Book Problems:

Problems from Section 3.3 are worth two points each. All other problems are worth one point.

- Section 2.7, Exercises 2, 8, 10
- Section 2.8, Exercises 4, 12, 22, 26
- Section 3.3., Exercises 26, 30, 32
- Section 3.5, Exercises 2, 8, 12, 16
2.7.2. (a): If A is the area and r is the radius of a circle then $A=\pi r^{2}$. If A and r are both functions of time t then applying $\frac{d}{d t}$ to both sides gives

$$
\begin{aligned}
A & =\pi r^{2} \\
\frac{d}{d t} A & =\pi \frac{d}{d t}\left(r^{2}\right) \\
\frac{d A}{d t} & =\pi(2 r) \frac{d r}{d t} \\
\frac{d A}{d t} & =2 \pi r \cdot \frac{d r}{d t} .
\end{aligned}
$$

(b): In this word problem we are given that $d r / d t=1$ and $r=30$. Then using the formula from part (a) gives

$$
\frac{d A}{d t}=2 \pi(30)(1)=60 \pi .
$$

2.7.8. Suppose $4 x^{2}+9 y^{2}=36$, where x and y are functions of t. Applying $d / d t$ to both sides gives ${ }^{11}$

$$
\begin{aligned}
\left(4 x^{2}+9 y^{2}\right)^{\prime} & =(36)^{\prime} \\
4\left(x^{2}\right)^{\prime}+9\left(y^{2}\right)^{\prime} & =0 \\
4\left(2 x x^{\prime}\right)+9\left(2 y y^{\prime}\right) & =0 \\
8 x x^{\prime}+18 y y^{\prime} & =0 .
\end{aligned}
$$

(a): If $y^{\prime}=1 / 3$ and $x=2$ and $y=\frac{2}{3} \sqrt{5}$ then we have

$$
\begin{aligned}
8 x x^{\prime}+18 y y^{\prime} & =0 \\
8(2) x^{\prime}+18\left(\frac{2}{3} \sqrt{5}\right)(1 / 3) & =0 \\
16 x^{\prime}+4 \sqrt{5} & =0 \\
x^{\prime} & =-4 \sqrt{5} / 16 \\
x^{\prime} & =-\sqrt{5} / 4 .
\end{aligned}
$$

(b): If $x^{\prime}=3$ and $x=-2$ and $y=\frac{2}{3} \sqrt{5}$ then

$$
8 x x^{\prime}+18 y y^{\prime}=0
$$

[^0]\[

$$
\begin{aligned}
8(-2)(3)+18\left(\frac{2}{3} \sqrt{5}\right) y^{\prime} & =0 \\
-48+12 \sqrt{5} y^{\prime} & =0 \\
y^{\prime} & =48 /(12 \sqrt{5}) \\
y^{\prime} & =4 / \sqrt{5} .
\end{aligned}
$$
\]

Remark: Why are there fractions and radicals in this textbook problem? I don't know.
2.7.10. A particle is moving along a hyperbola $x y=8$. As it reaches the point $(4,2)$ the y-coordinate is decreasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the x-coordinate changing at this instant?
We are given $d y / d t=-3$ and we want to find $d x / d t$ when $x=4$ and $y=2$. First we apply $d / d t$ to both sides of the equation $x y=8$, assuming that x and y are both functions of time t :

$$
\begin{aligned}
(x y)^{\prime} & =(8)^{\prime} \\
x^{\prime} y+x y^{\prime} & =0 .
\end{aligned}
$$

When $y^{\prime}=-3$ and $x=4$ and $y=2$ we have

$$
\begin{aligned}
x^{\prime} y+x y^{\prime} & =0 \\
x^{\prime}(2)+(4)(-3) & =0 \\
2 x^{\prime} & =12 \\
x^{\prime} & =6 .
\end{aligned}
$$

In other words, $d x / d t=6 \mathrm{~cm} / \mathrm{s}$.
2.8.4. Find the linear approximation of $f(x)=x^{3 / 4}$ at $a=16$.

