) = {u1 · · ·uk ∈ Cln : u1, . . . ,uk ∈ Cl1n unit vectors and k ≥ 0}.

(The empty product is 1.) This is indeed a group because −1 = uu is in Pin(n) and for
s = u1 · · ·uk in Pin(n) we have s−1 = (−1)kuk · · ·u1. Note that repeated products of unit
vectors in Cl1n are not contained in Cl1n.

Next we define a group homomorphism fromPin(n) to the orthogonal group O(n) by sending
each unit vector u to the corresponding reflection matrix Fu = I − 2uuT :

σ : Pin(n) → O(n)
u 7→ Fu.

For any x ∈ Cl1n = Rn we note that the matrix product Fux is equal to the Clifford product
uxu. For a general element s = u1 · · ·uk ∈ Pin(n) we define

σ(s) := σ(u1) · · ·σ(uk) = Fu1 · · ·Fuk
∈ O(n).

The function σ is well-defined since it can be computed purely in terms of the element s ∈ Cln,
and not on the specific factorization into unit vectors:

σ(s)x = Fu1 · · ·Fuk
x = u1 · · ·ukxuk · · ·u1 = (−1)ksxs−1 ∈ Cl1n = Rn.

This formula also implies that σ is a group homomorphism; we call it the spin homomorphism.
Furthermore, the Cartan-Dieudonné Theorem implies that σ is surjective. Indeed, Cartan-
Dieudonné says that any orthogonal matrix A ∈ O(n) can be expressed as a product of
reflection matrices, A = Fu1 · · ·Fuk

for some unit vectors u1, . . . ,uk ∈ Rn with k ≤ n, which
implies that A = σ(u1 · · ·uk).

Finally, we define the spin group as the subgroup of Pin(n) consisting of Clifford products of
even numbers of unit vectors:

Spin(n) = {u1 · · ·u2k ∈ Cln : u1, . . . ,u2k ∈ Cl1n unit vectors and k ≥ 0}.

Then the spin homomorphism σ restricts to a surjective homomorphism Spin(n) → SO(n)
onto the special orthogonal group. It is not net clear what this has to do with the topologically
constructed universal covering group from the beginning of this section. This is harder to
prove, but it turns out that the kernel of σ is just {±1} and the topological structure defined
on Spin(n) as a subset of Cln = R2n realizes the spin homomorphism as the universal covering
map for SO(n).

21The term “spin” is not due to Cartan. It was added later after these groups found application in quantum
mechanics. The joke notation “pin” is based on the analogy with the groups O(n) and SO(n).
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3.2 Finite subgroups of SU(2)

THIS SECTION NEEDS TO BE WRITTEN

We note that Cl2 is isomorphic to the quaternions and Spin(3) is isomorphic to SU(2).

Collect the special properties of SU(2) that are necessary for the proof of McKay.

3.3 The character table of a group

Let G be a finite group. A (complex) representation of G is a pair (V, ρ) consisting of a finite
dimensional vector space V over C together a group homomorphism ρ : G→ GL(V ) from G
to the group of invertible linear transformations from V to itself. If V is n-dimensional and if
we choose a basis for V then we can think of each endomorphism ρ(g) as an invertible n× n
matrix. It is often convenient to suppress ρ in the notation and simply write gv instead of
ρ(g)(v). Here we imagine that g ∈ G is a matrix and v ∈ V is a column vector. Because of
the linear properties of matrices we note that

g(au + bv) = agu + bgv for all g ∈ G,u,v ∈ V, a, b ∈ C.

When the specific action of G is understood we just say that V is a G-module.

Given two G-modules U and V and a C-linear map ϕ : U → V we say that ϕ is a G-linear
map (or a homomorphism of G-modules) if we have

ϕg = gϕ for all g ∈ G.

Suppose that dimU = m and dimV = n. If we choose bases for U and V then we can think
of ϕ as an n×m matrix. On the left side of the equation above we think of g as an m×m
matrix acting on U and on the right side of the equation we think of g as an n × n matrix
acting on V . We define the “Hom set” as the collection of all G-linear maps from U to V :

HomG(U, V ) = {G-linear maps ϕ : U → V }.

In fact, the Hom set is a C-vector space. Given G-linear maps ϕ, ψ : U → V and scalars
a, b ∈ C we define the G-linear map aϕ+ bψ by

(aϕ+ bψ)(u) := aϕ(u) + bψ(u) for all u ∈ U.

The most important idea in representation theory is to think of the dimension the Hom space
as a sort of inner product. We will write

〈U, V 〉 := dim HomG(U, V ).

Note that 〈U, V 〉 ≤ dim(U) dim(V ) since HomG(U, V ) is a subspace of the space of C-linear
maps HomC(U, V ) which we can identity with the space of dim(V ) × dim(U) matrices by
choosing bases.
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Given a G-module V and a C-subspace W ⊆ V we say that W is a G-submodule if for all
g ∈ G and w ∈ W we have gw ∈ W . For any G-linear map ϕ : U → V I claim that the kernel
kerϕ ⊆ U and the image imϕ ⊆ V are G-submodules. Indeed, for all u ∈ kerϕ we have
ϕgu = gϕu = g0 = 0, hence gu ∈ kerϕ, and for all ϕu ∈ imϕ we have gϕu = ϕgu ∈ imϕ.
A G-module is called simple (or irreducible) if its only G-submodules are {0} and itself.

Theorem 3.1 (Schur’s Lemma). Let U and V be simple G-modules. Then we have

〈U, V 〉 =

{
1 U ∼= V,

0 U 6∼= V.

Proof. Given a G-linear map ϕ : U → V we consider the submodules kerϕ ⊆ U and imϕ ⊆ V .
Since U is simple we must have imϕ = U , in which case ϕ = 0, or kerϕ = {0}, in which case
ϕ is injective. Since V is simple we must have imϕ = {0}, in which case ϕ = 0, or imϕ = V ,
in which case ϕ is surjective. We conclude that either ϕ = 0 or ϕ is an isomorphism U ∼= V .

It remains to show that dim HomG(U,U) = 1 when U is simple. To see this, consider any
G-linear map ϕ : U → U . Since C is algebraically closed there exists an eigenvalue λ. That
is, there exists a complex number λ ∈ C and a nonzero vector u ∈ U such that ϕu = λu.
This implies that the endomorphism ϕ − λ id : U → U has a nonzero kernel. But since U is
simple this implies that the kernel is all of U , so that ϕu = λu for all u. We conclude that
any G-linear map U → U is a scalar multiple of the identity map.

Theorem 3.2 (Maschke’s Theorem). Every finite dimensional G-module is a direct sum of
simple G-submodules.

Proof. Given any G-module V and a nontrivial G-submodule U ⊆ V we will show that there
exists a G-submodule W ⊆ V such that V = U ⊕W and then it will follow by induction that
V is a direct sum of simple modules. So consider any projection map P : V → U , i.e., any
linear map satisfying Pv ∈ U for all v ∈ V and Pu = u for all u ∈ U . Define the G-averaged
projection

PG =
1

#G

∑
g∈G

gPg−1.

I claim that hPG = PGh for all h ∈ G. Indeed, for any group element h ∈ G the function
g 7→ hg is a permutation of G, hence

hPGh
−1 =

1

#G

∑
g∈G

(hg)P (hg)−1 =
1

#G

∑
g∈G

gPg−1 = PG.

It follows that kerPG is a G-submodule of V .

On the other hand, I claim that V = U ⊕ kerPG. To see this we observe that PG satisfies
PGv ∈ U for all v ∈ V and PGu = u for all u ∈ U . Indeed, for any g ∈ G and v ∈ V we
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have Pg−1v ∈ U and hence gPg−1v ∈ U since U is a G-submodule. It follows from this that
PGv ∈ U . Furthermore, for all g ∈ G and u ∈ U we have g−1u ∈ U because U is a G-module.
Since P fixes U pointwise this implies Pg−1u = g−1u and hence gPg−1u = gg−1u = u. It
follows that

PGu =
1

#G

∑
g∈G

gPg−1u =
1

#G

∑
g∈G

u = u.

These facts together imply that V = U ⊕ kerPG. Indeed, for any v ∈ V we can write
v = PGv + (v − PGv) where PGv ∈ U and (v − PGv) ∈ kerPG because

PG(v − PGv) = PGv − PGPGv = PGv − PGv = 0.

And the intersection is trivial since if u ∈ U and u ∈ kerPG then u = PGu = 0. Thus we
have shown that V = U ⊕W where W := kerPG is a G-submodule of V .

At this point it is useful to adopt a categorical point of view. The collection of finite dimen-
sional C-vector spaces and C-linear maps forms a category with three important operations:

⊕, ⊗, HomC(−,−).

