1. Compute the derivative of $f(x)=\sqrt[3]{x}$.

Since $f(x)=\sqrt[3]{x}=x^{1 / 3}$ we use the power rule to get

$$
f^{\prime}(x)=\frac{1}{3} \cdot x^{1 / 3-1}=\frac{1}{3} \cdot x^{-2 / 3}
$$

2. Compute the derivative of $f(x)=\left(x^{3}+2\right)^{5}$.

We use the power rule and the chain rule to get

$$
f^{\prime}(x)=5\left(x^{3}+2\right)^{4} \cdot\left(x^{3}+2\right)^{\prime}=5\left(x^{3}+2\right)^{4}\left(3 x^{2}+0\right) .
$$

3. Compute $\frac{d y}{d \theta}$ where $y=\frac{\cos \theta}{\sin \theta}$.

We use the quotient rule together the rules $\frac{d}{d \theta}(\sin \theta)=\cos \theta$ and $\frac{d}{d \theta}(\cos \theta)=-\sin \theta$ to get

$$
\begin{aligned}
\frac{d y}{d \theta} & =\frac{d}{d \theta}\left(\frac{\cos \theta}{\sin \theta}\right) \\
& =\frac{\sin \theta \cdot \frac{d}{d \theta}(\cos \theta)-\cos \theta \cdot \frac{d}{d \theta}(\sin \theta)}{(\sin \theta)^{2}} \\
& =\frac{\sin \theta \cdot(-\sin \theta)-\cos \theta \cdot(\cos \theta)}{(\sin \theta)^{2}} \\
& =\frac{-(\sin \theta)^{2}-(\cos \theta)^{2}}{(\sin \theta)^{2}} \\
& =-\frac{1}{(\sin \theta)^{2}} .
\end{aligned}
$$

Remark: You can call this $-\csc ^{2} \theta$ if you want. I prefer not to.
4. Compute the derivative of $g(u)=u \cdot \sqrt{u^{2}+1}$.

We use the product rule, the chain rule and the power rule to get

$$
\begin{align*}
g^{\prime}(u) & =(u)^{\prime} \cdot \sqrt{u^{2}+1}+u \cdot\left(\sqrt{u^{2}+1}\right)^{\prime} \\
& =(1) \cdot \sqrt{u^{2}+1}+u \cdot \frac{1}{2}\left(u^{2}+1\right)^{-1 / 2} . \tag{2u}
\end{align*}
$$

5. Find the slope of the tangent line to the curve $y^{3}+x y=3$ at the point $(x, y)=(2,1)$.

We use implicit differentiation to compute $d y / d x$:

$$
\begin{aligned}
y^{3}+x y & =3 \\
\frac{d}{d x}\left(y^{3}+x y\right) & =\frac{d}{d x} 3
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x}\left(y^{3}\right)+\frac{d}{d x}(x y) & =0 \\
3 y^{2} \cdot \frac{d y}{d x}+\left(x \cdot \frac{d y}{d x}+1 \cdot y\right) & =0 \\
\left(3 y^{2}+x\right) \cdot \frac{d y}{d x} & =-y \\
\frac{d y}{d x} & =\frac{-y}{3 y^{2}+x} .
\end{aligned}
$$

This is the slope of the tangent line at a general point (x, y) on the curve. The slope of the tangent at the point $(x, y)=(2,1)$ is

$$
\frac{d y}{d x}=\frac{-(1)}{3(1)^{2}+2}=-\frac{1}{5} .
$$

Remark: We can go further to compute the slope of the tangent line at the point $(2,1)$. The point-slope formula gives

$$
\begin{aligned}
\frac{y-1}{x-2} & =-\frac{1}{5} \\
y-1 & =-\frac{1}{5}(x-2) \\
y & =1-\frac{1}{5} x+\frac{2}{5} \\
y & =-\frac{1}{5} x+\frac{7}{5}
\end{aligned}
$$

Here is a picture produced by desmos (note that the red curve has two pieces):

