Compute the following limits. In some cases the answer may be $+\infty$ or $-\infty$.

1. $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-3 x+2}$

This limit has the indeterminate form " $0 / 0$ " so we need a trick. We factor the denominator and then cancel:

$$
\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-3 x+2}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x-2)}=\lim _{x \rightarrow 1} \frac{1}{x-2}=\frac{1}{-1}=-1 .
$$

2. $\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}$

This limit has the indeterminate form " $0 / 0$ " so we need a trick. We multiply the numerator and denominator by the conjugate expression to "rationalize the numerator":

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h} & \lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h} \cdot \frac{\sqrt{9+h}+3}{\sqrt{9+h}+3} \\
& =\lim _{h \rightarrow 0} \frac{(9+h)-9}{h(\sqrt{9+h}+3)} \\
& =\lim _{h \rightarrow 0} \frac{K}{h(\sqrt{9+h}+3)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{9+h}+3} \\
& =\frac{1}{\sqrt{9}+3} \\
& =\frac{1}{3+3} \\
& =\frac{1}{6} .
\end{aligned}
$$

3. $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta \cos \theta}$

Here we use the fact that $(\sin \theta) / \theta \rightarrow 1$ as $\theta \rightarrow 0$:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta \cos \theta}=\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \frac{1}{\cos \theta}=1 \cdot \frac{1}{\cos 0}=1 \cdot 1=1 .
$$

4. $\lim _{t \rightarrow 1} \frac{t-2}{(t-1)^{2}}$

We note that $(t-1)^{2}$ is a tiny positive number when t approaches 1 from either direction. Hence

$$
\lim _{t \rightarrow 1} \frac{t-2}{(t-1)^{2}}=\frac{1-2}{\text { tiny positive number }}=\frac{-1}{\text { tiny positive number }}=-\infty
$$

5. $\lim _{n \rightarrow \infty} \frac{2 n^{3}+1}{n^{3}+n}$

When $n \rightarrow \infty$ we should divide numerator and denominator by the highest power of n that occurs, in this case n^{3}. Then since $1 / n \rightarrow 0$ and $1 / n^{2} \rightarrow 0$ we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{2 n^{3}+1}{n^{3}+n} & =\lim _{n \rightarrow \infty} \frac{\left(2 n^{3}+1\right) / n^{3}}{\left(n^{3}+n\right) / n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{2+\frac{1}{n^{3}}}{1+\frac{1}{n^{2}}} \\
& =\frac{2+0}{1+0} \\
& =2 .
\end{aligned}
$$