That is, for any two vector spaces U, V we obtain vector spaces U⊕V , U⊗V and HomC(U, V ).
If U and V are G-modules then each of the three vector spaces becomes a G-module in a
natural way. The action of G on HomC(U, V ) is by “conjugation”. That is, if ϕ : U → V is a
C-linear map then for each g ∈ G we define gϕ : U → V by

(gϕ)(u) := gϕg−1u.

If we let G act trivially on C then this makes the dual space U∗ := HomC(U,C) into a
G-module via the contragedient action gϕ(u) = ϕ(g−1u). The subspace HomG(U, V ) ⊆
HomC(U, V ) of G-invariant linear maps can be defined as the fixed points of conjugation:

HomG(U, V ) = HomC(U, V )G = {ϕ ∈ HomC(U, V ) : gϕg−1 = ϕ}.

The three bifunctors ⊕, ⊗, HomC(−,−) (and their G-module versions) satisfy many basic
identities. For example, direct sum and tensor product are commutative up to isomorphism,
tensor product distributes over direct sum up to isomorphism, etc. Here are some useful
properties that we will use without proof:

• HomG(U ⊕ V,W ) ∼= HomG(U,W )⊕ HomG(V,W )

• HomG(U, V ⊕W ) ∼= HomG(U, V )⊕ HomG(U,W )

• HomC(U, V ) ∼= U∗ ⊗ V
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It follows from Schur’s lemma and the first two of these properties that the decomposition
of a G-module into simple modules is unique up to isomorphism and rearrangement of the
summands. Indeed, suppose that we have

U =
⊕
i

S⊕mi
i ,

where the Si are non-isomorphic simple G-modules and S⊕mi
i is the direct sum of Si with

itself mi times. Then since the Hom bifunctor preserves direct sums in the second coordinate,
and since dimension adds over direct sums, we have

〈Si, U〉 = 〈Si,
⊕
j

S
⊕mj

j 〉 =
∑
j

mj〈Si, Sj〉 = mi.

Hence the multiplicity of each simple summand of V is uniquely determined. A similar
computation shows that 〈U, Si〉 = mi for all i. More generally, if U = ⊕S⊕mi

i and V =
⊕S⊕ni

i , where Si and Sj are non-isomorphic simple modules for i 6= j, then we have 〈U, V 〉 =∑
imini = 〈V, U〉.

Now we discuss an amazing simplification. It turns out that we can compute the pairing
〈U, V 〉 purely from the traces of the linear operators g : U → U and g : V → V . This is the
notion of the “character” of a G-module.

Definition 3.3. Given a G-module U we define its character χU : G→ C to be the function
that sends each group element g ∈ G to the trace of g as a linear operator on U :

χU(g) := tr(g|U).

We note that χU(hgh−1) = χU(g) because the trace is invariant under conjugation. We also
have χU(id) = dimU because the identity element of G corresponds to the identity matrix of
size dimU . Next we observe that characters convert the algebraic operations of direct sum,
tensor product and duality into addition, multiplication and complex conjugation:

• χU⊕V (g) = χU(g) + χV (g)

• χU⊗V (g) = χU(g)χV (g)

• χU∗(g) = χU(g−1) = χU(g)∗

The last of these can be proved by observing that each linear operator g : U → U has finite
order gn = id for some n, hence its eigenvalues must be n-th roots of unity. But if λ is a root
of unity then λ−1 = λ∗. The next result is the key property of characters.

Theorem 3.4 (Inner product of characters). For G-modules U and V we have

〈U, V 〉 =
1

#G

∑
g∈G

χU(g)∗χV (g).
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Proof. Recall that we have HomC(U, V ) ∼= U∗ ⊗ V and HomG(U, V ) = HomC(U, V )G, hence

〈U, V 〉 = dim HomG(U, V ) = dim (U∗ ⊗ V )G.

The result will follow if we can prove that dimWG = 1
#G

∑
g∈G χW (g) for any G-module

W . To prove this we consider the expression PW = 1
#G

∑
g∈G g as a linear endomorphism of

W . Using arguments similar to the proof of Maschke’s theorem one can check that PW is a
projection onto the fixed subspace WG ⊆ W . By choosing bases for imPW = WG and kerPW
and using the direct sum W = imPW ⊕kerPW we see that PW has dimWG eigenvalues equal
to 1 and the rest equal to 0. It follows that

dimWG = tr(PW ) =
1

#G

∑
g∈G

tr(g|W ) =
1

#G

∑
g∈G

χW (g).

As a first applications of characters we show that there exist finitely many simple modules.

Theorem 3.5 (The regular representation). The group algebra of G is defined as the formal
C-linear span of the symbols eg, one for each group element g ∈ G:

CG =

{∑
g∈G

ageg : ag ∈ C

}
.

This is a vector space of dimension #G. It is also a (noncommutative) ring via the multipli-
cation egeh := egh. The group G acts on CG via the rule geh := egh, which we call the regular
representation of G. The character of the regular representation is

χreg(g) =

{
#G g = id,

0 g 6= id.

It follows from this that every simple G-module S is a summand of CG, with multiplicity equal
to its dimension.

Proof. Note that each element g ∈ G acts on CG by permuting the basis elements. Thus the
trace of g is just the number of basis elements fixed by g. The identity element fixes every
basis element and a non-identity element fixes no basis elements because geh = eh implies
gh = h and hence g = id. Now let S be any simple G-module with character χS. Then the
multiplicity of S in the direct sum decomposition of CG is

〈CG,S〉 =
1

#G

∑
g∈G

χreg(g)∗χS(g)

=
1

#G
χreg(id)∗χS(id)
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= χS(id)

= dimS.

In particular, this shows that the number of non-isomorphic simple G-modules is less than or
equal to #G. (We will see in a moment that the upper bound is attained exactly when G is
abelian.) Furthermore, applying dimension to the simple decomposition of G shows that the
sum of the squares of the dimensions of all simple G-modules equals #G :

CG =
⊕
S

S⊕ dimS

dimCG =
∑
S

dimS dimS

#G =
∑
S

(dimS)2.

Finally we discuss the character table of G. This is just the matrix that displays all values of
all characters. Since characters are constant on conjugacy classes this will be a matrix with
a row for each simple character and a column for each conjugacy class in G.

Definition 3.6 (The character table). Let χ1, . . . , χm be the simple characters of G and let
C1, . . . , Cn be the conjugacy classes of G. The character table is the m× n matrix whose i, j
entry is χi(Cj), which we define as χi(g) for any group element g ∈ Cj.

Amazingly, it turns out that the character table is square.

Theorem 3.7. The number of simple characters equals the number of conjugacy classes.

Proof. Let C1, . . . , Cn be the conjugacy classes of G. We say that ϕ : G → C is a class
function if ϕ(hgh−1) = ϕ(g) for all g, h ∈ G. The set of class functions forms a vector space
isomorphic to Cn. Furthermore, we have the following standard Hermitian inner product:22

〈ϕ, ψ〉 :=
1

#G

∑
g∈G

ϕ(g)∗ψ(g).

We will be done it we can show that the set of simple characters is a basis for the space of class
functions. From Schur’s lemma we already know that the simple characters are orthonormal
with respect to this Hermitian inner product, hence we only need to show that they span the
space of class functions.

22The scaling factor #G does’t matter.

36



Let χ1, . . . , χm be the simple characters and suppose for contradiction that there exists some
class function not in their span. By projecting this class function onto the orthogonal com-
plement of their span we obtain a nonzero class function ϕ : G→ C satisfying 〈χi, ϕ〉 = 0 for
all i. For any G-module U we consider the linear endomorphism ϕU : U → U defined by

ϕU :=
∑
g∈G

ϕ(g)g−1.

Since ϕ is a class function we note that ϕU is in fact a G-endomorphism. That is, for all
h ∈ G we have

hϕUh
−1 =

∑
g∈G

ϕU(g)hg−1h−1 =
∑
x∈G

ϕU(h−1xh)x−1 =
∑
x∈G

ϕi(x)x−1 = ϕi.

Let Si be the simple G-module with character χi and let ϕi := ϕSi
. Since ϕi is a G-

endomorphism of Si it follows from Schur’s lemma that ϕi acts like a scalar λi ∈ C, hence the
trace of ϕi is λi dimSi. On the other hand, the trace of ϕi is

tr(ϕi) =
∑
g

ϕi(g)tr(g−1|Si
) =

∑
g

ϕi(g)χi(g)∗ = #G · 〈χi, ϕ〉 = 0,

hence λi = 0. We have shown that each ϕi is the zero endomorphism on the simple G-module
Si. If follows from Maschke’s theorem that ϕU is the zero endomorphism on any G-module
U . In particular, this holds for the regular representation U = CG. In this case, the action
of ϕU on the basis element eid ∈ CG gives

0 = ϕUeid =
∑
g∈G

ϕ(g)g−1eid =
∑
g∈G

ϕ(g)eg−1 .

