Book Problems:

- Section 1.4, Exercises 8, 14, 16, 24, 26, 50, 52, 53, 56
- Section 1.6, Exercises 14, 20, 22, 28
- Section 8.1, Exercises 14, 16
1.4.8. This limit is not an indeterminate form, so we just substitute $x=0$:

$$
\lim _{x \rightarrow 0} \frac{\cos ^{4} x}{5+2 x^{3}}=\frac{\cos ^{4} 0}{5+2(0)^{3}}=\frac{1}{5} .
$$

1.4.14. This limit has the form (nonzero number) $/ 0$ so we know it is $+\infty$ or $-\infty$, or it doesn't exist. To be sure, we will factor the numerator and denominator:

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{x^{2}-4 x}{x^{2}-3 x-4} & =\lim _{x \rightarrow-1} \frac{x^{2}-4 x}{x^{2}-3 x-4} \\
& =\lim _{x \rightarrow-1} \frac{x(x-4)}{(x+1)(x-4)} \\
& =\lim _{x \rightarrow-1} \frac{x}{x+1} .
\end{aligned}
$$

As $x \rightarrow-1$ from the left, $x+1$ is tiny and negative:

$$
\lim _{x \rightarrow-1^{-}} \frac{x}{x+1}=\frac{-1}{\text { tiny negative }}=+\infty
$$

And as $x \rightarrow-1$ from the right, $x+1$ is tiny and positive:

$$
\lim _{x \rightarrow-1^{+}} \frac{x}{x+1}=\frac{-1}{\text { tiny positive }}=-\infty
$$

So the limit doesn't exist.
Remark: Problem 1.4.12. asks for the limit of the same function as $x \rightarrow 4$, which is

$$
\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}=\lim _{x \rightarrow 4} \frac{x}{x+1}=\frac{4}{5} .
$$

1.4.16. This limit has the indeterminate form $0 / 0$, so we need a trick. Factor the numerator and denominator to get

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-2 x-3} & =\lim _{x \rightarrow-1} \frac{(2 x+1)(x+1)}{(x-3)(x+1)} \\
& =\lim _{x \rightarrow-1} \frac{2 x+1}{x-3} \\
& =\frac{2(-1)+1}{(-1)-3} \\
& =\frac{-1}{-4} \\
& =\frac{1}{4} .
\end{aligned}
$$

1.4.24. This limit has the indeterminate form $\infty-\infty$ so we need a trick. First we add the fractions then we can factor and cancel:

$$
\begin{aligned}
\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right) & =\lim _{t \rightarrow 0}\left(\frac{t^{2}+t}{t\left(t^{2}+t\right)}-\frac{t}{t\left(t^{2}+t\right)}\right) \\
& =\lim _{t \rightarrow 0} \frac{t^{2}}{t\left(t^{2}+t\right)} \\
& =\lim _{t \rightarrow 0} \frac{t^{2}}{t^{2}(t+1)} \\
& =\lim _{t \rightarrow 0} \frac{1}{t+1} \\
& =\frac{1}{0+1} \\
& =1
\end{aligned}
$$

1.4.26. This limit has the indeterminate form $0 / 0$ so we need a trick. We multiply the numerator and denominator by the "conjugate expression" to get

$$
\begin{aligned}
\lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4} & \lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4} \cdot \frac{\sqrt{x^{2}+9}+5}{\sqrt{x^{2}+9}+5} \\
& =\lim _{x \rightarrow-4} \frac{\left(\sqrt{x^{2}+9}\right)^{2}-5^{2}}{(x+4)\left(\sqrt{x^{2}+9}+5\right)} \\
& =\lim _{x \rightarrow-4} \frac{x^{2}+9-25}{(x+4)\left(\sqrt{x^{2}+9}+5\right)} \\
& =\lim _{x \rightarrow-4} \frac{x^{2}-16}{(x+4)\left(\sqrt{x^{2}+9}+5\right)} \\
& =\lim _{x \rightarrow-4} \frac{(x+4)(x-4)}{(x+4)\left(\sqrt{x^{2}+9}+5\right)} \\
& =\lim _{x \rightarrow-4} \frac{x-4}{\sqrt{x^{2}+9}+5} \\
& =\frac{(-4)-4}{\sqrt{(-4)^{2}+9}+5} \\
& =\frac{-8}{\sqrt{25}+5} \\
& =\frac{-8}{10} \\
& =-\frac{4}{5}
\end{aligned}
$$

1.4.50. Recall that $\sin x / x \rightarrow 1$ and $\sin (n x) / x \rightarrow n$ as $x \rightarrow 0$. Hence we have

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{\sin (6 x)}=\lim _{x \rightarrow 0} \frac{\sin (4 x) / x}{\sin (6 x) / x}=\frac{\lim _{x \rightarrow 0} \sin (4 x) / x}{\lim _{x \rightarrow 0} \sin (6 x) / x}=\frac{4}{6}=\frac{2}{3}
$$

1.4.52. Recall that $(\cos x-1) / x \rightarrow 0$ as $x \rightarrow 0$. Hence we have

$$
\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\sin \theta}=\lim _{\theta \rightarrow 0} \frac{(\cos \theta-1) / \theta}{\sin \theta / \theta}=\frac{\lim _{\theta \rightarrow 0}(\cos \theta-1) / \theta}{\lim _{\theta \rightarrow 0} \sin \theta / \theta}=\frac{0}{1}=0 .
$$

1.4.53. This time we factor the denominator to get an expression of the form $\sin (3 x) / x$:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{5 x^{3}-4 x} & =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x\left(5 x^{2}-4\right)} \\
& =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x} \cdot \frac{1}{5 x^{2}-4} \\
& =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{5 x^{2}-4} \\
& =3 \cdot \frac{1}{5(0)^{2}-4} \\
& =3 \cdot \frac{1}{-4} \\
& =-\frac{3}{4} .
\end{aligned}
$$

1.4.56. This limit has the indeterminate form $0 / 0$, so we need a trick. It is difficult to change the x^{2} inside the sin function so instead we will change the denominator to look like x^{2} :

$$
\frac{\sin \left(x^{2}\right)}{x}=x \cdot \frac{\sin \left(x^{2}\right)}{x^{2}} .
$$

If $y=x^{2}$ then we note that $y \rightarrow 0$ as $x \rightarrow 0$, hence

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}}=\lim _{y \rightarrow 0} \frac{\sin y}{y}=1 .
$$

Finally we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}} & =\lim _{x \rightarrow 0}\left(x \cdot \frac{\sin \left(x^{2}\right)}{x^{2}}\right) \\
& =\lim _{x \rightarrow 0} x \cdot \lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}} \\
& =0 \cdot 1 \\
& =0 .
\end{aligned}
$$

Remark: That one was tricky. The idea with these problems is to always look for an expression of the form $(\sin y) / y$ where y could be something like x^{2} or $3 x$, etc., so that $y \rightarrow 0$ when $x \rightarrow 0$. If that doesn't work, the only other trigonometric limit we know is $(\cos y-1) / y \rightarrow 0$ when $y \rightarrow 0$.
1.6.14. If $x \rightarrow-3$ from the left then $x+3$ is a tiny negative number, hence

$$
\lim _{x \rightarrow-3^{-}} \frac{x+2}{x+3}=\frac{-1}{\text { tiny negative number }}=+\infty
$$

1.6.20. This limit has the indeterminate form ∞ / ∞ so we need a trick. Divide the numerator and denominator by the highest power of x (in this case, x^{3}) to obtain

$$
\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1}=\lim _{x \rightarrow \infty} \frac{\left(1-x^{2}\right) / x^{3}}{\left(x^{3}-x+1\right) / x^{3}}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{3}}-\frac{x^{2}}{x^{3}}}{\frac{x^{3}}{x^{3}}-\frac{x}{x^{3}}+\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{3}}-\frac{1}{x}}{1-\frac{1}{x^{2}}+\frac{1}{x^{3}}} \\
& =\frac{0-0}{1-0+0} \\
& =0
\end{aligned}
$$

