Here are some basic facts that we needed in class:

Facts that are wrong.

- $\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$
- $\frac{a}{a+b} \neq \frac{1}{1+b}$
- $\sin(ab) \neq \sin(a)\sin(b)$
- $\sin(2x) \neq 2\sin(x)$

Facts about exponents.

- $a^b \cdot a^c = a^{b+c}$
- $(a^b)^c = a^{(bc)}$
- $a^{-b} = \frac{1}{a^b}$ • $\frac{a^b}{a^c} = a^{b-c}$

Facts about limits.

- $1/n \to 0$ as $n \to \infty$
- If $f(x) \to +\infty$ or $f(x) \to -\infty$ as $x \to a$ then $1/f(x) \to 0$ as $x \to a$
- If -1 < a < 1 then $a^n \to 0$ as $n \to \infty$
- e.g. $(6/7)^n \to 0$ as $n \to \infty$ because -1 < 6/7 < 1
- If a > 1 then $a^n \to \infty$ as $n \to \infty$. If a < 1 then $\lim_{n \to \infty} a^n$ does not exist.
- If a > 0 then $t^a \to \infty$ as $t \to \infty$, hence $1/t^a \to 0$ as $t \to \infty$
- e.g. $\sqrt{t} = t^{1/2} \to \infty$ as $t \to \infty$ because 1/2 > 0
- It a > 0 then $a/x \to +\infty$ as $x \to 0^+$ and $a/x \to -\infty$ as $x \to 0^-$
- If a < 0 then $a/x \to -\infty$ as $x \to 0^+$ and $a/x \to +\infty$ as $x \to 0^-$

Facts about trigonometry.

- $-1 \le \sin x \le 1$ for all x
- $0 \le \sin^2 x \le 1$ for all x