Since the elements eg−1 ∈ CG are linearly independent this implies that each coefficient ϕ(g)
is zero. Contradiction.

Note that this proof does not provide any bijection between the simple characters and the
conjugacy classes. Finally, we observe that the orthogonality of simple characters implies
another orthogonality relation for the rows of the character table.

Theorem 3.8 (Orthogonality relations for characters). Let χ1, . . . , χn be the simple characters
and let C1, . . . , Cn be the conjugacy classes of G. Let χi(Cj) be the value of χi on any element
of Cj. Then we have

n∑
k=1

#Ck · χi(Ck)χj(Ck)∗ =

{
#G i = j,

0 i 6= j,

and
n∑
k=1

χk(Ci)χk(Cj)
∗ =

{
#G/#Ci i = j,

0 i 6= j.
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Proof. From Schur’s lemma we have 〈χi, χj〉 = δij for the simple characters. This implies that

#G · δij =
∑
g∈G

χi(g)∗χj(g) =
n∑
k=1

#Ck · χi(Ck)∗χj(Ck).

Now let M be the n× n matrix whose i, j entry is χi(Cj)/
√

#G/#Cj. The previous formula
implies that M∗M = I. It then follows from the Rank-Nullity theorem that MM∗ = I, hence

n∑
k=1

χk(Ci)√
#G/#Ci

χk(Cj)
∗√

#G/#Cj
= δij

n∑
k=1

χk(Ci)
∗χk(Cj) =

#G
√

#Ci
√

#Cj
δij.

Remark: It is not necessarily easy to compute the character table of a group, but the orthog-
onality relations can help.

Examples:

Abelian groups. (Dirichlet characters.)

Murnaghan–Nakayama rule. Conjugacy classes in Sn are parametrized by integer partitions
λ = (λ1, λ2, . . .) with λ1 ≥ λ2 ≥ · · · ≥ 0 and

∑
i λi = n. Let Cλ the conjugacy class with cycle

type λ. Then we can compute χλ(Cµ) using the Murnaghan–Nakayama rule.

Or we can compute it by expressing the Schur polynomial in terms of power sums sλ =∑
aλµpµ. Then we have χλ(Cµ) = zµaλµ, where zµ is the product Πi≥1i

mimi! where mi is the
number of parts of µ equal to i. Recall that

sλ(x1, . . . , xn) =
det(x

λj+n−j
i )

det(xn−ji )
.

The dimension χλ(id) is z1n = n! times the coefficient of pn1 in sλ.

3.4 The McKay correspondence

Given a finite group G with simple modules S1, . . . , Sn we define a graph on the set {1, . . . , n}
by drawing an edge i→ j weighted by the integer aij if

V ⊗ Si =
⊕
j

S
⊕aij
j .
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We can also express this in terms of characters:

χV χi =
∑
j

aijχj.

Let M = (χi(Cj)) be the character table and let mk = (χi(Ck)) be its kth column. We recall
from the previous section that 〈mk,mk〉 = #G/#Ck and 〈mk,m`〉 = 0 for k 6= `. If A = (aij)
is the weighted adjacency matrix of the McKay graph then evaluating the previous equation
on the kth conjugacy class Ck tells us that

Amk = χV (Ck)mk.

In other words, the McKay graph is constructed precisely so that the columns of the character
table are an orthogonal basis of eigenvectors for the adjacency matrix. This holds without
any hypothesis on the pair (G, V ).23

Furthermore, if we let C1 = {id} be the conjugacy class of the identity then we have χV (C1) =
dimV and χi(C1) = dimSi, so taking k = 1 gives

A

dimS1

...
dimSn

 = dimV

dimS1

...
dimSn

 .

Since all of these dimensions are positive, and since A has non-negative entries, the Perron-
Frobenius theorem implies that the spectral radius of A equals dimV .

Based on the results of Chapter 1 it is reasonable to search for pairs (G, V ) where A is a
symmetric {0, 1} matrix and where dimV = 2, since in this case we can conclude that the
McKay graph of (G, V ) is an affine graph of type ADE. We make the following remarks:

• The McKay graph is undirected if and only if V ∼= V ∗.

• The McKay graph is connected if and only if V is faithful, i.e., g|V = h|V implies g = h.

• The McKay graph is loopless if and only if V has no trivial summand.

THE REST OF THIS SECTION IS JUST A SKETCH

There is an easy way to achieve the first two of these: Let G be a finite subgroup of SU(2)
with defining representation V . This is faithful by definition, and the function ϕ : C2 → (C2)∗

that sends v = (v1, v2) to the linear functional ϕv(w1, w2) = v1w2− v2w1 is a G-isomorphism.
We need to check that ϕ is invertible and that ϕgv(w) = ϕv(g−1w) for all w ∈ C2. Let

ε =

(
0 1
−1 0

)
so that ϕv(w) = vT εw. Thus need to check that (gv)T εw = vT εg−1w. Thus

23As long as we work over the complex numbers. More generally, we can use any field of characteristic not
dividing #G.
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we only need to check that gT ε = εg−1 for all g ∈ SU(2). This comes from the accidental
low-dimensional coincidence that SU(2) ∼= Sp(1). In general, the Frobenius-Schur indicator
ν(χ) = 1

#G

∑
g χ(g2) tells us when χ is real (ν(χ) = 1), symplectic (ν(χ) = −1), i.e., self-dual

with G-invariant alternating form, or none of the above (ν(χ) = 0).

For the third part suppose there exists a unit vector u ∈ V fixed by every g ∈ G. With

respect to a Hermitian basis u,v each element g has the form

(
1 0
0 b

)
. Since g is unitary this

forces b = 1, hence every g is the identity. Contradiction.

It only remains to show that aij ∈ {0, 1} for G ⊆ SU(2) and V the defining representation.
Here is Steinberg’s proof.24 Note that aij = 〈χV χi, χj〉, hence∑

j

a2
ij = 〈χV χi, χV χi〉 =

1

#G

∑
g

|χV (g)χi(g)|2.

Since |χV (g)| ≤ 2 (because the eigenvalues are roots of unity λ, λ−1) with equality if and only
if g = ±I this implies∑

j

a2
ij =

1

#G

∑
g

|χV (g)|2|χi(g)|2 < 4

#G

∑
g

|χi(g)|2 = 4〈χi, χi〉 = 4.

apart from the exceptional case G = {±I}. Since the aij are nonnegative integers the in-
equality

∑
j a

2
ij ≤ 3 implies aij ∈ {0, 1}.

Proof that faithful implies McKay graph connected:25 Let ϕ be a faithful character taking
exactly r values a1, . . . , ar ∈ C. Let Ai = {g ∈ G : ϕ(g) = ai}, and let χ be any simple
character. Then we have 〈ϕk, χ〉 6= 0 for some 0 ≤ k ≤ r−1. Indeed, suppose for contradiction
that 〈ϕk, χ〉 = 0 for all 0 ≤ k ≤ r − 1. Then we have

0 = #G〈ϕk, χ〉 =
∑
g

ϕ(g)kχ(g)∗ =
r−1∑
i=0

aki bi,

where bi =
∑

g∈Ai
χ(g)∗. Since the numbers a1, . . . , ar are distinct, Vandermonde implies

that b1 = · · · = br = 0. Let’s suppose that a1 = ϕ(id) = d. Since ϕ is faithful I claim
that A1 = {id}. Indeed, suppose that ϕ(g) = ϕ(id). If λ1, . . . , λd are the eigenvalues of g
then this implies λ1 + · · · + λd = d. Since the eigenvalues are roots of unity, this implies
λ1 = · · · = λd = 1, which implies that g = id. Thus we have shown that 0 = b1 = χ(id)∗.
Contradiction.

24Finite Subgroups of SU(2), Dynkin Diagrams and Affine Coxeter Elements, Pacific Journal of Mathemat-
ics, Vol. 118, No. 2 (1985), pages 587-624.

25A NOTE ON THEOREMS OF BURNSIDE AND BLICHFELDT, RICHARD BRAUER

40



4 Characters of the symmetric group

The theory of characters of finite groups was developed entirely by Frobenius between the
years 1896 and 1900. At the end of this period he completed the most important example,
which is the computation of the characters of symmetric groups Sn. In this chapter we present
Frobenius’ proof of his theorem, as discussed in Curtis (Pioneers of representation theory, page
73). Since Frobenius’ proof involves key ideas from the theory of symmetric polynomials, we
find it a convenient time to introduce this theory.26

4.1 Elementary symmetric polynomials

The symmetric group Sn acts on the ring of polynomials Q[x1, . . . , xn] by permuting variables:

σ · f(x1, . . . , xn) := f(xσ(1), . . . , xσ(n)).

Let Λn = Q[x1, . . . , xn]Sn denote the set of polynomials fixed by every element of Sn. Since the
action preserves addition, multiplication and scalar multiplication by Q we observe that Λn is
a Q-algebra. Define the elementary symmetric polynomials ek(x1, . . . , xn) via the generating
function E(t) =

∏n
i=1(1 + xit) =

∑n
k=0 ek(x1, . . . , xn)tk. To be explicit, we define

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik .

Theorem 4.1 (Fundamental Theorem of Symmetric Functions). Let t1, . . . , tn be another
set of variables. Then the Q-algebra homomorphism Q[t1, . . . , tn] → Λn defined by tk 7→
ek(x1, . . . , xn) is a bijection. In other words, the polynomials e1, . . . , en are an algebraically
independent generating set for Λn.

Proof. (Surjective) First we show that this homomorphism is surjective. We will use the
lexicographic order on monomials. That is, given k, ` ∈ Nn we define k <lex ` when k 6= `
and if i is minimum such that ki 6= `i then ki < `i. Given f(x1, . . . , xn) ∈ Q[x1, . . . , xn] we
will write deg(f) = k when

f(x) = cxk + lower terms = cxk11 · · ·xknn + lower terms,

with c 6= 0. One can check that lexicographic order is a well-order on Nn and that deg(fg) =
deg(f) + deg(g) for all f(x), g(x) ∈ Q[x]. Now let f(x) ∈ Q[x] be symmetric with deg(f) =
k = (k1, . . . , kn) ∈ Nn and leading term cxk with c 6= 0. The fact that f is symmetric implies
that k1 ≥ · · · ≥ kn. Indeed, suppose for contradiction that ki < ki+1 for some i and let k′ be
obtained from k by switching the entries ki and ki+1. Then one can check that k′ >lex k. On

26Frobenius’ student Schur connected the representations of the finite group Sn to the representations the
infinite group GLn. This theory is also based on symmetric polynomials but in a slightly different way.
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the other hand, since f is symmetric and since k′ is obtained from k by a permutation we see
that the coefficients of xk and xk′ are equal and nonzero which contradicts the fact that k
is the highest power occurring in f . Now define g(x) = ce1(x)k1−k2 · · · en−1(x)kn−1−knen(x)kn

and observe that

deg(g) = (k1 − k2) · deg(e1) + · · ·+ (kn−1 − kn) · deg(en) + kn · deg(en)

= (k1 − k2) · (1, 0, . . . , 0) + · · ·+ (kn−1 − kn) · (1, . . . , 1, 0) + kn · (1, . . . , 1)

= (k1, . . . , kn)

= k.

This implies that the polynomial f(x)−g(x) has degree strictly less than k, hence by induction
there exists a polynomial h(t1, . . . , tn) ∈ Q[t1, . . . , tn] satisfying f(x) − g(x) = h(e1, . . . , en).

Then letting h′(t1, . . . , tn) = h(t1, . . . , tn) + ctk1−k21 · · · tkn−1−kn
n−1 tknn gives f(x) = h′(e1, . . . , en)

as desired.

The proof of injectivity uses a lemma called the Jacobian criterion.27

Lemma 4.2 (Jacobian criterion). Given any polynomials f1, . . . , fn ∈ Q[x1, . . . , xn] we con-
sider the Jacobian matrix Jf,x = (∂fi/∂xj). If det(Jf,x) ∈ Q[x1, . . . , xn] is not the zero poly-
nomial then the ring homomorphism ϕf : Q[t1, . . . , tn]→ Q[x1, . . . , xn] defined by ϕf (tk) = fk
is injective. In other words, the polynomials f1, . . . , fn are algebraically independent over Q.

Proof. Suppose that ϕf is not injective and let F (t1, . . . , tn) ∈ Q[t1, . . . , tn] be a nonconstant
polynomial of minimum total degree such that F (f1, . . . , fn) ≡ 0 in Q[x1, . . . , xn]. Differenti-
ating this identity and using to the multivariable chain rule gives JF,f · Jf,x ≡ 0, where

JF,f =
(
∂F
∂t1

(f1, . . . , fn) · · · ∂F
∂tn

(f1, . . . , fn)
)

is the 1 × n gradient vector of F evaluated at (f1, . . . , fn). We note that this vector is
nonzero. Indeed, since F is nonconstant, at least one partial derivative ∂F/∂ti is not the
zero polynomial. If it happened that (∂F/∂ti)(f1, . . . , fn) ≡ 0 in Q[x1, . . . , xn] then since
the total degree of ∂F/∂ti is less than the degree of F this would contradict the minimality
of the relation F (f1, . . . , fn) ≡ 0. Finally, since Q[x1, . . . , xn] is an integral domain we may
consider the matrix equation JF,f · Jf,x ≡ 0 over the fraction field. Since the matrix Jf,x has
a nontrivial left kernel we conclude that det(Jf,x) ≡ 0.

Proof. (Injective) To complete the proof of the Fundamental Theorem we must show that
the Jacobian matrix of the elementary symmetric polynomials has nonzero determinant. In
the section on power sums below we will show that in fact this determinant is equal to the
Vandermonde determinant:

det(Je,x) = det(∂ei/∂xj) =
∏

1≤i<j≤n

(xi − xj) ∈ Q[x1, . . . , xn],

27See, for example, Loehr, Bijective combinatorics, Theorem 10.83.
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which is nonzero.

As a corollary we get a basis for the ring Λn as a vector space over Q. Given an integer
partition λ = (λ1 ≥ λ2 ≥ · · · 0) we define the symmetric polynomial

eλ(x1, . . . , xn) :=
∏
k≥1

eλk(x1, . . . , xn) ∈ Λn.

The first part of the Fundamental Theorem (surjectivity) implies that the eλ are a spanning
set for Λn. The second part of the Fundamental Theorem (injectivity) implies that the eλ are
linearly independent over Q.

4.2 Complete homogeneous symmetric polynomials

We define the complete homogeneous symmetric polynomials hk(x1, . . . , xn) via the generating
function H(t) =

∏n
i=1(1− xit)−1 =

∑
k≥0 hk(x1, . . . , xn)tk. To be explicit, we have

hk(x1, . . . , xn) =
∑

1≤i1≤···≤ik≤n

xi1 · · ·xik .

Comparing coefficients in the identity E(t)H(−t) = 1 gives

e1 − h1 = 0,

e2 − e1h1 + h2 = 0,

...

ek − ek−1h1 + · · ·+ (−1)k−1e1hk−1 + (−1)khk = 0,

etc. Solving for e1, e2, . . . gives

e1 = h1,

e2 = h2
1 − h2,

e3 = h3
1 − 2h1h2 + h3,

and by induction we conclude that e1, e2, . . . , en ∈ Q[h1, . . . , hn]. Similarly we have h1, . . . , hn ∈
Q[e1, . . . , en] so that the rings Q[e1, . . . , en] and Q[h1, . . . , hn] are equal, and both are equal
the ring of symmetric polynomials Λn. I claim that the polynomials h1, . . . , hn are also alge-
braically independent over Q. To see this we will use an interesting lemma.

Lemma 4.3 (Noetherian implies Hopfian). Let R be a Noetherian ring. Then any surjective
ring homomorphism ϕ : R→ R must be injective.

Proof. We note that kerϕ ⊆ kerϕ2 ⊆ kerϕ3 ⊆ · · · . Since R is Noetherian we have kerϕm =
kerϕm+1 for some m. We wish so show that kerϕ = {0}, so consider any element r ∈ kerϕ.
Since ϕm is surjective (because ϕ is) we have r = ϕm(s) for some s ∈ R, hence ϕm+1(s) =
ϕ(r) = 0. Then since kerϕm+1 ⊆ kerϕm we have ϕm(s) = 0, i.e., r = 0.
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Now consider the evaluation homomorphisms ϕe and ϕh from Q[t1, . . . , tn] to Λn sending
tk 7→ ek(x1, . . . , xn) and tk 7→ hk(x1, . . . , xn), respectively. The Fundamental Theorem in
the previous section says that ϕe is bijective. Thus we can define the ring homomorphism
ϕ := ϕ−1

e ◦ ϕh from Q[t1, . . . , tn] to itself. We saw above that ϕh is surjective, hence ϕ
is surjective. By the Hilbert basis theorem and the previous lemma this implies that ϕ is
injective, and hence ϕh is also injective. Thus we have shown that h1, . . . , hn are algebraically
independent over Q.

