
Math 161 Summer 2024
Homework 3 Drew Armstrong

Book Problems:

Problems from Section 3.3 are worth two points each. All other problems are worth one point.

• Section 2.7, Exercises 2, 8, 10
• Section 2.8, Exercises 4, 12, 22, 26
• Section 3.3., Exercises 26, 30, 32
• Section 3.5, Exercises 2, 8, 12, 16

2.7.2. (a): If A is the area and r is the radius of a circle then A = πr2. If A and r are both
functions of time t then applying d

dt to both sides gives

A = πr2

d

dt
A = π

d

dt
(r2)

dA

dt
= π(2r)

dr

dt
dA

dt
= 2πr · dr

dt
.

(b): In this word problem we are given that dr/dt = 1 and r = 30. Then using the formula
from part (a) gives

dA

dt
= 2π(30)(1) = 60π.

2.7.8. Suppose 4x2 + 9y2 = 36, where x and y are functions of t. Applying d/dt to both sides
gives1

(4x2 + 9y2)′ = (36)′

4(x2)′ + 9(y2)′ = 0

4(2xx′) + 9(2yy′) = 0

8xx′ + 18yy′ = 0.

(a): If y′ = 1/3 and x = 2 and y = 2
3

√
5 then we have

8xx′ + 18yy′ = 0

8(2)x′ + 18(
2

3

√
5)(1/3) = 0

16x′ + 4
√

5 = 0

x′ = −4
√

5/16

x′ = −
√

5/4.

(b): If x′ = 3 and x = −2 and y = 2
3

√
5 then

8xx′ + 18yy′ = 0

1To save space we will use the “prime” symbol instead of d/dt.
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8(−2)(3) + 18(
2

3

√
5)y′ = 0

−48 + 12
√

5 y′ = 0

y′ = 48/(12
√

5)

y′ = 4/
√

5.

Remark: Why are there fractions and radicals in this textbook problem? I don’t know.

2.7.10. A particle is moving along a hyperbola xy = 8. As it reaches the point (4, 2) the
y-coordinate is decreasing at a rate of 3 cm/s. How fast is the x-coordinate changing at this
instant?

We are given dy/dt = −3 and we want to find dx/dt when x = 4 and y = 2. First we apply
d/dt to both sides of the equation xy = 8, assuming that x and y are both functions of time t:

(xy)′ = (8)′

x′y + xy′ = 0.

When y′ = −3 and x = 4 and y = 2 we have

x′y + xy′ = 0

x′(2) + (4)(−3) = 0

2x′ = 12

x′ = 6.

In other words, dx/dt = 6 cm/s.

2.8.4. Find the linear approximation of f(x) = x3/4 at a = 16.

The general formula says that f(x) ≈ f(a) + f ′(a)(x− a) when x ≈ a. First we compute the
ingredients of the formula:

f(16) = 163/4 = (161/4)3 = 238,

f ′(x) = (3/4)x−1/4,

f ′(16) = (3/4)(16)−1/4 = (3/4)(161/4)−1 = (3/4)(2−1) = 3/8.

Thus we conclude that

x3/4 ≈ 8 +
3

8
(x− 16) when x ≈ 16.

2.8.12. Use linear approximation to estimate 3
√

1001. The bad number 1001 is close to the
good number a = 1000 and we wish to estimate f(1001) when f(x) = 3

√
x. The general

formula says that

f(x) ≈ f(1000) + f ′(1000)(x− 1000) when x ≈ 1000.

Luckily we know that f(1000) = 3
√

1000 = 10 and f ′(x) = (1/3)x−2/3, hence

f ′(1000) =
1

3
· (1000)−2/3 =

1

3
· (10001/3)−2 =

1

3
· (10)−2 =

1

300
.

Plugging this into the formula gives

3
√
x ≈ 10 +

1

300
(x− 1000) when x ≈ 1000.
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Finally, since 1001 is close to 1000 we have

3
√

1001 ≈ 10 +
1

300
(1001− 1000) = 10 +

1

300
= 10.0033 · · · .