The general formula says that $f(x) \approx f(a)+f^{\prime}(a)(x-a)$ when $x \approx a$. First we compute the ingredients of the formula:

$$
\begin{aligned}
f(16) & =16^{3 / 4}=\left(16^{1 / 4}\right)^{3}=2^{3} 8, \\
f^{\prime}(x) & =(3 / 4) x^{-1 / 4}, \\
f^{\prime}(16) & =(3 / 4)(16)^{-1 / 4}=(3 / 4)\left(16^{1 / 4}\right)^{-1}=(3 / 4)\left(2^{-1}\right)=3 / 8 .
\end{aligned}
$$

Thus we conclude that

$$
x^{3 / 4} \approx 8+\frac{3}{8}(x-16) \quad \text { when } x \approx 16 .
$$

2.8.12. Use linear approximation to estimate $\sqrt[3]{1001}$. The bad number 1001 is close to the good number $a=1000$ and we wish to estimate $f(1001)$ when $f(x)=\sqrt[3]{x}$. The general formula says that

$$
f(x) \approx f(1000)+f^{\prime}(1000)(x-1000) \quad \text { when } x \approx 1000
$$

Luckily we know that $f(1000)=\sqrt[3]{1000}=10$ and $f^{\prime}(x)=(1 / 3) x^{-2 / 3}$, hence

$$
f^{\prime}(1000)=\frac{1}{3} \cdot(1000)^{-2 / 3}=\frac{1}{3} \cdot\left(1000^{1 / 3}\right)^{-2}=\frac{1}{3} \cdot(10)^{-2}=\frac{1}{300} .
$$

Plugging this into the formula gives

$$
\sqrt[3]{x} \approx 10+\frac{1}{300}(x-1000) \quad \text { when } x \approx 1000
$$

Finally, since 1001 is close to 1000 we have

$$
\sqrt[3]{1001} \approx 10+\frac{1}{300}(1001-1000)=10+\frac{1}{300}=10.0033 \cdots
$$

2.8.22. The radius of a dircular disk is given as 24 cm with a maximum error in measurement of 0.2 cm . Let A be the area and let r be the radius, so that $A=\pi r^{2}$ and

$$
\begin{aligned}
\frac{d A}{d r} & =2 \pi r \\
d A & =2 \pi r d r .
\end{aligned}
$$

(a): We are given that $r=24$ and $d r=0.2$, hence $d A=2 \pi(24)(0.2) \approx 30.2 \mathrm{~cm}^{2}$.
(b): The relative (percentage) error in A is

$$
\frac{d A}{A}=\frac{30.3}{\pi(24)^{2}}=0.0167 \quad(=1.7 \%) .
$$

Remark: The relative (percent) error in r is $d r / r=0.2 / 24=0.83 \%$. The relative error always goes up when you perform a computation.
2.8.26. One side of a right triangle is known to be 20 cm long and the opposite angle is measured as 30°, with a possible error of $\pm 1^{\circ} I^{2}$
(a): If h is the length of the hypotenuse and θ is the angle whose opposite side has length 20 then by definition we have $\sin \theta=20 / h$, or $h=20 / \sin \theta$. We are given that $\theta=30^{\circ}$ and $d \theta=1^{\circ}$, but derivatives only work when we express angles in radians, so we must take

$$
\theta=30 \cdot \frac{2 \pi}{360}=\frac{\pi}{6} \quad \text { and } \quad d \theta=1 \cdot \frac{2 \pi}{360}=\frac{\pi}{180} .
$$

Then we comput $\}^{3}$

$$
\begin{aligned}
h & =20 / \sin \theta \\
\frac{d h}{d \theta} & =\frac{-20 \cos \theta}{\sin ^{2} \theta} \\
d h & =\frac{-20 \cos \theta}{\sin ^{2} \theta} \cdot d \theta \\
d h & =\frac{-20 \cos \left(30^{\circ}\right)}{\sin ^{2}\left(30^{\circ}\right)} \cdot \frac{\pi}{180} \\
d h & =\frac{-20(\sqrt{3} / 2)}{(1 / 2)^{2}} \cdot \frac{\pi}{180} \\
d h & =-40 \sqrt{3} \cdot \frac{\pi}{180} \\
d h & \approx-1.21 .
\end{aligned}
$$

(b): The percentage error in h is

$$
\frac{d h}{h}=\frac{-1.21}{20 / \sin \left(30^{\circ}\right)}=\frac{-1.21}{40} \approx 3 \% .
$$

[^1]3.3.26. Sketch the graph of $h(x)=5 x^{3}-3 x^{5}$. First we compute the first and second derivatives:
\[

$$
\begin{aligned}
h(x) & =5 x^{3}-3 x^{5}, \\
h^{\prime}(x) & =15 x^{2}-15 x^{4}=15 x^{2}\left(1-x^{2}\right)=15 x^{2}(1-x)(1+x), \\
h^{\prime \prime}(x) & =30 x-60 x^{3}=30 x\left(1-2 x^{2}\right) .
\end{aligned}
$$
\]

Examining the first derivative:

- $h^{\prime}(x)=0$ when $x= \pm 1$ or $x=0$,
- $h^{\prime}(x)>0$ when $-1<x<0$ or $0<x<1$,
- $h^{\prime}(x)<0$ when $x<-1$ or $x>+1$.

This tells us that $h(x)$ has a local min at $x=-1$, an inflection at $x=0$ and local max at $x=+1$. Examining the second derivative:

- $h^{\prime \prime}(x)=0$ when $x=0$ or $x= \pm \sqrt{1 / 2}$,
- $h^{\prime \prime}(x)>0$ when $x<-\sqrt{1 / 2}$ or $0<x<+\sqrt{1 / 2}$,
- $h^{\prime \prime}(x)<0$ when $-\sqrt{1 / 2}<x<0$ or $+\sqrt{1 / 2}<x$.

This tells us that $h(x)$ has inflections when $x=0$ and $x= \pm \sqrt{1 / 2}$. Here is a picture with the special points marked:

3.3.30. Sketch the graph of $G(x)=x-4 \sqrt{x}$. First we compute the first and second derivatives:

$$
G(x)=x-4 \sqrt{x},
$$

$$
\begin{aligned}
G^{\prime}(x) & =1-4 \cdot \frac{1}{2 \sqrt{x}}=\frac{\sqrt{x}-2}{\sqrt{x}} \\
G^{\prime \prime}(x) & =-2(-1 / 2) x^{-3 / 2}=1 / x^{3 / 2}
\end{aligned}
$$

This function is only defined for $x \geq 0$. Note that the denominators of $G^{\prime}(x)$ and $G^{\prime \prime}(x)$ are always positive so we only need to look at the numerators. Examining the first derivative \square^{4}

- $G^{\prime}(x)=0$ when $x=4$,
- $G^{\prime}(x)>0$ when $4<x$,
- $G^{\prime}(x)<0$ when $0<x<4$.

This tells us that $G(x)$ has a local min at $x=4$. Examining the second derivative:

- $G^{\prime \prime}(x)=0$ never,
- $G^{\prime \prime}(x)>0$ always,
- $G^{\prime \prime}(x)<0$ never.

Thus $G(x)$ has no inflections and is always concave up. Here is a picture:

3.3.32. Sketch the graph of $S(x)=x-\sin x$ for $0 \leq x \leq 4 \pi$. First we compute the first and second derivatives:

$$
\begin{aligned}
S(x) & =x-\sin x, \\
S^{\prime}(x) & =1-\cos x, \\
S^{\prime \prime}(x) & =\sin x .
\end{aligned}
$$

Examining the first derivative:

- $S^{\prime}(x)=0$ when $\cos x=1$, i.e., when $x=0$ or $x=2 \pi$ or $x=4 \pi$, etc.
- $S^{\prime}(x)>0$ for all other x,
- $S^{\prime}(x)<0$ never.

There are no maxima or minima. The graph of $S(x)$ is always increasing or flat. Examining the second derivative:

- $S^{\prime \prime}(x)=0$ when $\sin x=0$, i.e., when $x=\pi$ or $x=2 \pi$ or $x=3 \pi$, etc.

[^2]- $S^{\prime \prime}(x)>0$ when $\sin x>0$, i.e., when $0<x<\pi$ or $2 \pi<x<3 \pi$, etc.
- $S^{\prime \prime}(x)<$ when $\sin x<0$, i.e., when $\pi<x<2 \pi$ or $3 \pi<x<4 \pi$, etc.

Thus we have inflections when $x=k \pi$ for any whole number k. In between, the graph of $S(x)$ alternates between concave up and down. Here is a picture:

3.5.2. Find two numbers whose difference is 100 and whose product is a minimum.

Call the numbers x and y, so that $x-y=100$. We want to minimize the product $P(x, y)=x y$. Substituting $y=x-100$ into P gives $P(x)=x(x-100)$ as a function of x alone. To find maxima or minima of $P(x)$ we solve the equation $P^{\prime}(x)=0$. First we compute

$$
\begin{aligned}
P(x) & =x(x-100)=x^{2}-100 x \\
P^{\prime}(x) & =2 x-100
\end{aligned}
$$

Then we solve

$$
\begin{aligned}
P^{\prime}(x) & =0 \\
2 x-100 & =0 \\
x & =50 .
\end{aligned}
$$