But we can give a more elementary proof based on the “reciprocity” between E(t) and H(t).
Since the e1, . . . , en are algebraically independent we can define a ring homomorphism ω :
Λn → Λn by ω(ek) := hk for all k. I claim that ω(hk) = ek and hence ω is an involutive
automorphism. To see this we apply ω to the reciprocity relation E(t)H(−t) = 1 to get

hk − hk−1ω(h1) + · · ·+ (−1)k−1h1ω(hk−1) + (−1)kω(hk) = 0.

Then multiplying both sides by (−1)k gives

ω(hk)− ω(hk−1)hk−1 + · · ·+ (−1)k−1ω(h1)hk−1 + (−1)khk = 0.

Since the polynomials ω(h1), ω(h2), . . . satisfy the same recurrence relation as the polynomials
e1, e2, . . . we conclude by induction that ω(hk) = ek. Thus ω is a Q-algebra automorphism
exchanging the generators e1, e2, . . . , en and h1, . . . , hn. Hence the algebraic independence
of the hk is equivalent to the algebraic independence of the ek. As with the polynomials
eλ(x1, . . . , xn), it follows from this that the polynomials hλ(x1, . . . , xn) =

∏
k≥1 hλk(x1, . . . , xn)

are a vector space basis for Λn as λ ranges over integer partitions.

Remark: We note that

ek(1, 1, . . . , 1) =

(
n

k

)
and hk(1, 1, . . . , 1) =

(
n+ k − 1

k

)
,

hence the involution ω is some kind of algebraic version of the combinatorial “reciprocity”(
−n
k

)
= (−1)k

(
n+ k − 1

k

)
relating the counting of sets and multisets.

4.3 Power sum symmetric polynomials

Another basis of Λn is given by the power sum symmetric polynomials

pk(x1, . . . , xn) = xk1 + xk2 + · · ·+ xkn.

The Newton identities express the pk in terms of the ek. To prove them, we note that

logE(t) = log
n∏
i=1

(1 + xit) =
n∑
i=1

log(1 + xit),
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and hence

E ′(t)/E(t) =
d

dt
logE(t)

=
n∑
i=1

d

dt
log(1 + xit)

=
n∑
i=1

xi
1 + xit

=
n∑
i=1

xi
∑
k≥0

(−xit)k

=
∑
k≥0

(−t)k
n∑
i=1

xk+1
i

= P (−t),

where we define the generating function

P (t) =
∑
k≥0

pk+1(x1, . . . , xn)tk.

Then comparing coefficients in the identity E ′(t) = E(t)P (−t) gives

e1 = p1,

2e2 = e1p1 − p2,

3e3 = e2p1 − e1p2 + p3,

...

kek = ek−1p1 − ek−2p2 + · · ·+ (−1)k−1e1pk+1 + (−1)kpk,

etc. This shows that that Q[p1, . . . , pn] = Q[e1, . . . , en] = Λn.28 We now use the Jacobian
criterion to show that the power sums are algebraically independent. After that we will
complete our proof that the elementary symmetric polynomials are algebraically independent.

Note that the Jacobian matrix of the power sums p1, . . . , pn with respect to the variables
x1, . . . , xn is the Vandermonde matrix with scaled rows:

Jp,x = (∂pi/∂xj) =


1 1 · · · 1

2x1 2x2 · · · 2xn
3x2

1 3x2
2 · · · 3x2

n
...

...
...

nxn−1
1 nxn−1

2 · · · nxn−1
n .


28However, we remark that Z[p1, . . . , pn] is a strict subring of Z[e1, . . . , en].
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Hence the determinant is the Vandermonde determinant scaled by 1 · 2 · · ·n = n!:

det(Jp,x) = ±n!
∏

1≤i<j≤n

(xi − xj).

Since this is not the zero polynomial we conclude from the Jacobian criterion that p1, . . . , pn
are algebraically independent over Q. In other words, the polynomials

pλ(x1, . . . , xn) :=
∏
k≥1

pλk(x1, . . . , xn)

are Q-linearly independent as λ ranges over all integer partitions. This gives another vector
space basis for Λn.

Next we compute the Jacobian determinant of p1, . . . , pn with respect to e1, . . . , en. By the
Newton identities above we have

pk = (−1)k−1kek + some polynomial in e1, . . . , ek−1.

It follows that the matrix Jp,e = (∂pi/∂ej) is upper triangular with diagonal entries ∂pk/∂ek =
(−1)k−1k, hence det(Jp,e) = ±n!. It follows from the chain rule that

Jp,e · Je,x = Jp,x

det(Jp,e)det(Je,x) = det(Jp,x)

±n!det(Je,x) = n!
∏

1≤i<j≤n

(xi − xj)

det(Je,x) = ±
∏

1≤i<j≤n

(xi − xj).

Since this is not the zero polynomial, we conclude from the Jacobian criterion that e1, . . . , en
are algebraically independent. This completes our proof of the Fundamental Theorem.

The power sums have a similar relationship to the complete homogeneous symmetric poly-
nomials hk(x1, . . . , xn). Differentiating the identity H(t)E(−t) = 1 gives H ′(t)E(−t) −
H(t)E ′(−t) = 0 and hence H ′(t)/H(t) = E ′(−t)/E(−t) = P (t). Then comparing coeffi-
cients in the identity H ′(t) = H(t)P (t) gives

h1 = p1,

2h2 = h1p1 + p2,

3h3 = h2p1 + h1p2 + p3,

...

khk = hk−1p1 + hk−2p2 + · · ·+ h1pk+1 + pk,

etc. This is another form of the “Newton identities”. Applying the involution ω(ek) = hk and
comparing both forms of the Newton identities shows that ω(pk) = (−1)k−1pk for all k ≥ 1.
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4.4 Alternating polynomials and Schur polynomials

We say that a polynomial f(x1, . . . , xn) ∈ Q[x1, . . . , xn] is alternating if it becomes negative
after switching any two inputs; equivalently, if σ · f = sgn(σ)f for all σ ∈ Sn. We note that
this condition is preserved by addition, multiplication and scalar multiplication, hence the
alternating polynomials form a Q-subalgebra of the symmetric polynomials Λn. We will see
below that the relationship between alternating and symmetric polynomials is quite simple.

Determinants are a natural way to produce alternating polynomials. For example, we have
the Vandermonde determinant:

∆(x1, . . . , xn) := det


xn−1

1 · · · x1 1
xn−1

2 · · · x2 1
...

...
...

xn−1
n · · · xn 1

 ∈ Q[x1, . . . , xn].

Note that ∆ is alternating because the determinant of a matrix is an alternating function of
its rows. I claim that

∆(x1, . . . , xn) =
∏

1≤i<j≤n

(xi − xj).

To prove this we just need to show that ∆ is divisible by xi − xj for each pair 1 ≤ i < j ≤ n.
Then the result will follow from three facts:

• Q[x1, . . . , xn] is a unique factorization domain (Gauss’ Lemma).

• ∆(x1, . . . , xn) and
∏

1≤i<j≤n(xi − xj) are both homogeneous of degree
(
n
2

)
.

• The monomial xn−1
1 xn−2

2 · · ·x1
n−1 has coefficient +1 in both polynomials.

So fix 1 ≤ i ≤ n and consider ∆ as an element of the ring R[xi] where R is the ring of
polynomials in the variables {x1, . . . , xn} \ {xi} over Q. We can also view ∆ as an element
of K[xi] where K is the fraction field of the domain R. For any j 6= i we may consider the
evaluation map K[xi]→ K defined by sending xi 7→ xj. Since ∆ is alternating this map sends
∆ to zero. Since K is a field this implies that the kernel is the principal ideal generated by
the polynomial xi − xj ∈ K[xi]. We have shown that ∆ = (xi − xj)g(x1, . . . , xn) for some
rational function g(x1, . . . , xn) = p(x1, . . . , xn)/q(x1, . . . , xn) with p, q coprime elements of
Q[x1, . . . , xn]. Since ∆ is a polynomial this implies that q divides (xi − xj)p in Q[x1, . . . , xn].
Finally, since q is coprime to both xi − xj and p this forces q to be constant. Thus we have
shown that xi − xj divides ∆ in Q[x1, . . . , xn].

The following more general result has essentially the same proof.

Theorem 4.4 (Alternating polynomials). Every alternating polynomial has a unique expres-
sion of the form

f(x1, . . . , xn) = ∆(x1, . . . , xn)g(x1, . . . , xn),
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where g(x1, . . . , xn) is a symmetric polynomial and ∆(x1, . . . , xn) =
∏

1≤i<j≤n(xi − xj) is the
Vandermonde determinant.

Proof. If f(x1, . . . , xn) is alternating then the same argument as above shows that xi − xj
divides f in Q[x1, . . . , xn] for all 1 ≤ i < j ≤ n. By unique factorization this implies that
f = ∆g for some polynomial g. But this g is symmetric because

σ · f = σ · (∆g)

σ · f = (σ ·∆)(σ · g)

sgn(σ)f = sgn(σ)∆(σ · g)

f = ∆(σ · g)

∆g = ∆(σ · g)

g = σ · g.

This leads to a natural basis for the Q-algebra of alternating polynomials, which then lifts to
a basis of Λn called the “Schur polynomials”. Let f(x1, . . . , xn) be alternating and write

f(x1, . . . , xn) =
∑
α∈Nn

cαx
α,

with cα ∈ Q and xα := xα1
1 · · ·xαn

n . Since f is alternating then we have cσ·α = sgn(σ)cα for
all σ ∈ Sn and α ∈ Nn. If α = (α1, . . . , αn) with αi = αj for some i 6= j then I claim that
cα = 0. Indeed, let σ be the tranposition (ij). Then we have σ · α = α and sgn(σ) = −1,
hence cα = −cα. Thus every monomial in f must have distinct exponents. Consider the set
of strictly decreasing sequences of non-negative integers:

Nn
> := {(α1, . . . , αn) ∈ Nn : α1 > · · · > αn}.

Then we can write

f(x1, . . . , xn) =
∑
α∈Nn

>

cα
∑
σ∈Sn

sgn(σ)xα1

σ(1) · · ·x
αn

σ(n) =
∑
α∈Nn

>

cα∆α(x1, . . . , xn),

so that the generalized Vandermonde determinants

∆α(x1, . . . , xn) :=
∑
σ∈Sn

sgn(σ)xα1

σ(1) · · ·x
αn

σ(n) = det

x
α1
1 · · · xαn

1
...

...
xα1
n · · · xαn

n


are a vector space basis for the Q-algebra of alternating polynomials, as α ranges over Nn

>.29

29To prove linear independence we observe that xα1
1 · · ·xαn

n is the lexicographic leading term of ∆α. If
α ∈ Nn> is the lex-largest exponent appearing in a relation f =

∑
c∈Nn

>
cβ∆β = 0 then we have f = cαx

α+

lower terms = 0, which implies that cα = 0. Now use induction.
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From this we obtain a new basis of symmetric polynomials. Note that we have a bijection
Nn
> → Nn

≥ from strictly decreasing sequences to weakly decreasing sequences defined by

(α1, . . . , αn) 7→ (α1 − (n− 1), α2 − (n− 2), . . . , αn−1 − 1, αn),

α 7→ α− δ,

where
δ = (n− 1, . . . , 2, 1, 0).

We can think of Nn
≥ as the set of integer partitions with at most n parts. Note that ∆δ = ∆

is the classical Vandermonde determinant. For any α ∈ Nn
> the theorem on alternating

polynomials above tells us that ∆α = ∆ sα(x1, . . . , xn) for some symmetric polynomial sα,
which we call a Schur polynomial. It is more traditional to index this polynomial by the
integer partition λ = α− δ ∈ Nn

≥. Thus we define

sλ(x1, . . . , xn) = ∆δ+λ(x1, . . . , xn)/∆δ(x1, . . . , xn).

It follows from the fact that the generalized Vandermonde determinants ∆α (α ∈ Nn
>) are a

Q-basis for alternating polynomials that the Schur polynomials sλ (λ ∈ Nn
≥) are a Q-basis for

symmetric polynomials.

Note that the Schur polynomials sλ are defined in a quite different manner from the symmetric
polynomials eλ, hλ, pλ in that there is no analogue of the polynomials ek, hk, pk. The key
property of the Schur polynomials that we need in this chapter is a “Vandermonde type”
identity in two sets of variables, which is attributed to Cauchy.30

Theorem 4.5 (Cauchy identity). Let Nn
≥ be the set of weakly decreasing sequences of n non-

negative integers, i.e., the set of integer partitions with at most n parts, and consider two
independent sets of variables x1, . . . , xn and y1, . . . , yn. Then we have

n∏
i=1

n∏
j=1

1

1− xiyj
=
∑
λ∈Nn

≥

sλ(x1, . . . , xn)sλ(y1, . . . , yn).

Proof. Consider the expression

F (x1, . . . , xn, y1, . . . , yn) := det

(
1

1− xiyj

) n∏
i=1

n∏
j=1

(1− xiyj)

Note that each of the n! terms of the n × n determinant has denominator that divides the
product

∏n
i=1

∏n
j=1(1 − xiyj), hence F is a polynomial in Q[x1, . . . , xn, y1, . . . , yn]. Further-

more, we see that F is an alternating polynomial x1, . . . , xn since it switches two rows of the
determinant and leaves the product invariant. Similarly, F is alternating in y1, . . . , yn. It

30See historical notes in Stanley’s EC2.
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follows from a slight modification of the theorem on alternating polynomials that F (x,y) =
∆(x)∆(y)C(x,y), where ∆(x) =

∏
1≤i<j≤n(xi−xj), ∆(y) =

∏
1≤i<j≤n(yi−yj) and C(x,y) ∈

Q[x,y]. By comparing degrees one can check that C(x,y) is constant and a more intricate
analysis shows that in fact C(x,y) = 1. At this point we have

n∏
i=1

n∏
j=1

1

1− xiyj
=

1

∆(x)∆(y)
det

(
1

1− xiyj

)
.

The result will now follow if we can show that

det

(
1

1− xiyj

)
=
∑
α∈Nn

>

∆α(x)∆α(y).

To prove this we expand each entry of the matrix using the geometric series

1

1− xixj
=
∑
m≥0

(xiyj)
m.

Then the jth column of the matrix is the infinite linear combination

∑
m≥0

ymj

x
m
1
...
xmn

 .

Since the determinant is multilinear in its columns, we have31

det

(
1

1− xiyj

)
=

∑
m1,...,mn≥0

ym1
1 · · · ymn

n det

x
m1
1 · · · xmn

1
...

...
xm1
n · · · xmn

n

 .

Note that the x-determinant vanishes unless the mi are distinct. By summing over distinct
m1, . . . ,mn and permuting them into decreasing order we obtain

det

(
1

1− xiyj

)
=
∑
σ∈Sn

∑
α∈Nn

>

yσ·α∆σ·α(x)

=
∑
σ∈Sn

∑
α∈Nn

>

yσ·αsgn(σ)∆α(x)

=
∑
α∈Nn

>

∆α(x)

(∑
σ∈Sn

sgn(σ)yσ·α

)
=
∑
α∈Nn

>

∆α(x)∆α(y).

31Here I ignore any subtleties involved with formal power series-valued determinants.
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4.5 The Frobenius character formula

In this section we present Frobenius’ theorem on the characters of the symmetric group to-
gether with Frobenius’ original proof.32 Recall that the conjugacy classes of Sn are parametrized
by “cycle types”. Indeed, each permutation is a product of commuting cycles, and for any
permutation σ and cycle (i1, . . . , ik) we have

σ ◦ (i1, . . . , ik) ◦ σ−1 = (σ(i1), . . . , σ(ik)).

We record the cycle type of a permutation π ∈ Sn as an integer partition λ = (λ1 ≥ λ2 ≥
· · · ≥ 0) = (1m12m2 · · · ), where mi is the number of cycles of length i and where λi is the
length of the ith longest cycle that occurs. We write λ ` n to denote the fact that

∑
i λi = n.

One can check that the number of permutations that commute with π is equal to

zλ := 1m1m1!2m2m2! · · · ,

hence the number of permutations of cycle type λ ` n is n!/zλ. Recall from the last chapter
that the number of simple characters of a finite group equals the number of conjugacy classes.
The conjugacy classes of Sn are in bijection with partitions of n (cycle types):

Par(n) = {λ ` n}.

This suggests that one might be able to use the symmetric polynomials eλ, hλ, pλ, sλ for λ ` n
to construct the characters of Sn. The following theorem does exactly this.

Theorem 4.6 (Frobenius character theorem, 1900). Given an integer partition µ ` n we can
expand the power sum symmetric polynomial pµ(x1, . . . , xn) in the Schur basis:33

pµ(x1, . . . , xn) =
∑
λ`n

χλ(µ) sλ(x1, . . . , xn).

