1. The volume V of a cube is increasing at a constant rate of $2 \mathrm{~cm}^{3} / \mathrm{sec}$. At what rate is the side length increasing when $V=8 \mathrm{~cm}^{3}$?

Note that $V=\ell^{3}$, where ℓ is the side length of the cube. Taking time derivatives on both sides of the equation $V=\ell^{3}$ gives

$$
V^{\prime}=3 \ell^{2} \ell^{\prime}
$$

We are given that $V^{\prime}=2$ and $V=8$, which implies that $\ell=\sqrt[3]{8}=2$. Hence

$$
\ell^{\prime}=\frac{V^{\prime}}{3 \ell^{2}}=\frac{2}{3(2)^{2}}=\frac{1}{6} \quad \mathrm{~cm}^{3} / \mathrm{sec} .
$$

2. Use linear approximation to estimate the value of $\frac{1}{1.9}$.

Let $f(x)=1 / x$ so that $f^{\prime}(x)=-1 / x^{2}$. Then for any x close to 2 we have

$$
\begin{aligned}
f(x) & \approx f(2)+f^{\prime}(2)(x-2), \\
\frac{1}{x} & \approx \frac{1}{2}-\frac{1}{4}(x-2) .
\end{aligned}
$$

Since 1.9 is close to 2 we have

$$
\frac{1}{1.9} \approx \frac{1}{2}-\frac{1}{4}(1.9-2)=\frac{1}{2}-\frac{1}{4}(-0.1)=0.5+0.025=0.525 .
$$

Remark: The exact value is $1 / 1.9=0.52632$.
3. The area A of a hemispherical dome is $C^{2} /(2 \pi)$, where C is the circumference. Suppose we measure C to be 10 ± 0.1 meters. Estimate the uncertainty in the calculated value of A.

Note that $d A / d C=2 C /(2 \pi)$, and hence

$$
d A=\frac{2 C}{2 \pi} \cdot d C=\frac{C}{\pi} \cdot d C .
$$

We are given that $C=10$ and $d C=0.1$, hence

$$
d A=\frac{10}{\pi} \cdot(0.1)=\frac{1}{\pi}
$$

Remark: The relative error is more meaningful. We have $A=(10)^{2} /(2 \pi)$ and hence

$$
\frac{d A}{A}=\frac{1 / \pi}{100 / 2 \pi}=\frac{2}{100}=2 \% .
$$

4. Suppose that $x y=1$. In this case, find the minimum possible value of $x+4 y$. (Assume that x and y are positive.)

We want to minimize the function $f(x, y)=x+4 y$. To do this we first use the equation $x y=1$ to eliminate y :

$$
f(x)=x+4\left(\frac{1}{x}\right)=x+\frac{4}{x} .
$$

Then we set the first derivative $f^{\prime}(x)$ equal to zero:

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
1-\frac{4}{x^{2}} & =0 \\
x^{2}-4 & =0 \\
x & = \pm 2 .
\end{aligned}
$$

But we assumed that x is positive, so we must have $x=2$ and $y=1 / 2$, and the minimum value of $x+4 y$ is $2+4 / 2=4$.
5. Find all the inflection points on the graph of $f(x)=x^{4}-2 x^{3}$. (Give the x and y coordinates of the inflection points.)

Inflection points occur where the second derivative is zero. First we compute

$$
\begin{aligned}
f(x) & =x^{4}-2 x^{3}, \\
f^{\prime}(x) & =4 x^{3}-6 x^{2}, \\
f^{\prime \prime}(x) & =12 x^{2}-12 x=12 x(x-1) .
\end{aligned}
$$

We note that $f^{\prime \prime}(x)=0$ implies $x=0$ or $x=1$. Hence there are two inflection points:

$$
(0, f(0))=(0,0) \quad \text { and } \quad(1, f(1))=(1,-1) .
$$

Here is a picture:

