Math 161 Summer 2024
Homework 1 Drew Armstrong

Book Problems:

e Section 1.4, Exercises 8, 14, 16, 24, 26, 50, 52, 53, 56
e Section 1.6, Exercises 14, 20, 22, 28
e Section 8.1, Exercises 14, 16

1.4.8. This limit is not an indeterminate form, so we just substitute x = O:
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1.4.14. This limit has the form (nonzero number)/0 so we know it is +00 or —oo, or it doesn’t
exist. To be sure, we will factor the numerator and denominator:
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As x — —1 from the left, z + 1 is tiny and negative:
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And as ¢ — —1 from the right, x + 1 is tiny and positive:
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So the limit doesn’t exist.

Remark: Problem 1.4.12. asks for the limit of the same function as x — 4, which is
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1.4.16. This limit has the indeterminate form 0/0, so we need a trick. Factor the numerator
and denominator to get

2
lim 20" +3r +1 lim 2z + 1)(x+417]
a—-1 22 —2x —3  z—-1 (z—3)(z+1)
. 2¢ +1
= lim

z——1 . —3
2(-1)+1

(-1)-3

-1

—4

1

1




1.4.24. This limit has the indeterminate form co — oo so we need a trick. First we add the
fractions then we can factor and cancel:
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1.4.26. This limit has the indeterminate form 0/0 so we need a trick. We multiply the
numerator and denominator by the “conjugate expression” to get
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1.4.50. Recall that sinz/x — 1 and sin(nx)/x — n as x — 0. Hence we have
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1.4.52. Recall that (cosz — 1)/ — 0 as x — 0. Hence we have
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1.4.53. This time we factor the denominator to get an expression of the form sin(3x)/x:
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1.4.56. This limit has the indeterminate form 0/0, so we need a trick. It is difficult to change
the 22 inside the sin function so instead we will change the denominator to look like z:
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If y = 22 then we note that y — 0 as z — 0, hence
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Remark: That one was tricky. The idea with these problems is to always look for an
expression of the form (siny)/y where y could be something like 2 or 3z, etc., so that
y — 0 when x — 0. If that doesn’t work, the only other trigonometric limit we know
is (cosy —1)/y — 0 when y — 0.

1.6.14. If x — —3 from the left then x + 3 is a tiny negative number, hence
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1.6.20. This limit has the indeterminate form co/oo so we need a trick. Divide the numerator
and denominator by the highest power of = (in this case, 3) to obtain
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1.6.22. This is just like the previous problem, but it involves fractional exponents. First note
that tv/t =t - t'/2 = t1+1/2 = t3/2_ Thus 3/2 is the highest exponent that occurs. Divide the
numerator and denominator by #*/2 to obtain
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Remark: Here we really had to remember our exponent rules:
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Then we used the fact that 1/t* — 0 as ¢ — oo for any exponent a > 0.

1.6.28. Note that sin? z stays bounded as & — oo, so that
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This solution is perfectly acceptable. To be more precise, we can use the Squeeze Theorem.
First note that 0 < sin?z < 1. If £ > 0 then dividing all three terms by z preserves the

direction of the inequalities:
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Then since 1/2%2 — 0 as x — 00, the expression (sin?z)/2? gets squeezed to zero. I don’t
expect you to come up with a fancy proof like this.

8.1.14. Section 8.1 is very similar to section 1.6, but with integers n — oo instead of real
numbers x — oco. There isn’t much difference. In this case we use the fact that ™ — 0 as
n — oo when 0 < a <1 to get
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1.8.16. We can bring the limit inside the square root:
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Dividing the numerator and denominator of (n 4+ 1)/(9n + 1) by the highest power of n (i.e.,
just n) we see that (n+1)/(9n+1)=(1+1/n)/(9+1/n) — 1/9 as n — oo. Hence
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Remark: For any continuous functions f(x) and g(x) we have
lim f(g(x)) = f (1im g()).
The square root function is continuous, so we can bring limits inside it. But you would have
done that anyway; there’s no point making a big fuss about it.