For each λ ` n we define the function χλ : Sn → Q by χλ(g) := χλ(µ) when g has cycle type
µ ` n. Then the functions χλ for λ ` n are the simple characters of Sn.34

Here is a sketch of the proof we will give:

(1) Show that the functions χλ are an orthonormal basis for the space of class functions on
Sn, with respect to the usual inner product of class functions.

(2) Show that each χλ is a Z-linear combination of simple characters.

32See Curtis, Pioneers of representation theory, page 73.
33We remark that each of the polynomials eλ, hλ, pλ, sλ is homogeneous of total degree |λ| =

∑
i λi. Thus

the sλ expansion of pµ involves only partitions with |λ| = |µ|.
34In fact, the Schur polynomials are a Z-basis of Λn so the characters of Sn are integer valued, and one

might hope for a combinatorial interpretation of these numbers. The Murnaghan-Nakayama rule gives such
an interpretation, but we don’t discuss it here.
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It follows that the change of basis matrix between the functions χλ and the simple characters
of Sn is an orthogonal matrix with integer entries, hence it is a signed permutation matrix,
which implies that each χλ equals ±1 times a simple character. Finally, one can check that
χλ(id) = χλ(1, 1, . . . , 1) is positive, hence χλ equals +1 times a simple character.

Proof. The key to the proof of part (1) is the “Cauchy kernel”

Ω(x,y) :=
n∏
i=1

n∏
j=1

1

1− xiyj
.

We saw in the previous chapter that Ω(x,y) =
∑

λ sλ(x)sλ(y). On the other hand, taking
the logarithm of Ω gives

log Ω(x,y) =
n∑
i=1

n∑
j=1

∑
k≥1

(xiyj)
k

k

=
∑
k≥1

pk(x1, . . . , xn)pk(y1, . . . , yn)

k
.

Then taking the exponential gives

Ω(x,y) = exp

(∑
k≥1

pk(x1, . . . , xn)pk(y1, . . . , yn)

h

)

=
∑
m≥0

1

m!

(∑
k≥1

pk(x1, . . . , xn)pk(y1, . . . , yn)

k

)m

=
∑
m≥0

1

m!

∑
∑
mi=m

(
m

m1,m2, . . .

)(
p1(x)p1(y)

1

)m1
(
p2(x)p2(x)

2

)m2

· · ·

=
∑
m≥0

∑
∑
mi=m

(p1(x)p1(y))m1(p2(x)p2(x))m2 · · ·
1m1m1!2m2m2! · · ·

=
∑
µ

1

zµ
pµ(x)pµ(y),

where λ = (1m12m2 · · · ) runs over all integer partitions. Hence we have∑
µ

1

zµ
pµ(x)pµ(y) =

∑
λ

sλ(x)sλ(y).

Each side is an infinite sum. By looking at the homogeneous parts of bi-degree (n, n) we
obtain a finite sum over partitions of n:∑

µ`n

1

zµ
pµ(x)pµ(y) =

∑
λ`n

sλ(x)sλ(y).
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Substituting pµ(x) =
∑

λ1`n χ
λ1(µ)sλ1(x) and pµ(y) =

∑
λ2`n χ

λ2(µ)sλ1(y) gives

∑
λ1,λ2`n

(∑
µ`n

1

zµ
χλ1(µ)χλ2(µ)

)
sλ1(x)sλ2(y) =

∑
λ

sλ(x)sλ(y).

Since the sets {sλ(x) : λ ` n} and {sλ(y) : λ ` n} are linearly independent over Q, one can
check that the set {sλ1(x)sλ2(y) : λ1, λ2 ` n} is linearly independent over Q, hence we have

∑
µ`n

1

zµ
χλ1(µ)χλ2(µ) =

{
1 λ1 = λ2,

0 λ1 6= λ2.

Finally, recall the inner product of class functions. Given two functions ϕ, ψ : G → C on a
finite group G we defined the Hermitian inner product

〈ϕ, ψ〉 =
1

#G

∑
g∈G

ϕ(g)ψ(g)∗,

and we showed that the simple characters of G are orthonormal with respect to this inner
product. Since the number of permutations of cycle type µ is n!/zµ, we also have

〈χλ1 , χλ2〉 =
1

#Sn

∑
g∈Sn

χλ1(g)χλ2(g)

=
1

n!

∑
µ`n

n!

zµ
χλ1(µ)χλ2(µ)

=
∑
µ`n

1

zµ
χλ1(µ)χλ2(µ).

Thus we have shown that the functions χλ for λ ` n are an orthonormal basis for the space
of class functions.

To prove part (2) we need to show that each function χλ is a Z-linear combination of simple
characters of Sn. Since any character is a Z-linear combination of simple characters we only
need to show that χλ is a Z-linear combination of characters. In fact, we will show that

χλ(µ) =
∑
τ∈Sn

sgn(τ)ψλτ (µ),

where the functions ψλτ : Sn → Z are certain characters to be defined shortly (some of which
may be the zero function).

Given any non-negative integer vector α = (α1, . . . , αn) ∈ Nn we let Xα denote the set of
ordered partial set partitions of {1, . . . , n} of type α; that is the set of n-tuples (B1, . . . , Bn),
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where some Bi may be empty, where {1, . . . , n} is the disjoint union of the non-empty parts,
and where #Bi = αi for all i. The group Sn acts on Xα by permuting entries:35

σ · (B1, . . . , Bn) := (σ(B1), . . . , σ(Bn)).

Then we define φα(σ) as the number of fixed points:36

φα(σ) := #{B ∈ Xα : σ ·B = B}.

This is a character of Sn. Indeed, for any action of Sn on any finite set X we define a
representation of Sn on the vector space C[X] of formal C-linear combinations of elements of
X. This turns elements σ ∈ Sn into permutation matrices of size #X ×#X and the trace of
the matrix of σ is just the number of basis vectors (i.e., elements of X) fixed by σ.

If µ ` n is the cycle type of a permutation σ ∈ Sn then I claim that φα(σ) equals the coefficient
of xα in the power sum symmetric polynomial pµ(x1, . . . , xn):

[xα]pµ(x1, . . . , xn) = φα(σ).

To see this, we first observe that a partition (B1, . . . , Bn) is fixed by σ ∈ Sn if and only if
each Bi is a union of cycles of σ. Thus for a given σ we see that φα(σ) is the number of ways
to distribute the cycles of σ into n ordered boxes so that the total length of the cycles in the
ith box equals αi. Suppose σ has mi cycles of length i, so the cycle type is µ = (1m12m2 · · · )
with m1 + 2m2 + · · · = n. Then we have

pµ(x1, . . . , xn) =
∏
k≥1

(xk1 + · · ·+ xkn)mk .

For any exponent vector α ∈ Nn we note that the coefficient of xα = xα1
1 · · ·xαn

n in the
expansion of pµ solves exactly the same counting problem. That is, we can associate each
factor of pk = xk1 +· · ·+xkn in the product pµ with a specific k-cycle of σ. To obtain a monomial
in the expansion of pµ we choose a summand from factor pk. Choosing the summand xki from
a given factor pk corresponds to putting the associated k-cycle into the ith box.

Finally, we relate these numbers to the functions χλ. Recall from the definitions that

pµ(x1, . . . , xn) =
∑
λ`n

χλ(µ)sλ(x1, . . . , xn),

where x = (x1, . . . , xn). And recall that we defined the Schur polynomials as as ratios of
Vandermonde determinants:

sλ(x1, . . . , xn) = ∆λ+δ(x1, . . . , xn)/∆δ(x1, . . . , xn),

35Here Sn acts on subsets of {1, . . . , n} in the obvious way.
36Frobenius also viewed φα as the character of Sn “induced” from the trivial character on the subgroup

SB1 × · · · × SBn . In these notes we will have no need for induced characters.
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where ∆α(x1, . . . , xn) = det(x
αj

i ) =
∑

τ∈Sn
sgn(τ)xτ ·α and δ = (n − 1, . . . , 1, 0). Multiplying

both sides by the standard Vandermonde determinant ∆ = ∆δ gives

∆(x)pµ(x) =
∑
λ`n

χλ(µ)∆λ+δ(x) =
∑
λ`n

χλ(µ)
∑
τ∈Sn

sgn(τ)xτ ·(λ+δ).

From this we note that χλ(µ) is the coefficient of xλ+δ in ∆(x)pµ(x). On the other hand, we
showed above that φα(µ) is the coefficient of xα in pµ(x). Hence we have

χλ(µ) = [xλ+δ]∆(x)pµ(x)

= [xλ+δ]
∑
τ∈Sn

sgn(τ)xτ ·δpµ(x)

=
∑
τ∈Sn

sgn(τ)[xλ+δ]xτ ·δpµ(x)

=
∑
τ∈Sn

sgn(τ)[x(λ+δ)−τ ·δ]pµ(x)

=
∑
τ∈Sn

sgn(τ)φ(λ+δ)−τ ·δ(µ).

where we define φ(λ+δ)−τ ·δ(µ) = 0 if the vector (λ+δ)−τ ·δ has any negative entries. Finally, we
define for each partition λ ` n and and permutation τ ∈ Sn the function ψλτ (µ) := φ(λ+δ)−τ ·δ(µ)
which is either a character or zero.

