No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

1. Integrating a Scalar Over a Region in the Plane.

(a) Integrate $f(x, y)=x y$ over the rectangle with $0 \leq x \leq 2$ and $0 \leq y \leq 1$.

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{0}^{2} x y d x\right) d y & =\int_{0}^{1}\left[\frac{1}{2} x^{2} y\right]_{0}^{2} d y \\
& =\int_{0}^{1} 2 y d y \\
& =\left[y^{2}\right]_{0}^{1} \\
& =1
\end{aligned}
$$

(b) Integrate $f(x, y)=x^{2}+y^{2}$ over the unit circle $x^{2}+y^{2} \leq 1$. [Hint: Use polar coordinates.]

The unit circle is parametrized by $x=r \cos \theta$ and $y=r \sin \theta$ with $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$. Since $x^{2}+y^{2}=r^{2}$ and $d x d y=r d r d \theta$ we have

$$
\begin{aligned}
\iint_{\text {circle }}\left(x^{2}+y^{2}\right) d x d y & =\iint r^{2} r d r d \theta \\
& =\int_{0}^{2 \pi} \cdot \int_{0}^{1} r^{3} d r \\
& =2 \pi\left[\frac{1}{4} r^{4}\right]_{0}^{1} \\
& =\pi / 2 .
\end{aligned}
$$

2. Cylindrical and Spherical Coordinates.

(a) Use cylindrical coordinates to integrate the function $f(x, y, z)=z$ over the cylinder defined by $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 1$.

Since $d x d y d z=r d r d \theta d z$ we have

$$
\begin{aligned}
\iiint_{\text {cylinder }} z d x d y d z & =\iiint z r d r d \theta d z \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{1} r d r \cdot \int_{0}^{1} z d z \\
& =2 \pi \cdot\left[\frac{1}{2} r^{2}\right]_{0}^{1} \cdot\left[\frac{1}{2} z^{2}\right]_{0}^{1} \\
& =\pi / 2
\end{aligned}
$$

(b) Use spherical coordinates to compute the volume of a sphere of radius 1. [Hint: You can take $0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi$.]

Since $d x d y d z=\rho^{2} \sin \phi d \rho d \theta d \phi$ we have

$$
\begin{aligned}
\text { Volume } & =\iiint_{\text {sphere }} 1 d x d y d z \\
& =\iiint \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{1} \rho^{2} d \rho \cdot \int_{0}^{\pi} \sin \phi d \phi \\
& =2 \pi \cdot\left[\frac{1}{3} \rho^{3}\right]_{0}^{1} \cdot[-\cos \phi]_{0}^{\pi} \\
& =2 \pi \cdot \frac{1}{3} \cdot[-(-1)+1] \\
& =4 \pi / 3 .
\end{aligned}
$$

3. Surface Area. Consider the following parametrized surface in 3D:

$$
\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle \quad \text { with } 0 \leq u \leq 1 \text { and } 0 \leq v \leq 2 \pi .
$$

(a) Compute the tangent vectors \mathbf{r}_{u} and \mathbf{r}_{v}, and the normal vector $\mathbf{r}_{u} \times \mathbf{r}_{v}$.

We have

$$
\begin{aligned}
\mathbf{r}_{u} & =\langle\cos v, \sin v, 0\rangle \\
\mathbf{r}_{v} & =\langle-u \sin v, u \cos v, 1\rangle
\end{aligned}
$$

and hence

$$
\begin{aligned}
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos v & \sin v & 0 \\
-u \sin v & u \cos v & 1
\end{array}\right) \\
& =\left\langle\sin v,-\cos v, u \cos ^{2} v+u \sin ^{2} v\right\rangle \\
& =\langle\sin v,-\cos v, u\rangle .
\end{aligned}
$$

(b) Use your answer from part (a) to set up an integral to compute the area of the surface and simplify as much as possible. [This integral is too difficult to evaluate by hand; at least, for me it is.]