2.8.22. The radius of a dircular disk is given as 24 cm with a maximum error in measurement
of 0.2 cm. Let A be the area and let r be the radius, so that A = πr2 and

dA

dr
= 2πr

dA = 2πr dr.

(a): We are given that r = 24 and dr = 0.2, hence dA = 2π(24)(0.2) ≈ 30.2 cm2.

(b): The relative (percentage) error in A is

dA

A
=

30.3

π(24)2
= 0.0167 (= 1.7%).

Remark: The relative (percent) error in r is dr/r = 0.2/24 = 0.83%. The relative error always
goes up when you perform a computation.

2.8.26. One side of a right triangle is known to be 20 cm long and the opposite angle is
measured as 30◦, with a possible error of ±1◦.2

(a): If h is the length of the hypotenuse and θ is the angle whose opposite side has length
20 then by definition we have sin θ = 20/h, or h = 20/ sin θ. We are given that θ = 30◦ and
dθ = 1◦, but derivatives only work when we express angles in radians, so we must take

θ = 30 · 2π

360
=
π

6
and dθ = 1 · 2π

360
=

π

180
.

Then we compute3

h = 20/ sin θ

dh

dθ
=
−20 cos θ

sin2 θ

dh =
−20 cos θ

sin2 θ
· dθ

dh =
−20 cos(30◦)

sin2(30◦)
· π

180

dh =
−20(

√
3/2)

(1/2)2
· π

180

dh = −40
√

3 · π
180

dh ≈ −1.21.

(b): The percentage error in h is

dh

h
=

−1.21

20/ sin(30◦)
=
−1.21

40
≈ 3%.

2The book doesn’t tell us the error in the measurement 26 cm because it didn’t yet teach us how to deal
with two different inputs. See pages 651–653 for the method, which is in Chapter 11.

3So actually we don’t need to express θ in radians, just dθ.
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3.3.26. Sketch the graph of h(x) = 5x3 − 3x5. First we compute the first and second
derivatives:

h(x) = 5x3 − 3x5,

h′(x) = 15x2 − 15x4 = 15x2(1− x2) = 15x2(1− x)(1 + x),

h′′(x) = 30x− 60x3 = 30x(1− 2x2).

Examining the first derivative:

• h′(x) = 0 when x = ±1 or x = 0,
• h′(x) > 0 when −1 < x < 0 or 0 < x < 1,
• h′(x) < 0 when x < −1 or x > +1.

This tells us that h(x) has a local min at x = −1, an inflection at x = 0 and local max at
x = +1. Examining the second derivative:

• h′′(x) = 0 when x = 0 or x = ±
√

1/2,

• h′′(x) > 0 when x < −
√

1/2 or 0 < x < +
√

1/2,

• h′′(x) < 0 when −
√

1/2 < x < 0 or +
√

1/2 < x.

This tells us that h(x) has inflections when x = 0 and x = ±
√

1/2. Here is a picture with the
special points marked:

3.3.30. Sketch the graph ofG(x) = x−4
√
x. First we compute the first and second derivatives:

G(x) = x− 4
√
x,
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G′(x) = 1− 4 · 1

2
√
x

=

√
x− 2√
x

G′′(x) = −2(−1/2)x−3/2 = 1/x3/2.

This function is only defined for x ≥ 0. Note that the denominators of G′(x) and G′′(x) are
always positive so we only need to look at the numerators. Examining the first derivative:4

• G′(x) = 0 when x = 4,
• G′(x) > 0 when 4 < x,
• G′(x) < 0 when 0 < x < 4.

This tells us that G(x) has a local min at x = 4. Examining the second derivative:

• G′′(x) = 0 never,
• G′′(x) > 0 always,
• G′′(x) < 0 never.

Thus G(x) has no inflections and is always concave up. Here is a picture:

3.3.32. Sketch the graph of S(x) = x− sinx for 0 ≤ x ≤ 4π. First we compute the first and
second derivatives:

S(x) = x− sinx,

S′(x) = 1− cosx,

S′′(x) = sinx.

Examining the first derivative:

• S′(x) = 0 when cosx = 1, i.e., when x = 0 or x = 2π or x = 4π, etc.
• S′(x) > 0 for all other x,
• S′(x) < 0 never.

