1. $\lim _{x \rightarrow 2} \frac{x^{2}+1}{x^{2}-1}$.

This limit is not an indeterminate form. Just substitute $x=2$:

$$
\lim _{x \rightarrow 2} \frac{x^{2}+1}{x^{2}-1}=\frac{2^{2}+1}{2^{2}-1}=\frac{5}{3} .
$$

2. $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$

This limit has the indeterminate form $0 / 0$. Factor the denominator and then cancel:

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{4} .
$$

3. $\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$

This limit has the indeterminate form $0 / 0$. Multiply and divide by the conjugate expression:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-(x)}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{1}{\sqrt{x+0}+\sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

Remark: We just computed the derivative of \sqrt{x}.
4. $\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{\sin \theta}$

Here we use the fact that $\sin (n \theta) / \theta \rightarrow n$ as $\theta \rightarrow 0$:

$$
\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{\sin \theta}=\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta) / \theta}{(\sin \theta) / \theta}=\frac{2}{1}=2 .
$$

5. $\lim _{x \rightarrow 2^{+}} \frac{x-1}{x-2}$

This limit has the form (nonzero) $/ 0$, so it is $\pm \infty$. To determine which we must investigate the sign of the numerator and denominator:

$$
\lim _{x \rightarrow 2^{+}} \frac{x-1}{x-2}=\frac{1}{\text { tiny positive number }}=+\infty
$$

6. $\lim _{n \rightarrow \infty} \frac{3 n^{3}}{n\left(n^{2}-1\right)}$

Expand and then divide numerator and denominator by the highest power of n :

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3 n^{3}}{n\left(n^{2}-1\right)} & =\lim _{n \rightarrow \infty} \frac{3 n^{3}}{n^{3}-n} \\
& =\lim _{n \rightarrow \infty} \frac{\left(3 n^{3}\right) / n^{3}}{\left(n^{3}-n\right) / n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{3}{1-1 / n^{2}} \\
& =\frac{3}{1-0} \\
& =3 .
\end{aligned}
$$

7. Compute the derivative of $f(x)=(x+1)(x+2)$.

Expand and use the power rule:

$$
\begin{aligned}
f(x) & =x^{2}+3 x+2 \\
f^{\prime}(x) & =2 x+3 .
\end{aligned}
$$

Or use the product rule:

$$
\begin{aligned}
f(x) & =(x+1)(x+2) \\
f^{\prime}(x) & =(x+1)(x+2)^{\prime}+(x+1)^{\prime}(x+2) \\
& =(x+1)(1)+(1)(x+2) \\
& =2 x+3 .
\end{aligned}
$$

8. Compute the derivative of $f(x)=\sqrt{x^{3}+1}$.

Use the power rule and the chain rule:

$$
\begin{aligned}
f(x) & =\left(x^{3}+1\right)^{1 / 2} \\
f^{\prime}(x) & =\frac{1}{2}\left(x^{3}+1\right)^{1 / 2-1} \cdot\left(x^{3}+1\right)^{\prime} \\
& =\frac{1}{2}\left(x^{3}+1\right)^{-1 / 2} \cdot\left(3 x^{2}\right) \\
& =\frac{3 x^{2}}{2 \sqrt{x^{3}+1}} .
\end{aligned}
$$

9. Compute the derivative of $f(x)=\frac{\sin x}{\cos x}$.

Use the quotient rule:

$$
\begin{aligned}
f(x) & =\frac{\sin x}{\cos x} \\
f^{\prime}(x) & =\frac{(\cos x)(\sin x)^{\prime}-(\sin x)(\cos x)^{\prime}}{(\cos x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{(\cos x)^{2}} \\
& =\frac{(\cos x)^{2}+(\sin x)^{2}}{(\cos x)^{2}} \\
& =\frac{1}{(\cos x)^{2}} .
\end{aligned}
$$

10. Compute the derivative of $f(x)=(x+1)^{5}(x+2)^{7}$.

There is no way I'm going to expand this, so let's use the product rule and chain rule:

$$
\begin{aligned}
f(x) & =(x+1)^{5}(x+2)^{7} \\
f^{\prime}(x) & =(x+1)^{5}\left((x+2)^{7}\right)^{\prime}+\left((x+1)^{5}\right)^{\prime}(x+2)^{7} \\
& =(x+1)^{5}\left(7(x+2)^{6}(1)\right)+\left(5(x+1)^{4}(1)\right)(x+2)^{7} .
\end{aligned}
$$

I guess we could simplify this:

$$
\begin{aligned}
f^{\prime}(x) & =(x+1)^{4}(x+2)^{6}(7(x+1)+5(x+2)) \\
& =(x+1)^{4}(x+2)^{6}(12 x+17) .
\end{aligned}
$$

11. Find the equation of the tangent line to the curve $y=\sqrt{x}$ at the point $(x, y)=(9,3)$.

The slope of the tangent line at the point (x, \sqrt{x}) is $d y / d x=\frac{1}{2 \sqrt{x}}$. At the point $(9,3)$ this is $d y / d x=\frac{1}{2 \sqrt{9}}=1 / 6$. Hence the equation of the tangent line is

$$
\begin{aligned}
\frac{y-3}{x-9} & =\frac{1}{6} \\
y-3 & =\frac{1}{6}(x-9) \\
y & =3+\frac{1}{6} x-\frac{3}{2} \\
y & =\frac{1}{6} x+\frac{3}{2} .
\end{aligned}
$$

Here is a picture:

12. Use linear approximation to estimate the value of $\sqrt[3]{8.1}$.

We know that $\sqrt[3]{8}=2$. This suggests we should approximate the function $f(x)=\sqrt[3]{x}$ near $a=8$. Note that $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. The linear approximation formula is

$$
\begin{aligned}
f(x) & \approx f(8)+f^{\prime}(8)(x-8) \\
\sqrt[3]{x} & \approx \sqrt[3]{8}+\frac{1}{3} 8^{-2 / 3}(x-8) \\
\sqrt[3]{x} & \approx 2+\frac{1}{12}(x-8)
\end{aligned}
$$

This approximation is good for $x \approx 8$. Since $8.1 \approx 8$ we have

$$
\sqrt[3]{8.1} \approx 2+\frac{1}{12}(0.1)
$$

13. Consider a circle with radius r. Suppose the area of the circle is increasing at a constant rate of $1 \mathrm{~cm}^{2}$ per second. At what rate is r increasing when $r=2 \mathrm{~cm}$?

Let A be the area of the circle so that $A=\pi r^{2}$. Taking time derivatives gives

$$
\begin{aligned}
(A)^{\prime} & =\left(\pi r^{2}\right)^{\prime} \\
A^{\prime} & =\pi\left(r^{2}\right)^{\prime} \\
A^{\prime} & =\pi\left(2 r r^{\prime}\right)
\end{aligned}
$$

If $A^{\prime}=1$ and $r=2$ then we have

$$
\begin{aligned}
1 & =\pi\left(2 \cdot 2 \cdot r^{\prime}\right) \\
1 & =4 \pi r^{\prime} \\
r^{\prime} & =\frac{1}{4 \pi}
\end{aligned}
$$

14. Consider a right-angled triangle with side lengths a, b, c, where c is the hypotenuse. Suppose that a and b are measured to be 5 cm and 10 cm , each with a maximum error of 0.1 cm . In this case, estimate the maximum error in the calculated value of c.

The Pythagorean theorem says that $c^{2}=a^{2}+b^{2}$. Taking differentials gives

$$
\begin{aligned}
d\left(c^{2}\right) & =d\left(a^{2}+b^{2}\right) \\
2 c d c & =2 a d a+2 b d b
\end{aligned}
$$

Then substituting $a=5, b=10$ and $d a=d b=0.1$ gives

$$
\begin{aligned}
2 c d c & =2(5)(0.1)+2(10)(0.1) \\
d c & =\frac{(5)(0.1)+(10)(0.1)}{c} \\
d c & =\frac{(5)(0.1)+(10)(0.1)}{\sqrt{5^{2}+10^{2}}}
\end{aligned}
$$

15. Find the maximum value of $x y$ subject to the constraint $2 x+3 y=1$.

We want to maximize the function $f(x, y)=x y$. First we use the constraint $2 x+3 y=1$ to eliminate y. We have $y=(1-2 x) / 3$ and hence

$$
f(x)=x \cdot \frac{1-2 x}{3}
$$

Set the derivative $f^{\prime}(x)$ equal to zero and solve for x :

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
(x)^{\prime} \cdot \frac{1-2 x}{3}+x \cdot\left(\frac{1-2 x}{3}\right)^{\prime} & =0 \\
\frac{1-2 x}{3}+x \cdot\left(-\frac{2}{3}\right) & =0 \\
\frac{1-4 x}{3} & =0 \\
1-4 x & =0 \\
x & =\frac{1}{4} .
\end{aligned}
$$

It follows that $y=(1-2(1 / 4)) / 3=1 / 6$ and the maximum value of $x y$ is $(1 / 4)(1 / 6)=1 / 24$. Here is the graph of $f(x)$:

16. For which value of x does $f(x)=x\left(x^{2}-3\right)$ attain a local maximum?

Set the derivative $f^{\prime}(x)$ equal to zero:

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\left(x^{3}-3 x\right)^{\prime} & =0 \\
3 x^{2}-3 & =0 \\
3\left(x^{2}-1\right) & =0 \\
x^{2}-1 & =0 \\
(x-1)(x+1) & =0 .
\end{aligned}
$$

Hence $f^{\prime}(x)=0$ implies $x=1$ or $x=-1$. In between we have $f^{\prime}(x)<0$ when $-1<x<1$ and $f^{\prime}(x)>0$ otherwise. Around $x=-1, f^{\prime}(x)$ switches from positive to negative, hence this is a local maximum. Alternatively, the second derivative $f^{\prime \prime}(x)=2 x$ is negative at $x=-1$, which confirms that this is a local max. Picture:

6

17. Find the most general function $f(t)$ whose second derivative is $f^{\prime \prime}(t)=5$.

Integrating once gives

$$
\begin{aligned}
f^{\prime}(t) & =\int f^{\prime \prime}(t) d t \\
& =\int 5 d t \\
& =5 t+c_{1},
\end{aligned}
$$

then integrating twice gives

$$
\begin{aligned}
f(t) & =\int f^{\prime}(t) d t \\
& =\int\left(5 t+c_{1}\right) d t \\
& =5 \frac{1}{2} t^{2}+c_{1} t+c_{2}
\end{aligned}
$$

for some constants c_{1} and c_{2}.
18. Compute the definite integral $\int_{0}^{8} \sqrt[3]{x} d x$.

First we note that $F(x)=\frac{x^{1 / 3+1}}{1 / 3+1}=\frac{3}{4} x^{4 / 3}$ is an antiderivative of $\sqrt[3]{x}=x^{1 / 3}$. The the Fundamental Theorem of Calculus gives

$$
\int_{0}^{8} \sqrt[3]{x} d x=F(8)-F(0)=\frac{3}{4} \cdot 8^{4 / 3}-\frac{3}{4} \cdot 0^{4 / 3}=\frac{3}{4} \cdot 16-0=12
$$

We can view this as an area:

19. Compute the definite integral $\int_{0}^{2 \pi}(\theta+\sin \theta) d \theta$.

Just do it:

$$
\begin{aligned}
\int_{0}^{2 \pi}(\theta+\sin \theta) d \theta & =\left(\frac{1}{2} \theta^{2}-\cos \theta\right)_{0}^{2 \pi} \\
& =\left(\frac{1}{2}(2 \pi)^{2}-\cos 2 \pi\right)-(0-\cos 0) \\
& =\left(2 \pi^{2}-1\right)-(0-1) \\
& =2 \pi^{2}
\end{aligned}
$$

We can view this as an area

20. Use the Fundamental Theorem of Calculus to find the derivative $f^{\prime}(x)$ of the function

$$
f(x)=\int_{7}^{x^{2}} \sin t d t
$$

[^0]The FTC says that

$$
g(u)=\int_{7}^{u} \sin t d t \quad \Longrightarrow \quad g^{\prime}(u)=\sin u
$$

Since $f(x)=g\left(x^{2}\right)$, the chain rule says that

$$
f^{\prime}(x)=\left[g\left(x^{2}\right)\right]^{\prime}=g^{\prime}\left(x^{2}\right)\left(x^{2}\right)^{\prime}=\sin \left(x^{2}\right) \cdot 2 x
$$

21. Use substitution to find the antiderivative $\int x^{2} \sqrt{x^{3}+1} d x$.

Let $u=x^{3}+1$ so that $d u=3 x^{2} d x$ and $d x=d u /\left(3 x^{2}\right)$. Then we have

$$
\begin{aligned}
\int x^{2} \sqrt{x^{3}+1} d x & =\int x^{2} \sqrt{u} \cdot \frac{d u}{3 x^{2}} \\
& =\frac{1}{3} \cdot \int \sqrt{u} d u \\
& =\frac{1}{3} \cdot \int u^{1 / 2} d u \\
& =\frac{1}{3} \cdot \frac{u^{1 / 2+1}}{1 / 2+1}+c \\
& =\frac{1}{3} \cdot \frac{u^{3 / 2}}{3 / 2}+c \\
& =\frac{1}{3} \cdot \frac{2}{3} u^{3 / 2}+c \\
& =\frac{2}{9}\left(x^{3}+1\right)^{3 / 2}+c .
\end{aligned}
$$

[^0]: ${ }^{1}$ https://www.desmos.com/calculator/fqhfkzzf2c