1.6.22. This is just like the previous problem, but it involves fractional exponents. First note that $t \sqrt{t}=t \cdot t^{1 / 2}=t^{1+1 / 2}=t^{3 / 2}$. Thus $3 / 2$ is the highest exponent that occurs. Divide the numerator and denominator by $t^{3 / 2}$ to obtain

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{t-t^{3 / 2}}{2 t^{3 / 2}+3 t-5} & =\lim _{t \rightarrow \infty} \frac{\left(t-t^{3 / 2}\right) / t^{3 / 2}}{\left(2 t^{3 / 2}+3 t-5\right) / t^{3 / 2}} \\
& =\lim _{t \rightarrow \infty} \frac{\frac{t}{t^{3 / 2}}-\frac{t^{3 / 2}}{t^{3 / 2}}}{2 \frac{t^{3 / 2}}{t^{3 / 2}}+3 \frac{t}{t^{3 / 2}}-5 \frac{1}{t^{3 / 2}}} \\
& =\lim _{t \rightarrow \infty} \frac{\frac{1}{t^{1 / 2}}-1}{2+3 \frac{1}{t^{1 / 2}}-5 \frac{1}{t^{3 / 2}}} \\
& =\frac{0-1}{2+3(0)-5(0)} \\
& =-\frac{1}{2}
\end{aligned}
$$

Remark: Here we really had to remember our exponent rules:

$$
t^{a} \cdot t^{b}=t^{a+b} \quad \text { and } \quad \frac{t^{a}}{t^{b}}=t^{a-b} \quad \text { and } \quad t^{-a}=\frac{1}{t^{a}}
$$

Then we used the fact that $1 / t^{a} \rightarrow 0$ as $t \rightarrow \infty$ for any exponent $a>0$.
1.6.28. Note that $\sin ^{2} x$ stays bounded as $x \rightarrow \infty$, so that

$$
\lim _{x \rightarrow \infty} \frac{\sin ^{2} x}{x^{2}}=\frac{\text { bounded number }}{\infty}=0
$$

This solution is perfectly acceptable. To be more precise, we can use the Squeeze Theorem. First note that $0 \leq \sin ^{2} x \leq 1$. If $x>0$ then dividing all three terms by x preserves the direction of the inequalities:

$$
\begin{aligned}
0 & \leq \sin ^{2} x
\end{aligned} \leq \frac{1}{\sin ^{2} x} x^{x^{2}} \leq \frac{1}{x^{2}}, ~=\frac{\sin ^{2}}{x^{2}}
$$

Then since $1 / x^{2} \rightarrow 0$ as $x \rightarrow \infty$, the expression $\left(\sin ^{2} x\right) / x^{2}$ gets squeezed to zero. I don't expect you to come up with a fancy proof like this.
8.1.14. Section 8.1 is very similar to section 1.6 , but with integers $n \rightarrow \infty$ instead of real numbers $x \rightarrow \infty$. There isn't much difference. In this case we use the fact that $a^{n} \rightarrow 0$ as $n \rightarrow \infty$ when $0<a<1$ to get

$$
\lim _{n \rightarrow \infty} \frac{3^{n+2}}{5^{n}}=\lim _{n \rightarrow \infty} \frac{3^{2} \cdot 3^{n}}{5^{n}}=\lim _{n \rightarrow \infty} 3^{2} \cdot \frac{3^{n}}{5^{n}}=\lim _{n \rightarrow \infty} 3^{2} \cdot\left(\frac{3}{5}\right)^{n}=3^{2} \cdot 0=0
$$

1.8.16. We can bring the limit inside the square root:

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{9 n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n+1}{9 n+1}} .
$$

Dividing the numerator and denominator of $(n+1) /(9 n+1)$ by the highest power of n (i.e., just n) we see that $(n+1) /(9 n+1)=(1+1 / n) /(9+1 / n) \rightarrow 1 / 9$ as $n \rightarrow \infty$. Hence

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{9 n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n+1}{9 n+1}}=\sqrt{\frac{1}{9}}=\frac{1}{3} .
$$

Remark: For any continuous functions $f(x)$ and $g(x)$ we have

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

The square root function is continuous, so we can bring limits inside it. But you would have done that anyway; there's no point making a big fuss about it.