There are no maxima or minima. The graph of S(x) is always increasing or flat. Examining
the second derivative:

• S′′(x) = 0 when sinx = 0, i.e., when x = π or x = 2π or x = 3π, etc.

4We also note that G′(x)→ −∞ as x→ 0 from the right, so the graph of G(x) becomes vertical at x = 0.
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• S′′(x) > 0 when sinx > 0, i.e., when 0 < x < π or 2π < x < 3π, etc.
• S′′(x) < when sinx < 0, i.e., when π < x < 2π or 3π < x < 4π, etc.

Thus we have inflections when x = kπ for any whole number k. In between, the graph of S(x)
alternates between concave up and down. Here is a picture:

3.5.2. Find two numbers whose difference is 100 and whose product is a minimum.

Call the numbers x and y, so that x−y = 100. We want to minimize the product P (x, y) = xy.
Substituting y = x − 100 into P gives P (x) = x(x − 100) as a function of x alone. To find
maxima or minima of P (x) we solve the equation P ′(x) = 0. First we compute

P (x) = x(x− 100) = x2 − 100x,

P ′(x) = 2x− 100.

Then we solve

P ′(x) = 0

2x− 100 = 0

x = 50.

(This gives a minimum of P (x) because the second derivative P ′′(x) = 100 is always positive.)
Hence P = xy is minimized when x = 50 and y = x− 100 = 50− 100 = −50.

3.5.8. Find the dimensions of a rectangle with area 1000 m2 whose perimeter is as small as
possible. If ` and w are the dimensions of the rectangle then the perimeter is P = 2`+ 2w:



7

We want to minimize P (`, w) = 2` + 2w subject to the constraint `w = 1000. First we use
this constraint to eliminate w from P :

P (`) = 2`+ 2w = 2`+ 2(1000/`) = 2`+ 2000/`.

Then to minimize P we set the first derivative equal to zero:

P ′(`) = 0

2 + 2000(−1/`2) = 0

−2000/`2 = −2

1/`2 = 2/2000

`2 = 1000

` =
√

1000.

We conclude that P is minimized5 when ` =
√

1000, and hence w = 1000/
√

1000 =
√

1000.
In other words, for a given area the perimeter is maximized when the rectangle is a square.

3.5.12. A box with a square base and open top must have a volume of 32000 cm3. Find the
dimensions of the box that minimize the amount of material used (say, cardboard). Let b be
the base and let h be the height of the box. The amount of cardboard is the surface area
A = b2 + 4bh:

In order to minimize A we first eliminate h using the volume constraint:

volume = 32000

b2h = 32000

h = 32000/b2.

5To verify that this really is a minimum, consider the second derivative: P ′′(`) = 4000/`3, which is always

positive for positive `. In particular, P ′′(
√

1000) > 0.
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Hence we have A = b2 + 4bh = b2 + 4b(32000/b2) = b2 + 128000/b. Then to minimize A we
set the first derivative equal to zero:

A′(b) = 0

2b+ 128000(−1/b2) = 0

2b3 − 128000 = 0

2b3 = 128000

b3 = 64000

b = 40.

We conclude that the amount of material is minimized when b = 40 and h = 32000/402 = 20.

3.5.16. Find the point (x, y) on the curve y =
√
x that is closest to the point (3, 0):

The distance between any two points (x, y) and (a, b) is
√

(x− a)2 + (y − b)2. In particular,

the distance between (x, y) and (3, 0) is D =
√

(x− 3)2 + (y − 0)2 =
√
x2 − 6x+ 9 + y2. In

order to minimize the distance we first use the constraint y =
√
x to eliminate y from D:

D =
√
x2 − 6x+ 9 + y2 =

√
x2 − 6x+ 9 + x =

√
x2 − 5x+ 9.

Now we set the first derivative equal to zero:

D′(x) = 0

1

2
√
x2 − 5x+ 9

(2x− 5 + 0) = 0

2x− 5 = 0

x = 5/2.

(Here we used the fact that a/b = 0 implies a = 0 for any fraction.) We conclude that the

distance D is minimized when x = 5/2 and y =
√
x =

√
5/2.