4.6 The Frobenius characteristic map

The ideas in the proof of his character theorem led Frobenius to consider a certain linear
map from the set of class functions CF (Sn) = {f : Sn → Q} to symmetric polynomials

Λn = Q[x1, . . . , xn]Sn . More specifically, let Λ
(k)
n denote the subspace of Λn consisting of

symmetric polynomials of total degree k. Then we define the Frobenius characteristic37

ch : CF (Sn)→ Λ(n)
n

by sending each class function ϕ to the symmetric polynomial

ch(ϕ) =
∑
λ`n

ϕ(λ)

zλ
pλ(x1, . . . , xn),

where we let ϕ(λ) denote the value of ϕ on any permutation of cycle type λ. This map is an
isomorphism of Q-linear spaces because the polynomials pλ(x1, . . . , xn) with λ ` n are a basis

37We should mention that the number of variables in the symmetric polynomials is not important in this
context. Only the degree of the polynomials matters. It is common to let the number of variables go to
infinity.
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for Λ
(n)
n . Note that we have ch(ιλ) = pλ/zλ where ιλ : Sn → Q is the indicator function that

equals 1 on permutations of type λ and 0 otherwise.

The definition of the Frobenius characteristic map seems arbitrary at first but we will try to
demonstrate in this section why it is natural. First, we note that the simple characters get
sent to Schur polynomials:

ch(χλ) = sλ(x1, . . . , xn).

The quickest way to see this is to use the orthogonality relations. From the definition of χλ

we have pµ =
∑

λ`n χ
λ(µ) sλ. We can rewrite this as the matrix equation (pµ) = C · (sλ)

where C is the character table of Sn, i.e., the square matrix with µ, λ entry χλ(µ). The
orthogonality relations in the above proof say that CCT is the diagonal matrix with diagonal
entries zµ. It follows that C−1 is the matrix with µ, λ entry χµ(λ)/zλ. Then the matrix
equation (sµ) = C−1 · (pλ) says that

sµ(x1, . . . , xn) =
∑
λ`n

χµ(λ)

zλ
pλ(x1, . . . , xn) = ch(χµ),

as desired. Recall that the space of class functions CF (Sn) contains the characters as a
discrete cone, i.e., the set of N-linear combinations of the simple characters. The image of
this cone is the set of N-linear combinations of Schur polynomials. This is the reason for
the concept of “Schur positivity” in symmetric function theory — the symmetric polynomials
with non-negative integer Schur coefficients are exactly those that correspond to characters.

Next we consider the permutation characters φα from the proof of the character theorem. I
claim that these correspond to the complete homogeneous symmetric polynomials:

ch(φα) = hα(x1, . . . , xn) :=
∏
i

hαi
(x1, . . . , xn).

To prove this, recall that we defined φα(λ) as the coefficient of yα in pλ(y1, . . . , yn). It follows
that ch(φα)(x) is the coefficient of yα in the Cauchy kernel:

[yα]Ω(x,y) = [yα]
∑
µ

1

zλ
pλ(x)pλ(y)

=
∑
µ

[yα]pλ(y)

zλ
pλ(x)

=
∑
µ

φα(λ)

zλ
pλ(x)

= ch(φα)(x).

On the other hand, we can expand the Cauchy kernel in terms of hα. Recall that

H(t) =
n∏
i=1

1

1− xit
=
∑
k≥0

hk(x1, . . . , xn)tk.
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Thus we have

Ω(x,y) =
n∏
i=1

n∏
j=1

1

1− xiyj

=
n∏
j=1

∑
k≥0

hk(x1, . . . , xn)ykj

=
∑
α∈Nn

>

hα(x1, . . . , xn)yα,

and hence [yα]Ω(x,y) = hα(x1, . . . , xn). As an interesting consequence, if we apply the
Frobenius characteristic to both sider of the Frobenius character formula

χλ =
∑
τ∈Sn

sgn(τ)φ(λ+δ)−τ ·δ

then we obtain the expansion of the Schur polynomials in terms of the h-basis:

sλ =
∑
τ∈Sn

sgn(τ)h(λ+δ)−τ ·δ = det(hλi+j−i),

where we adopt the convention that hk(x1, . . . , xn) = 0 when k < 0. This is called the
Jacobi-Trudi identity.

Next we consider the elementary polynomials eλ. Recall that we have a Q-algebra involution
ω : Λn → Λn defined by ω(hk) = ek, which implies that ω(hλ) = eλ. We would like to
understand the involution ch−1 ◦ ω ◦ ch on class functions. I claim that

ch−1(ω(ch(ϕ)))(σ) = ϕ(σ)sgn(σ) for all σ ∈ Sn and ϕ ∈ CF (Sn).

More compactly: ω(ch(ϕ)) = ch(ϕ · sgn). In other words, the involution ω on symmetric
polynomials corresponds to “tensoring with the sign representation”. To prove this, we recall
the identity ω(pk) = (−1)k−1pk from the section on power sums. We also note that the sign of
a k-cycle in Sn is (−1)k−1. If sgn(λ) denotes the sign of a permutation with cycle type λ ` n
then this implies that ω(pλ) = sgn(λ)pλ, hence for any class function ϕ we have

ch(ϕ · sgn) =
∑
λ`n

ϕ(λ)sgn(λ)

zλ
pλ

=
∑
λ`n

ϕ(λ)

zλ
ω(pλ)

= ω

(∑
λ`n

ϕ(λ)

zλ
pλ

)
= ω(ch(ϕ)).
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Since ω(hλ) = eλ, this result tells us that ch−1(eλ) is the character φλ · sgn.

Finally, we define the Hall inner product on symmetric polynomials via the standard inner
product on class functions. That is, for any symmetric polynomials f, g we define

〈f, g〉 := 〈ch−1(f), ch−1(g)〉 =
∑
λ`n

1

zλ
ch−1(f)(λ)ch−1(g)(λ).

Since the Schur polynomials correspond to the simple characters of Sn, this is also the unique
inner product on Λn making the Schur polynomials into an orthonormal basis:

〈sλ, sµ〉 =

{
1 λ = µ,

0 λ 6= µ.

The Hall inner product explains the mysterious significance of the Cauchy kernel Ω(x,y) =∏
i,j(1 − xiyj)−1. And we will motivate this by an analogy with elementary linear algebra.

Let U and V be square matrices over Q with columns ui and vi and let I be the identity
matrix. Then we have

I = UV T ⇐⇒ I = UTV.

In terms of the column vectors this becomes

I =
∑
i

uiv
T
i ⇐⇒ uTi vj =

{
1 i = j,

0 i 6= j.

In particular, if the ui are an orthonormal basis then I =
∑

i uiu
T
i . In the context of general

vector spaces we should replace the dot product uTi vj with an inner product 〈ui,vj〉 and the
rank one matrix uiv

T
i with the tensor product ui ⊗ vi.

Now consider the rings of symmetric polynomials Λn(x) and Λn(y) in two different sets of
variables x and y. We will think of elements of Λn(x) as “column vectors” and elements of
Λn(y) as “row vectors” and we will view the bijection f(x) ↔ f(y) as “transposition”. One
can use the Cauchy identity Ω(x,y) =

∑
λ sλ(x)sλ(y) to prove the following result relating

the Cauchy kernel and the Hall inner product: Given any two bases uλ(x), vλ(x) for the vector
space Λn(x) we have

Ω(x,y) =
∑
λ

uλ(x)vλ(y) ⇐⇒ 〈uλ(y), vµ(y)〉 =

{
1 λ = µ,

0 λ 6= µ.

In this sense, the Cauchy kernel is analogous to the “identity matrix”. The key formula that
makes the proofs work is

〈f(x),Ω(x,y)〉x = f(y),

where 〈−,−〉x is the Hall inner product with respect to the x variables. In the language of
functional analysis, this says that Ω(x,y) is a “reproducing kernel” for the Hall inner product.
This explains the use of the word “kernel”.
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All of this is quite intricate, but it is in some sense implicit in the notion of “representations
of Sn”. Given enough time, anyone interested in the subject would have to rediscover these
ideas in some form. The modern context for these ideas is the theory of Hopf algebras.

5 Groups generated by reflections

6 Rings of invariants

7 Diagonal invariants
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