(This gives a minimum of $P(x)$ because the second derivative $P^{\prime \prime}(x)=100$ is always positive.) Hence $P=x y$ is minimized when $x=50$ and $y=x-100=50-100=-50$.
3.5.8. Find the dimensions of a rectangle with area $1000 \mathrm{~m}^{2}$ whose perimeter is as small as possible. If ℓ and w are the dimensions of the rectangle then the perimeter is $P=2 \ell+2 w$:

We want to minimize $P(\ell, w)=2 \ell+2 w$ subject to the constraint $\ell w=1000$. First we use this constraint to eliminate w from P :

$$
P(\ell)=2 \ell+2 w=2 \ell+2(1000 / \ell)=2 \ell+2000 / \ell
$$

Then to minimize P we set the first derivative equal to zero:

$$
\begin{aligned}
P^{\prime}(\ell) & =0 \\
2+2000\left(-1 / \ell^{2}\right) & =0 \\
-2000 / \ell^{2} & =-2 \\
1 / \ell^{2} & =2 / 2000 \\
\ell^{2} & =1000 \\
\ell & =\sqrt{1000} .
\end{aligned}
$$

We conclude that P is minimize ${ }^{5}$ when $\ell=\sqrt{1000}$, and hence $w=1000 / \sqrt{1000}=\sqrt{1000}$. In other words, for a given area the perimeter is maximized when the rectangle is a square.
3.5.12. A box with a square base and open top must have a volume of $32000 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used (say, cardboard). Let b be the base and let h be the height of the box. The amount of cardboard is the surface area $A=b^{2}+4 b h:$

In order to minimize A we first eliminate h using the volume constraint:

$$
\begin{aligned}
\text { volume } & =32000 \\
b^{2} h & =32000 \\
h & =32000 / b^{2} .
\end{aligned}
$$

[^3]Hence we have $A=b^{2}+4 b h=b^{2}+4 b\left(32000 / b^{2}\right)=b^{2}+128000 / b$. Then to minimize A we set the first derivative equal to zero:

$$
\begin{aligned}
A^{\prime}(b) & =0 \\
2 b+128000\left(-1 / b^{2}\right) & =0 \\
2 b^{3}-128000 & =0 \\
2 b^{3} & =128000 \\
b^{3} & =64000 \\
b & =40
\end{aligned}
$$

We conclude that the amount of material is minimized when $b=40$ and $h=32000 / 40^{2}=20$.
3.5.16. Find the point (x, y) on the curve $y=\sqrt{x}$ that is closest to the point $(3,0)$:

The distance between any two points (x, y) and (a, b) is $\sqrt{(x-a)^{2}+(y-b)^{2}}$. In particular, the distance between (x, y) and $(3,0)$ is $D=\sqrt{(x-3)^{2}+(y-0)^{2}}=\sqrt{x^{2}-6 x+9+y^{2}}$. In order to minimize the distance we first use the constraint $y=\sqrt{x}$ to eliminate y from D :

$$
D=\sqrt{x^{2}-6 x+9+y^{2}}=\sqrt{x^{2}-6 x+9+x}=\sqrt{x^{2}-5 x+9}
$$

Now we set the first derivative equal to zero:

$$
\begin{aligned}
D^{\prime}(x) & =0 \\
\frac{1}{2 \sqrt{x^{2}-5 x+9}}(2 x-5+0) & =0 \\
2 x-5 & =0 \\
x & =5 / 2
\end{aligned}
$$

(Here we used the fact that $a / b=0$ implies $a=0$ for any fraction.) We conclude that the distance D is minimized when $x=5 / 2$ and $y=\sqrt{x}=\sqrt{5 / 2}$.

[^0]: ${ }^{1}$ To save space we will use the "prime" symbol instead of $d / d t$.

[^1]: ${ }^{2}$ The book doesn't tell us the error in the measurement 26 cm because it didn't yet teach us how to deal with two different inputs. See pages 651-653 for the method, which is in Chapter 11.
 ${ }^{3}$ So actually we don't need to express θ in radians, just $d \theta$.

[^2]: ${ }^{4}$ We also note that $G^{\prime}(x) \rightarrow-\infty$ as $x \rightarrow 0$ from the right, so the graph of $G(x)$ becomes vertical at $x=0$.

[^3]: ${ }^{5}$ To verify that this really is a minimum, consider the second derivative: $P^{\prime \prime}(\ell)=4000 / \ell^{3}$, which is always positive for positive ℓ. In particular, $P^{\prime \prime}(\sqrt{1000})>0$.