The surface area is

$$
\begin{aligned}
\iint_{\text {surface }} 1 d A & =\iint 1\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v \\
& =\iint \sqrt{\sin ^{2} v+\cos ^{2} v+u^{2}} d u d v \\
& =\iint \sqrt{1+u^{2}} d u d v \\
& =\int_{0}^{2 \pi} d v \cdot \int_{0}^{1} \sqrt{1+u^{2}} d u
\end{aligned}
$$

$$
=2 \pi \cdot \int_{0}^{1} \sqrt{1+u^{2}} d u
$$

This last integral is not easy to compute. My computer says that

$$
\int_{0}^{1} \sqrt{1+u^{2}} d u=\frac{1}{2}(\sqrt{2}+\ln (1+\sqrt{2}))
$$

so the area of the surface is $\pi(\sqrt{2}+\ln (1+\sqrt{2})) \approx 7.2$.
Remark: This surface is called a helicoid. It looks like a twisted ribbon of width 1 and length 2π :

The untwisted ribbon would have surface area $2 \pi \approx 6.8$. The twisted ribbon has been stretched so its area is slightly larger.
4. Conservative Vector Fields. Consider the vector field $\mathbf{F}(x, y, z)=\langle y, x+z, y\rangle$.
(a) Compute the curl $\nabla \times \mathbf{F}$ in order to verify that the field \mathbf{F} is conservative. You need to show the steps of the computation, not just the final answer.

Let $\mathbf{F}=\langle P, Q, R\rangle=\langle y, x+z, y\rangle$. The curl is

$$
\begin{aligned}
\nabla \times F & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
P & Q & R
\end{array}\right) \\
& =\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle \\
& =\left\langle(y)_{y}-(x+z)_{z},(y)_{z}-(y)_{z},(x+y)_{x}-(y)_{y}\right\rangle \\
& =\langle 1-1,0-0,1-1\rangle \\
& =\langle 0,0,0\rangle,
\end{aligned}
$$

which implies that \mathbf{F} is conservative.
(b) Find a specific scalar function $f(x, y, z)$ such that $\nabla f(x, y, z)=\mathbf{F}(x, y, z)$. [Hint: Integrate \mathbf{F} along any path in the plane that ends at the fixed point (x, y, z).]

The simplest choice is $\mathbf{r}(t)=\langle t x, t y, t z\rangle$ with $0 \leq t \leq 1$. Then we can take

$$
\begin{aligned}
f(x, y, z) & =\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{1} \mathbf{F}(t x, t y, t z) \bullet\langle x, y, z\rangle d t \\
& =\int_{0}^{1}\langle t y, t x+t z, t y\rangle \bullet\langle x, y, z\rangle d t \\
& =\int_{0}^{1}((t y) x+(t x+t z) y+(t y) z) d z \\
& =(y x+x y+z y+y z) \int_{0}^{1} t d t \\
& =2(x y+y z)\left[\frac{1}{2} t^{2}\right]_{0}^{1} \\
& =x y+y z .
\end{aligned}
$$

Check:

$$
\nabla(x y+y z)=\left\langle(x y+y z)_{x},(x y+y z)_{y},(x y+y z)_{z}\right\rangle=\langle y, x+z, y\rangle .
$$

5. Green's Theorem. Consider the vector field $\mathbf{F}(x, y)=\left\langle-y+e^{x}, x+e^{y}\right\rangle$ in the plane.
(a) Compute the scalar function $\operatorname{Curl}(\mathbf{F})$.

Let $\mathbf{F}=\langle P, Q\rangle=\left\langle-y+e^{x}, x+e^{y}\right\rangle$. Then

$$
\begin{aligned}
\operatorname{Curl}(\mathbf{F}) & =Q_{x}-P_{y} \\
& =\left(x+e^{y}\right)_{x}-\left(-y+e^{x}\right)_{y} \\
& =1-(-1) \\
& =2 .
\end{aligned}
$$

(b) Compute the integral of $\operatorname{Curl}(\mathbf{F})$ over the unit disk $x^{2}+y^{2} \leq 1$.

This can be solved using polar coordinates, but I will use the fact that I already know the area of the unit disk:

$$
\iint_{\text {disk }} \operatorname{Curl}(\mathbf{F}) d x d y=\iint_{\text {disk }} 2 d x d y=2 \int_{\text {disk }} 1 d x d y=2 \pi .
$$

(c) Compute the integral of \mathbf{F} around the curve $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ for $0 \leq t \leq 2 \pi$. [Hint: This integral is too difficult to compute directly, but there is a shortcut.]

If D is the unit disk then $\mathbf{r}(t)$ is the boundary ∂D. Combining Green's Theorem and part (b) gives

$$
\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t=\int_{\partial D} \mathbf{F} \bullet \mathbf{T}=\iint_{D} \operatorname{Curl}(\mathbf{F}) d x d y=2 \pi
$$

